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Abstract

Although recent advances in machine learning
have shown its success to learn from independent
and identically distributed (IID) data, it is vul-
nerable to out-of-distribution (OOD) data in an
open world. Domain generalization (DG) deals
with such an issue and it aims to learn a model
from multiple source domains that can be gener-
alized to unseen target domains. Existing studies
on DG have largely focused on stationary settings
with homogeneous source domains. However, in
many applications, domains may evolve along a
specific direction (e.g., time, space). Without ac-
counting for such non-stationary patterns, models
trained with existing methods may fail to gener-
alize on OOD data. In this paper, we study do-
main generalization in non-stationary environment.
We first examine the impact of environmental non-
stationarity on model performance and establish
the theoretical upper bounds for the model error
at target domains. Then, we propose a novel algo-
rithm based on adaptive invariant representation
learning, which leverages the non-stationary pat-
tern to train a model that attains good performance
on target domains. Experiments on both synthetic
and real data validate the proposed algorithm.

1 INTRODUCTION

Many machine learning (ML) systems are built based on
an assumption that training and testing data are sampled
independently and identically from the same distribution.
However, this is commonly violated in real applications
where the environment changes during model deployment,
and there exist distribution shifts between training and test-
ing data. The problem of training models that are robust
under distribution shifts is typically referred to as domain

adaptation (or generalization), where the goal is to train a
model on source domain that can generalize well on a target
domain. Specifically, domain adaptation (DA) aims to de-
ploy model on a specific target domain, and it assumes the
data from this target domain is accessible during training.
In contrast, domain generalization (DG) considers a more
realistic scenario where target domain data is unavailable
during training; instead it leverages multiple source domains
to learn models that generalize to unseen target domains.

For both DA and DG, various approaches have been pro-
posed to learn a robust model with high performance on
target domains. However, most of them assume both source
and target domains are sampled from a stationary envi-
ronment; they are not suitable for settings where the data
distribution evolves along a specific direction (e.g., time,
space). In stationary DG, the domains are treated as an
unordered set, while in non-stationary DG, they form an
ordered tuple with a sequential structure (see Figure 1). This
defining characteristic of non-stationary DG renders this
setting a challenging task, necessitating novel solutions that
account for non-stationary mechanisms. In practice, evolv-
able data distributions have been observed in many applica-
tions. For example, satellite images change over time due to
city development and climate change [Christie et al., 2018],
clinical data evolves due to changes in disease prevalence
[Guo et al., 2022], facial images gradually evolve because
of the changes in fashion and social norms [Ginosar et al.,
2015]. Without accounting for the non-stationary patterns
across domains, existing methods in DA/DG designed for
stationary settings may not perform well in non-stationary
environments. As evidenced by Guo et al. [2022], clinical
predictive models trained under existing DA/DG methods
cannot perform better on future clinical data compared to
empirical risk minimization.

In this paper, we study domain generalization (DG) in
non-stationary environments. The goal is to learn a model
from a sequence of source domains that can capture the
non-stationary patterns and generalize well to (multiple)
unseen target domains. We first examine the impacts of
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non-stationary distribution shifts and study how the model
performance attained on source domains can be affected
when the model is deployed on target domains. Based on
the theoretical findings, we propose an algorithm named
Adaptive Invariant Representation Learning (AIRL); it min-
imizes the error on target domains by learning a sequence of
representations that are invariant for every two consecutive
source domains but are adaptive across these pairs.

In particular, AIRL consists of two components: (i) rep-
resentation network, which is trained on the sequence of
source domains to learn invariant representations between
every two consecutive source domains, (ii) classification
network that minimizes the prediction errors on source do-
mains. Our main idea is to create adaptive representation and
classification networks that can evolve in response to the dy-
namic environment. In other words, we aim to find networks
that can effectively capture the non-stationary patterns from
the sequence of source domains. At the inference stage, the
representation network is used to generate the optimal rep-
resentation mappings and the classification network is used
to make predictions in the target domains, without the need
to access their data. To verify the effectiveness of AIRL, we
conduct extensive experiments on both synthetic and real
data and compare AIRL with various existing methods.

2 RELATED WORK

This work is closely related to the literature on domain
generalization, continuous (or gradual) domain adaptation,
continual learning. We introduce each topic and discuss
their differences with our work.

Domain generalization. The goal is to learn a model on
multiple source domains that can generalize to the out-of-
distribution samples from an unseen target domain. Depend-
ing on the learning strategy, existing works for DG can be
roughly classified into three categories: (i) methods based
on domain-invariant representation learning [Phung et al.,
2021, Nguyen et al., 2021a, Pham et al., 2023]; (ii) meth-
ods based on data manipulation [Qiao et al., 2020, Zhou
et al., 2020]; (iii) methods by considering DG in general
ML paradigms and using approaches such as meta-learning
[Li et al., 2018a, Balaji et al., 2018], gradient operation
[Rame et al., 2021, Tian et al., 2022], self-supervised learn-
ing [Jeon et al., 2021, Li et al., 2021], and distributional
robustness [Koh et al., 2021, Wang et al., 2021]. However,
these works assume both source and target domains are sam-
pled from a stationary environment and they do not consider
the non-stationary patterns across domains; this differs from
our setting.

Non-stationary domain generalization. To the best of our
knowledge, only a few concurrent works study domain gen-
eralization in non-stationary environments [Bai et al., 2022,
Qin et al., 2022, Zeng et al., 2023, Xie et al., 2024, Zeng

et al., 2024b,a]. However, the problem settings considered
in these works are rather limited. For example, Qin et al.
[2022] only focuses on the environments that evolve based
on a consistent and stationary transition function; the ap-
proaches in Bai et al. [2022], Zeng et al. [2023, 2024b] can
only generalize the model to a single subsequent target do-
main; Qin et al. [2022], Xie et al. [2024], Zeng et al. [2024a]
assume that data are aligned across domain sequence. In
contrast, this paper considers a more general setting where
data may evolve based on non-stationary dynamics, and the
proposed algorithm learned from the sequence of unaligned
source domains can generate models for multiple unseen
target domains.

Continuous domain adaptation. Unlike conventional
DA/DG methods that only consider categorical domain la-
bels, continuous DA admits continuous domain labels such
as space, time [Ortiz-Jimenez et al., 2019, Wang et al., 2020].
Specifically, this line of research considers scenarios where
the data distribution changes gradually and domain labels
are continuous. Similar to conventional DA, samples from
target domain are required to guide the model adaptation
process. This is in contrast to this study, which considers
the target domains whose samples are inaccessible during
training.

Gradual domain adaptation. Similar to continuous DA,
Gradual DA also considers continuous domain labels, and
the samples from the target domain are accessible during
training [Kumar et al., 2020, Chen et al., 2020, Chen and
Chao, 2021]. The prime difference is that continuous DA
focuses on the generalization from a single source domain to
a target domain, whereas there are multiple source domains
in gradual DA.

Continual learning. The goal is to learn a model continu-
ously from a sequence of tasks. The main focus in continual
learning is to overcome the issue of catastrophic forgetting,
i.e., prevent forgetting the old knowledge as the model is
learned on new tasks [Chaudhry et al., 2018, Kirkpatrick
et al., 2017, Mallya and Lazebnik, 2018]. This differs from
temporal-shift DG (i.e., a special case of our setting) which
aims to train a model that can generalize to future domains.

3 PROBLEM FORMULATION

We first introduce the notations used throughout the paper
and then formulate the problem. These notations and their
descriptions are also summarized in Table 1.

Notations. Let X and Y denote the input and output space,
respectively. We use capitalized letters X,Y to denote ran-
dom variables that take values in X ,Y and small letters
x, y their realizations. A domain D is specified by dis-
tribution PX,Y

D : X × Y → [0, 1] and labeling function
hD : X → Y∆, where ∆ is a probability simplex over
Y . For simplicity, we also use PV

D (or PV |U
D ) to denote the



Figure 1: An illustrative comparison between conventional DG and DG in non-stationary environment: domains in conven-
tional DG are independently sampled from a stationary environment, whereas DG in non-stationary environment considers
domains that evolve along a specific direction. As shown in the right plot, data (i.e., images) changes over time and the
model trained on past data may not have good performance on future data due to non-stationarity (i.e., temporal shift).

induced marginal (or conditional) distributions of random
variable V (given U ) in the domain D.

Non-stationary domain generalization setup. We consider
a problem where a learning algorithm has access to sequence
of source datasets {St}Tt=1 where St consists of n instances
i.i.d sampled from source domain Dt. In non-stationary
DG, we assume there exists a mechanismM that captures
non-stationary patterns in the data. Specifically,M can gen-
erate a sequence of mapping functions {mt}t∈N in which
mt : X ×Y → X ×Y captures the transition from domain
Dt−1 to domain Dt. In other words, we can regard PX,Y

Dt
as

the push-forward distribution induced from PX,Y
Dt−1

using the

mapping functionmt−1 (i.e., PX,Y
Dt

:=mt−1♯P
X,Y
Dt−1

). Note
that this setup is different from conventional DG where do-
mains are sampled independently from a meta-distribution.
In non-stationary DG, domains are related to each other
via mechanismM (i.e.,mt depends on previous mappings
m1,m2, · · · ,mt−1).

Given a sequence of T source domains, our goal is to learn a
sequence of models H = {ht}T+K

t=T+1, where ht : X → Y∆

in a hypothesis class H is a model corresponds to domain
Dt, such that these models can perform well on K (unseen)
target domains {Dt}T+K

t=T+1. We aim to investigate under
what conditions and by what algorithms we can ensure mod-
els learned from source domains can attain high accuracy
at unknown target domains {Dt}T+K

t=T+1 in non-stationary
environment. Formally, we measure the accuracy using an
error metric defined below.

Error metric. Consider a model h : X → Y∆ in a hy-
pothesis class H, we denote h(x)y as the element on y-th
dimension which predicts Pr(Y = y|X = x). Then the
expected error of h under domain D for some loss func-
tion L : Y∆ × Y → R+ (e.g., 0-1, cross-entropy loss)
can be defined as ϵD (h) = Ex,y∼D [L (h(X), Y )] . Simi-
larly, the empirical error of h over n samples S drawn i.i.d.

from PX,Y
D is defined as ϵS (h) = 1

n

∑
x,y∈S L (h(x), y) .

We also denote a family of functions LH associated
with loss function L and hypothesis class H as LH =
{(x, y) → L (h (x) , y) : h ∈ H} .

Non-stationary mechanismM is a key component in non-
stationary DG. Since M is unknown, we need to learn it
from source domains. Let M be a learned mechanism in a
hypothesis class M. To support theoretical analysis about
M , we define the following:

• M -generated domain sequence
{
DM

1 , · · · , DM
T+K

}
where domain DM

t is associated with the distribution
PX,Y

DM
t

= mt−1♯P
X,Y
Dt−1

and DM
1 = D1.

• M -generated dataset sequence
{
SM
1 , · · · , SM

T+K

}
where dataset SM

t is generated from dataset St−1 by using
mapping mt−1.

• M -optimal model sequence HM =
{
hM
1 , · · · , hM

T+K

}
where hM

t = argminh∈H ϵDM
t
(h).

• M -empirical optimal model sequence ĤM ={
ĥM
1 , · · · , ĥM

T+K

}
where ĥM

t = argminh∈H ϵSM
t

(h).

We also denote errors of model sequence H on source
and target domains as Esrc (H) = 1

T

∑T
t=1 ϵDt

(ht) and
Etgt (H) = 1

K

∑T+K
t=T+1 ϵDt

(ht), respectively, and on
M -generated source and target domains as EM

src (H) =
1
T

∑T
t=1 ϵDM

t
(ht) and EM

tgt (H) = 1
K

∑T+K
t=T+1 ϵDM

t
(ht).

Empirical errors of H on source and target datasets (Êsrc

and Êtgt), and on M -generated source and target datasets
(ÊM

src and ÊM
tgt) are defined similarly (Table 1).

4 THEORETICAL RESULTS

In this section, we aim to understand how a model sequence
H learned from source domain data would perform when
deployed in target domains under non-stationary distribution



Table 1: Notations used in this paper.

Notation Description
X ,Y,Z input, output, representation spaces
M,H mechanism and model hypothesis classes
X,Y, Z (resp. x, y, z) random variables (resp. realizations) in X ,Y,Z
Dt tth domain in domain sequence
St tth dataset sampled from domain Dt

{Dt}Tt=1 source domains
{Dt}T+K

t=T+1 target domains
PX,Y
Dt

distribution associated with domain Dt

hDt
: X → Y∆ labeling function of domain Dt

M ground-truth mechanism that generates {mt}t∈N

mt ground-truth mapping from Dt to Dt+1: PX,Y
Dt+1

=mt♯P
X,Y
Dt

M ∈ M hypothesis mechanism that generates {mt}t∈N

ht ∈ H hypothesis classifier for domain Dt

L : Y∆ → Y loss function
LH family of functions {(x, y) → L (h(x), y) : h ∈ H}
ϵD (h) expected error of classifier h on domain D

ϵS (h) empirical error of classifier h on dataset S
DM

t domain associated with distribution PX,Y

DM
t

= mt−1♯P
X,Y
Dt−1

SM
t dataset associated with domain DM

t

hM
t argminh∈H ϵDM

t
(h)

ĥM
t argminh∈H ϵSM

t
(h)

DJS JS-divergence
Esrc (H) (resp. Etgt (H)) 1

T

∑T
t=1 ϵDt

(ht) (resp. 1
K

∑T+K
t=T+1 ϵDt

(ht))
EM

src (H) (resp. EM
tgt (H)) 1

T

∑T
t=1 ϵDM

t
(ht) (resp. 1

K

∑T+K
t=T+1 ϵDM

t
(ht))

Êsrc (H) (resp. Êtgt (H)) 1
T

∑T
t=1 ϵSt (ht) (resp. 1

K

∑T+K
t=T+1 ϵSt (ht))

ÊM
src (H) (resp. ÊM

tgt (H)) 1
T

∑T
t=1 ϵSM

t
(ht) (resp. 1

K

∑T+K
t=T+1 ϵSM

t
(ht))

Dsrc (M) 1
T

∑T
t=1

(
DJS

(
PX,Y
Dt

∥ PX,Y

DM
t

))1/2
Dtgt (M) 1

K

∑T+K
t=T+1

(
DJS

(
PX,Y
Dt

∥ PX,Y

DM
t

))1/2
Φ (M,H) sup

M ′∈M

(
Etgt

(
HM ′

)
− Esrc

(
HM ′

))
Φ (M) sup

M ′∈M
(Dtgt (M

′)−Dsrc (M
′))

shifts. Specifically, we will develop theoretical upper bounds
of the model sequence’s errors at target domains. These
theoretical findings will provide guidance for the algorithm
design in Section 5. All proofs are in Appendix A.

To start, we adopt two assumptions commonly used in
DA/DG literature [Nguyen et al., 2021b, Kumar et al., 2020].

Assumption 1 (Bounded loss). We assume loss function
L is upper bounded by a constant C, i.e., ∀x ∈ X , y ∈ Y ,
h ∈ H, we have L(h(x), y) ≤ C.

Assumption 2 (Bounded model complexity). We assume
Rademacher complexity [Bartlett and Mendelson, 2002] of
function class LH computed from all samples with size n
is bounded for any distribution P considered in this paper.
That is, for some constant B > 0, we have:

Rn (LH) = E

[
sup

f∈LH

1

n

n∑
i=1

σif (xi)

]
≤ B√

n

where the expectation is with respect to xi ∼ P and σi ∼
PR, and PR is Rademacher distribution.

We note that these two assumptions are actually reasonable
and not strong. For instance, although Assumption 1 does
not hold for cross-entropy loss used in classification, we
can modify this loss to make it satisfied Assumption 1. In
particular, it can be bounded by C by modifying softmax

output from
(
p1, · · · , p|Y|

)
to
(
p̂1, · · · , p̂|Y|

)
where p̂i =

pi (1− exp (−C) |Y|) + exp (−C). In addition, according
to Liang [2016] (Theorem 11 page 82), Assumption 2 holds
when input space is compact and bounded in unit L2 ball
and function f in LH is linear and Lipschitz continuous in
l2 norm.

To learn a model sequence H that performs well on unseen
target domains, we need to account for the non-stationary
patterns across domains. However, these patterns are gov-
erned by mechanism M which is unknown and must be
estimated from source domains. Therefore, we need to learn
a mechanism M ∈ M that can well estimate ground-truth
M and learn H by leveraging M . Because the target data is
inaccessible, we expect that the model performance on the
target highly depends on the accuracy of M ∈ M. To for-
mally characterize the complexity of learning non-stationary
pattern leveraging hypothesis classes M, H and source do-
mains, we introduce two complexity terms as follows.

Definition 1 (Non-stationary complexity). Given a se-
quence of domains {Dt}T+K

t=1 , hypothesis classes M and H,
the M,H-complexity term Φ (M,H) and M-complexity
term Φ (M) are defined as

Φ (M,H) = sup
M ′∈M

(
Etgt

(
HM ′

)
− Esrc

(
HM ′

))
Φ (M) = sup

M ′∈M
(Dtgt (M

′)−Dsrc (M
′))

where Dtgt (M
′) = 1

K

∑T+K
t=T=1

(
DJS

(
PX,Y
Dt

∥ PX,Y

DM′
t

))1/2
,

Dsrc (M
′) = 1

T

∑T
t=1

(
DJS

(
PX,Y
Dt

∥ PX,Y

DM′
t

))1/2
, and

DJS (· ∥ ·) is JS-divergence between two distributions.

In essence, Φ (M,H) quantifies the gap between the source
and target domains in terms of prediction errors of model
sequence HM . Meanwhile, Φ (M) evaluates the disparity
in performance of M regarding its ability to estimate non-
stationary patterns in source and in target domain sequences.
Performance is measured by the statistical distance between
ground-truth and the distributions induced by M . Inspired
by discrepancy measures used to quantity the differences
between distributions [Mansour et al., 2009, Mohri and
Muñoz Medina, 2012] Φ (M,H) and Φ (M) explicitly take
into account the hypothesis classes M and H, and loss
function L. This ensures that the bound constructed from
these terms is directly related to the learning problem at
hand. Next, we present a guarantee on target domains for
M -empirical optimal model sequence ĤM as follows.

Theorem 1. Given domain sequence {Dt}T+K
t=1 , dataset

sequence {St}T+K
t=1 sampled from {Dt}T+K

t=1 , for any M ∈
M (M can depend on {St}T+K

t=1 ) and any 0 < δ < 1, with
probability at least 1−δ over the choice of dataset sequence



{St}T+K
t=1 , we have:

Etgt

(
ĤM

)
≤ ÊM

src

(
ĤM

)
+ 5

√
2C ×Dsrc (M)

+ Φ(M) + 2
√
2C × Φ(M,H)

+
6B√
n
+ 3

√
log((T +K)/δ)

2n

It states that the expected error of ĤM on target domains
Etgt

(
ĤM

)
is upper bounded by four parts: (i) empirical

error of ĤM on M -generated source datasets ÊM
src

(
ĤM

)
,

(ii) the average distance between source datasets and M -
generating source datasets Dsrc (M), (iii) non-stationary
complexity terms Φ(M) and Φ(M,H), (iv) sample com-

plexity term 6B√
n
+ 3

√
log((T+K)/δ)

2n . We note that both
the third and fourth parts remain fixed given hypothesis
classes M and H, and the sample size n for each dataset
in the sequence. It is also noteworthy that this bound still
holds when M depends on dataset sequence {St}T+K

t=1 ,
thereby allowing us to apply this bound for M learned from
{St}T+K

t=1 . In addition, ÊM
src

(
ĤM

)
= minH ÊM

src (H) by

definition. Therefore, to minimize the expected error of ĤM

on target domains, Theorem 1 suggests us to find a mecha-
nism M∗ = argminM∈M Dsrc(M) from source datasets
{St}T+K

t=1 , and then learn model sequence ĤM∗
that mini-

mizes empirical error on M∗-generated dataset sequence.

Learning M∗ requires the model to find the optimal map-
ping m∗

t−1 : X × Y → X × Y that minimizes the dis-

tance of the joint distributions DJS

(
PX,Y
Dt

∥ PX,Y

DM∗
t

)
for all

t ∈ {1, · · · , T}. To this end, we first minimize the distance
of output distribution between the two domains Dt, Dt−1,
then find an optimal mapping function in input space X .
That is, minimizing the distance of joint distributions in
output and input space separately. This approach is formally
stated in Proposition 1 below.

Proposition 1. Let PX,Y

DW
t−1

be the distribution induced from

PX,Y
Dt−1

by importance weighting with factors {wy}y∈Y

where wy = PY=y
Dt

/PY=y
Dt−1

(i.e., PX=x,Y=y

DW
t−1

= wy ×

PX=x,Y=y
Dt−1

). Then for any mechanism M that generates
{mt : X → X}t∈N, we have the following:

DJS

(
PX,Y
Dt

∥ PX,Y

DW,M
t

)
= Ey∼PY

Dt

[
DJS

(
P

X|Y
Dt

∥ P
X|Y
DW,M

t

)]
where PX,Y

DW,M
t

= mt−1♯P
X,Y

DW
t−1

is a push-forward distribu-

tion induced from PX,Y

DW
t−1

using mt−1.

Proposition 1 suggests 2-step approach to learn mt : X ×
Y → X × Y: (i) reweight PX,Y

Dt−1
with factors {wy}y∈Y

(i.e., to minimize the distance of output distribution between

Figure 2: Visualization of learning non-stationary mapping
between two domains DW

t (i.e., generated from Dt+1 by im-
portance weighting) and Dt+1. (a) Learning in input space
X . (b) Learning in representation space Z .

Dt, Dt−1); (ii) learn mt : X → X that minimizes the dis-
tance of conditional distribution DJS

(
P

X|Y
Dt

∥ P
X|Y
DW,M

t

)
.

We note that while the non-stationary complexity terms
Φ(M) and Φ(M,H) are fixed given hypothesis classes M
and H, a good design of M and H will make these terms
small. Since the input space X may be of high dimension,
constructing these hypothesis classes in high-dimensional
space can be challenging in practice. To tackle this issue,
we leverage the representation learning approach to first
map inputs to a representation space Z , which often has
a lower dimension than X . In particular, instead of using
m∗

t : X → X to map PX
DW

t
to PX

DW,M∗
t+1

in input space X ,

we use f∗
t : X → Z and g∗t : X → Z to map PX

DW
t

and

PX
Dt+1

to f∗
t ♯P

Z
DW

t
and g∗t ♯P

Z
Dt+1

in representation space

Z such that E
[
DJS

(
g∗t ♯P

Z|Y
Dt+1

∥ f∗
t ♯P

Z|Y
DW

t

)]
is minimal.

Then, we learn a sequence of classifiers H∗ from represen-
tation to output spaces that minimizes empirical errors on
source domains. This representation learning-based method
is visualized in Figure 2 and is summarized below.

Remark 1 (Representation learning). Given the sequence
of T source domains, we estimate:
(i) Non-stationary mechanism F ∗ and G∗ that generate two
sequence of representation mappings {f∗

t : X → Z} and
{g∗t : X → Z} with F ∗, G∗ defined as:

argmin
F∈F,G∈G

1

T

T∑
t=1

E
y∼PY

Dt

[
DJS

(
gt−1♯P

Z|Y
Dt

∥ ft−1♯P
Z|Y
DW

t−1

)]
where F and G generate sequence of representation map-
pings {ft : X → Z} and {gt : X → Z}, F and G are the
hypothesis classes of F and G.
(ii) Sequence of classifiers H∗ =

{
h∗
t : Z → Y∆

}
where

each h∗
t minimizes the empirical errors with respect to dis-



tributions f∗
t ♯P

Z,Y

DW
t

and g∗t ♯P
Z,Y
Dt+1

.

Remark 2 (Comparison with conventional DG). A key
property of non-stationary DG is that the model needs to
evolve over the domain sequence to capture non-stationary
patterns (i.e., learn invariant representations between two
consecutive domains but adaptive across domain sequence).
This differs from the conventional DG [Ganin et al., 2016,
Phung et al., 2021] which (implicitly) assumes that target do-
mains lie on or are near the mixture of source domains, then
enforcing fixed invariant representations across all source
domains can help generalize the model to target. We argue
that this assumption does not hold in non-stationary DG
where the target domains may be far from the mixture of
source domains. Thus, the existing methods developed for
conventional DG often fail in non-stationary DG. We further
validate this empirically in Appendix C.2.

According to Remark 1, JS-divergence between two distri-
bution PDW

t
and PDt+1

can be minimized through invari-
ant representation learning. However in practice, models
only have access to finite datasets SW

t and St+1. More-
over, Goodfellow et al. [2014] has shown that minimizing
JS-divergence is aligned with the objective adversarial learn-
ing in the setting of infinite data. Therefore, evaluating the
performance of minimizing JS-divergence via adversarial
learning in the case of finite data is important. First, defini-
tion of adversarial learning is given below.

Definition 2. Adversarial learning for invariant
representation. Given two datasets Sw

t =
{
xi
t

}n
i=1

and St+1 =
{
xi
t+1

}n
i=1

, the goal of adversar-
ial learning approach for invariant representation
with respect to these two datasets is to achieve
L̂t
adv = infαt,βt

supγt

(
1
n

∑n
i=1 log

(
Dγt

(Fαt
(xi

t))
)

+ 1
n

∑n
i=1 log

(
1−Dγt

(Gβt
(xi

t+1))
))

where
Fαt

: X → Z and Gβt
: X → Z are the represen-

tation networks parameterized by αt ∈ A and βt ∈ B, and
Dγt

: Z → [0, 1] are the discriminator parameterized by
γt ∈ Γ that tries to predict which domain the representation
comes from.

Then, Proposition 2 shows that the error of minimizing JS-
divergences using adversarial learning on the sequence of
source datasets size n is up to O

(
1√
n

)
.

Proposition 2. Let α∗
t , β

∗
t , γ

∗
t are parameters learned by

infinite data and α̂t, β̂t, γ̂t are parameters learned by opti-
mizing L̂t

adv , then we have:

E
[
Dsrc

(
α̂, β̂

)]
≤ Dsrc (α

∗, β∗)

+O
((

1√
n

)
× C(A,B,Γ)

)
where Dsrc

(
α̂, β̂

)
= 1

T

∑T
t=1 DJS

(
PZ
α̂t

∥ PZ
β̂t

)
and

Dsrc (α
∗, β∗) = 1

T

∑T
t=1 DJS

(
PZ
α∗

t
∥ PZ

β∗
t

)
, PZ

α̂t
, PZ

β̂t
,

Figure 3: Overall architecture of AIRL and the visualization
of its learning process.

PZ
α∗

t
, PZ

β∗
t

are distributions induced by representation net-

works parameterized by α̂t, β̂t, α
∗
t , β

∗
t , respectively, and

C(A,B,Γ) is a constant specified by the parameter spaces
A,B,Γ.

5 PROPOSED ALGORITHM

Overview. Based on Remark 1, we propose AIRL, a novel
model that learns adaptive invariant representations from
a sequence of T source domains. AIRL includes two com-
ponents: (i) representation network which are instantiation
of mechanisms F ∗ and G∗ that generates representation
mapping sequences [f∗

1 , · · · , f∗
T+K ] and [g∗1 , · · · , g∗T+K ]

from input space to representation space, (ii) classifica-
tion network that learns the sequence of classifiers H∗ =
[h∗

1, · · · , h∗
T+K ] from representation to the output spaces.

Figure 3 shows the overall architecture of AIRL; the techni-
cal details of each component are presented in Appendix B.
The learning and inference processes of AIRL are formally
stated as follows.

5.1 LEARNING

Non-stationary mechanisms F ∗ and G∗, and classifiers H∗

in AIRL can be learned by solving an optimization problem
over T source domains {Dt}Tt=1:

F ∗, G∗, H∗ = argmin
F,G,H

T∑
t=1

Lt
cls + αLt

inv (1)

where Lt
cls is the prediction loss on source domains Dt and

Dt+1; Lt
inv enforces the representations are invariant across

a pair of consecutive domains Dt, Dt+1; hyper-parameter
α controls the trade-off between two objectives. We note



that enforcing pairwise invariance as in objective (1) does
not imply global invariance (i.e., representations that are
invariant across all domains). It is because we use distinct
mappings for different pairs of domains. In particular, Dt−1

and Dt are aligned by two mappings ft−1 and gt−1 while
Dt and Dt+1 are aligned by two mappings ft and gt.

Next, we present the detailed architecture of the rep-
resentation network and the classification network. In
practice, the representation mappings are often complex
(e.g., ResNet [He et al., 2016] for image data, Trans-
former [Vaswani et al., 2017] for text data), then explicitly
capturing the evolving of these mappings is challenging.
We surpass this bottleneck by capturing the evolving of
representation space induced by these mappings instead.
Formally, our representation network consists of an encoder
Enc which maps from input to representation spaces, and
Transformer layer Trans which learns the non-stationary
pattern from a sequence of source domains using attention
mechanism. Given the batch sample B := {xt, yt}t≤T from
T source domains where {xt, yt} = {xj

t , y
j
t }nj=1 are sam-

ples for domain Dt, the encoder first maps each input xj
t

to a representation zjt = Enc
(
xj
t

)
, ∀t ≤ T, j ≤ n. Then,

Transformer layer Trans is used to generate representa-
tion ẑjt from the sequence zj≤t =

[
zj1, z

j
2, · · · , z

j
t

]
. Specif-

ically, ∀j, t, Trans leverages four feed-forward networks
Q,K, V, U to compute ẑjt as follow:

ẑjt =
(
aj≤t

)⊤
V
(
zj≤t

)
+ U

(
zjt

)
with aj≤t =

K
(
zj≤t

)⊤
Q
(
zjt

)
√
d

(2)

It is worth pointing out that we do not assume data are
aligned across domain sequence. In particular, due to ran-
domness in data loading, there is no alignment between the
jth sample in domain Dt−1 and the jth sample in domain
Dt. In our design, the computational paths from xj

t+1 to
zjt+1 and from xj

t to ẑjt are considered as gt and ft, respec-
tively. In particular, zjt+1 = gt(x

j
t+1) and ẑjt = ft(x

j
t ). The

main goal of this design is as follows: By incorporating
historical data into computation, representation space con-
structed by ft can capture evolving pattern across domain
sequence. However, this design requires access to the his-
torical data during inference which might not be feasible
in practice. To avoid it, we enforce gt, which obviates the
need to access historical data, to mimic representation space
constructed by ft.

As shown in Remark 1, our goal is to enforce invariant repre-
sentation constraint (i.e., Lt

inv in objective (1)) for every pair
of two consecutive domains Dt, Dt+1 constructed by ft and
gt instead of learning a network that achieves invariant rep-
resentations for all source domains together. Thus, the rep-
resentations constructed by ft and gt might not be aligned

with the ones constructed by ft′ and gt′ . After mapping
data to the representation spaces, the classification network
are used to generate the classifier sequence H . Due to the
simplicity of the classifier in practice (i.e., 1 or 2-layer net-
work), we leverage long short-term memory [Hochreiter and
Schmidhuber, 1997] LSTM to explicitly capture the evolv-
ing of the classifier over domain sequence. Specifically, the
weights of previous classifiers h<t = [h1, h2, · · · , ht−1]
are vectorized and put into LSTM to generate the weights
of ht.

Because ft, gt, ht ∀t < T are functions of the representa-
tion network and the classification network, the weights of
these two networks are updated using the backpropagated
gradients for objective (1). The pseudo-code of the complete
learning process for AIRL is shown in Algorithm 1. Next,
we present the details of each loss term used in optimization.

Prediction loss Lt
cls: We adopt cross-entropy loss for clas-

sification tasks. Specifically, Lt
cls for the optimization over

domains Dt, Dt+1 is defined as follows.

Lt
cls = EDW

t

[
− log

(
ht(ft(X))Y∑

y′∈Y ht(ft(X))y′

)]

+ EDt+1

[
− log

(
ht (gt(X))Y∑

y′∈Y ht (gt(X))y′

)]
(3)

Invariant representation constraint Lt
inv: It aims to min-

imize the distance between ft♯P
Z|Y=y

DW
t

and gt♯P
Z|Y=y
Dt+1

,
∀y ∈ Y , two conditional distributions induced from do-
mains DW

t and Dt+1 using representation mappings ft, gt,
respectively. In other words, for any inputs X from domains
DW

t and X ′ from Dt+1 whose labels are the same, we need
to find representation mappings ft, gt such that the represen-
tations ft(X), gt(X

′) have similar distributions. Inspired
by correlation alignment loss [Sun and Saenko, 2016], we
enforce this constraint by using the following as loss Lt

inv:

Lt
inv =

∑
y∈Y

1

4d2
∥∥Cy

t − Cy
t+1

∥∥2
F

(4)

where d is the dimension of representation space Z , ∥ · ∥2F
is the squared matrix Frobenius norm, and Cy

t and Cy
t+1 are

covariance matrices defined as follows:

Cy
t =

1

nt
y − 1

(
ft (X

y
t )

⊤
ft (X

y
t )

− 1

nt
y

(
1⊤ft (X

y
t )
)⊤ (

1⊤ft (X
y
t )
))

(5)

Cy
t+1 =

1

nt+1
y − 1

(
gt
(
Xy

t+1

)⊤
gt
(
Xy

t+1

)
− 1

nt+1
y

(
1⊤gt

(
Xy

t+1

))⊤ (
1⊤gt

(
Xy

t+1

)))
(6)

where 1 is the column vector with all elements equal to
1, Xy

t = {xi : xi ∈ DW
t , yi = y} is the matrix whose



Algorithm 1: Learning process for AIRL
Input: Training datasets from T source domains

{Dt}Tt=1, representation network = {Enc,
Trans}, classification network = {LSTM, h1},
α, n

Output: Trained Enc,Trans,LSTM, h∗
1

1 Linv = 0, Lcls = 0
/* Estimate {wt

y}y∈Y,t<T for important

weighting */
2 for t = 1 : T − 1 do
3 for y ∈ Y do
4 wt

y = PY=y
Dt+1

/PY=y
Dt

/* Learn weights for Enc,Trans,LSTM

*/
5 while learning is not end do
6 Sample batch B = {xt, yt}Tt=1 ∼ {Dt}Tt=1 where

{xt, yt} =
{
xj
t , y

j
t

}n

j=1

7 z1 = Enc (x1)
8 for t = 1 : T − 1 do
9 zt+1 = Enc (xt+1)

10 ẑt = Trans (z≤t)
11 {ẑt(w), yt(w)} = Reweight {ẑt, yt} with

wt = {wt
y}y∈Y

12 Calculate Lt
inv from ẑt(w), zt+1 by Eq. (4)

13 Linv = Linv + Lt
inv

14 if t > 1 then
15 ht = LSTM(h<t)
16 Calculate Lt

cls from
yt(w), yt+1, ht (ẑt(w)) , ht (zt+1) by Eq. (3)

17 Lcls = Lcls + Lt
cls

18 Update Enc,Trans,LSTM, ĥ1 by optimizing
Linv + αLcls

columns are {xi}, ft and gt are column-wise operations
applied to Xy

t and Xy
t+1, respectively, and nt

y is cardinality
of Xy

t .

5.2 INFERENCE

At the inference stage, the well-trained representation net-
work and classification network can be used to make
predictions about input x from target domain sequence
{Dt}T+K

t=T+1. In particular, we first map input x in domain
Dt to representation z using the encoder Enc in the represen-
tation network (i.e., g∗t−1). Then the classification network
(i.e., LSTM) is used sequentially to generate h∗

t−1 from the
sequence of classifiers

[
h∗
1, · · · , h∗

t−2

]
, and the prediction

about z can be made by h∗
t−1. Note that at the learning stage,

both g∗t−1 and f∗
t are used to map input x from domain Dt

to the representation space while at the inference stage, only
g∗t−1 is needed for target domain Dt (we do not use f∗

t be-
cause it requires access to data from all domains {Dt′}t′≤t

which generally are not available during inference). The
complete inference process is shown in Algorithm 2.

Algorithm 2: Inference process for AIRL
Input: Testing dataset from target domain

Dt(t ∈ {T + 1, · · · , T +K}), trained
Enc,LSTM, h∗

1

Output: Predictions for testing dataset
1 [t]
2 for t′ = 2 : (t− 1) do
3 h∗

t′ = LSTM
(
h∗
<t′

)
4 while inference is not end do
5 Sample batch B = xt ∼ Dt

6 zt = Enc (xt)
7 Generate predictions h∗

t−1 (zt)

6 EXPERIMENTS

In this section, we present the experimental results of the
proposed AIRL and compare AIRL with a wide range of
existing algorithms. We evaluate these algorithms on syn-
thetic and real-world datasets. Next, we first introduce the
experimental setup and then present the empirical results.

Experimental setup. Datasets and baselines used in the
experiments are briefly introduced below. Their details are
shown in Appendix C.

Datasets. We consider five datasets: Circle [Pesaranghader
and Viktor, 2016] (a synthetic dataset containing 30 domains
where each instance is sampled from 30 two-dimensional
Gaussian distributions), Circle-Hard (a synthetic dataset
adapted from Circle dataset such that domains do not uni-
formly evolve), RMNIST (a semi-synthetic dataset con-
structed from MNIST [LeCun et al., 1998] by R-degree
counterclockwise rotation), Yearbook [Ginosar et al., 2015]
(a real dataset consisting of frontal-facing American high
school yearbook photos from 1930-2013), and CLEAR [Lin
et al., 2021] (a real dataset capturing the natural temporal
evolution of visual concepts that spans a decade).

Baselines. We compare the proposed AIRL with exist-
ing methods from related areas, including the followings:
empirical risk minimization (ERM), last domain training
(LD), fine tuning (FT), domain invariant representation
learning (G2DM [Albuquerque et al., 2019], DANN [Ganin
et al., 2016], CDANN [Li et al., 2018b], CORAL [Sun and
Saenko, 2016], IRM [Arjovsky et al., 2019]), data augmen-
tation (MIXUP [Zhang et al., 2018]), continual learning
(EWC [Kirkpatrick et al., 2017]), continuous DA (CIDA
[Wang et al., 2020]), distributionally robust optimization
(GroupDRO [Sagawa et al., 2019]), gradient-based DG
(Fish [Shi et al., 2022]) contrastive learning-based DG (i.e.,
SelfReg [Kim et al., 2021]), non-stationary DG (DRAIN
[Bai et al., 2022], TKNets [Zeng et al., 2024b], LSSAE



Table 2: Prediction performances (i.e., OODAvg and OODWrt) of AIRL and baselines under Eval-D scenario (K = 5). We
report average results (w. standard deviation) over 5 random seeds. For CLEAR dataset, due to only one split between train
and test sets, OODAvg and OODWrt are similar.

Algorithm
Circle Circle-Hard RMNIST Yearbook CLEAR

OODAvg OODWrt OODAvg OODWrt OODAvg OODWrt OODAvg OODWrt OODAvg /OODWrt

ERM 89.63 (0.89) 79.84 (1.84) 66.94 (1.69) 58.43 (0.05) 56.61 (1.83) 51.85 (4.15) 90.79 (0.16) 71.03 (1.74) 69.04 (0.18)
LD 76.60 (6.45) 56.88 (3.74) 58.13 (1.67) 51.58 (1.87) 37.54 (2.77) 25.80 (4.12) 77.10 (0.30) 57.97 (0.88) 57.01 (2.15)
FT 85.57 (1.82) 71.99 (4.11) 59.02 (5.20) 50.80 (2.79) 60.73 (0.87) 47.30 (3.77) 87.04 (0.58) 66.83 (2.22) 66.71 (0.46)
DANN 88.80 (1.17) 78.32 (3.23) 65.10 (0.93) 56.68 (0.59) 58.25 (1.15) 53.61 (1.61) 90.57 (0.22) 69.58 (1.38) 67.48 (1.19)
CDANN 89.75 (0.14) 80.75 (2.97) 64.05 (1.33) 58.68 (0.22) 58.19 (0.93) 54.45 (1.40) 90.46 (0.30) 70.37 (1.44) 66.12 (0.37)
G2DM 89.40 (2.27) 79.61 (2.94) 67.75 (2.69) 59.65 (1.61) 57.62 (0.39) 53.93 (0.31) 87.57 (0.37) 66.69 (1.15) 56.98 (2.77)
CORAL 90.13 (0.52) 83.14 (1.27) 66.12 (1.48) 59.62 (1.17) 51.41 (2.63) 44.95 (3.64) 90.41 (0.20) 69.53 (2.00) 70.96 (1.06)
GROUPDRO 90.50 (1.75) 81.07 (6.12) 67.08 (1.67) 58.51 (0.12) 54.37 (2.98) 46.21 (5.69) 90.65 (0.20) 71.21 (1.51) 70.63 (0.04)
MIXUP 88.49 (0.86) 76.78 (2.49) 63.03 (1.53) 56.21 (1.20) 52.13 (2.54) 34.60 (16.81) 89.75 (0.05) 68.73 (1.36) 69.58 (0.99)
IRM 85.78 (1.11) 74.80 (1.73) 62.43 (2.70) 54.96 (1.78) 26.96 (1.11) 16.25 (1.87) 84.65 (0.31) 64.30 (2.44) 49.54 (1.08)
SELFREG 90.33 (0.14) 82.20 (0.93) 68.23 (2.47) 60.28 (0.90) 50.58 (2.35) 42.15 (4.63) 91.47 (0.12) 73.88 (0.37) 69.18 (0.68)
FISH 90.65 (0.25) 79.09 (2.46) 62.69 (0.63) 56.97 (0.49) 56.53 (1.32) 52.23 (1.47) 89.92 (0.20) 70.58 (0.90) 69.46 (0.47)
EWC 89.18 (1.72) 79.59 (4.63) 68.31 (3.31) 61.34 (2.18) 66.53 (1.26) 50.63 (5.35) 89.47 (0.17) 59.09 (7.70) 45.58 (4.92)
CIDA 87.25 (0.88) 77.91 (0.23) 65.38 (2.77) 58.15 (0.88) 53.42 (4.35) 35.21 (17.85) 91.29 (0.16) 70.19 (1.45) 65.10 (0.12)
DRAIN 86.78 (0.65) 74.57 (1.82) 67.44 (4.65) 57.76 (3.42) 67.09 (4.06) 59.49 (8.31) 89.62 (0.39) 70.36 (2.32) 64.67 (0.65)
TKNets 91.76 (0.16) 83.35 (1.32) 64.19 (0.95) 59.94 (0.18) 74.39 (0.23) 71.03 (0.37) 92.11 (0.26) 75.04 (1.16) 64.05 (0.64)
LSSAE1 90.21 (1.95) 80.92 (3.53) 66.43 (0.81) 61.22 (0.71) 33.30 (2.14) 18.83 (3.85) 60.48 (4.99) 50.35 (4.67) 22.61 (0.25)
DDA 72.06 (4.51) 48.81 (0.97) 65.26 (3.20) 56.16 (2.45) 78.18 (0.88) 73.70 (0.31) 86.72 (0.56) 67.60 (2.66) 70.12 (1.10)
AIRL 92.28 (0.27) 82.81 (2.70) 73.50 (2.21) 63.29 (1.26) 77.49 (0.86) 74.99 (0.57) 93.10 (0.21) 78.22 (0.92) 73.04 (0.67)

Table 3: Ablation study for AIRL on Circle-Hard dataset
under Eval-D scenario (K = 5).

LSTM Trans Linv OODAvg OODWrt

✗ ✓ ✓ 69.06 61.05
✓ ✗ ✓ 65.51 58.69
✓ ✗ ✗ 68.33 60.16
✓ ✓ ✓ 73.50 63.29

[Qin et al., 2022], and DDA [Zeng et al., 2023]). To ensure
a fair comparison, we adopt similar architectures for AIRL
and baselines, including both representation mapping and
classifier. The implementation details are in Appendix B.

Evaluation method. In the experiments, models are trained
on a sequence of source domains Dsrc, and their perfor-
mance is evaluated on target domains Dtgt under two differ-
ent scenarios: Eval-S and Eval-D. In the scenario Eval-S,
models are trained one time on the first half of domain se-
quence Dsrc = [D1, D2, · · · , DT ] and are then deployed
to make predictions on the second half of domain sequence
Dtgt = [DT+1, DT+2, · · · , D2T ](K = T ). In the scenario
Eval-D, source and target domains are not static but are
updated periodically as new data/domain becomes avail-
able. For each of these two scenarios, we use two accuracy
measures, OODAvg and OODWrt, to evaluate the average-
and worst-case performances. Their details are shown in
Appendix C. We train each model with 5 different random
seeds and report the average prediction performances.

1We have observed that the training process of LSSAE with
our image encoders on image datasets fails to converge.

Results. Next, we evaluate the model performance under
Eval-D scenario (Results for Eval-S are in Appendix C).

Non-stationary DG results. Performance of AIRL and base-
lines on synthetic (i.e., Circle, Circle-Hard) and real-world
(i.e., RMNIST, Yearbook) data are presented in Table 2.
We observe that AIRL consistently outperforms other meth-
ods over all datasets and metrics. These results indicate that
AIRL can effectively capture non-stationary patterns across
domains, and such patterns can be leveraged to learn the
models that generalize better on target domains compared to
the baselines. Among baselines, methods designed specifi-
cally for non-stationary DG (i.e., DRAIN, DPNET, LSSAE)
and continual learning method (i.e., EWC) achieve better per-
formance than other methods. However, such improvement
is inconsistent across datasets.

Comparison with non-stationary DG methods. DPNET as-
sumes that the evolving pattern between two consecutive
domains is constant and the distances between them are
small. Thus, this method does not achieve good performance
for Circle-Hard dataset where distance between two con-
secutive domains is proportional to domain index. DRAIN
utilizes Bayesian framework and generates the whole mod-
els at every domain. This method, however, is only capable
for small neural networks and does not scale well to real-
world applications. Moreover, DPNET, DRAIN, and DDA
can only generalize to a single subsequent target domain.
LSSAE leverages sequential variational auto-encoder [Li
and Mandt, 2018] to learn non-stationary pattern. However,
this model assumes the availability of aligned data across
domain sequence, which may pose challenges to its per-



Figure 4: Visualization of predictions on Circle-Hard
dataset generated by ERM and AIRL.

formance in non-stationary DG. In contrast, AIRL is not
limited to the constantly evolving pattern. It is also scalable
to large neural networks and can handle multiple target do-
mains. In particular, compared to the base model (ERM), our
method has only one extra Transformer and LSTM layers.
Note that these layers are used during training only. In the
inference stage, predictions are made by Enc and classi-
fier pre-generated by LSTM which then results in a similar
inference time with ERM.

Decision boundary visualization. We conduct a quantitative
analysis for our method by visualizing its predictions on
Circle-Hard dataset. We train models (i.e., AIRL and ERM)
on the first 10 domains (right half) and evaluate on the
remaining 10 domains (left half). As depicted in Figure 4,
our method, designed to capture non-stationary patterns
across domains, generates more accurate predictions for
target domains compared to ERM.

Ablation studies. We conduct experiments to investigate the
roles of each component in AIRL. In particular, we com-
pare AIRL with its variants; each variant is constructed by
removing LSTM (i.e., use fixed classifier instead), Trans
(i.e., use fixed representation instead), Linv (i.e., without
invariant constraint) from the model. As shown in Table
3, model performance deteriorates when removing any of
them. These results validate our theorems and demonstrate
the effectiveness of each component.

Limitations. While AIRL consistently outperforms exist-
ing methods across all datasets and metrics, we acknowl-
edge certain limitations in our work. Regarding theoretical
analysis, we presently lack an effective method to estimate
non-stationary complexity from finite data. Concerning al-
gorithm design, our method is unable to address scenarios
where data from all source domains are not simultaneously
available during training (i.e., online learning). Moreover, it
may not be generalized to every non-stationary environment
in some specific cases. This is due to the reliance of our
method on the selection of hypothesis classes F , G.

7 CONCLUSION

In this paper, we theoretically and empirically studied do-
main generalization under non-stationary environments. We
first established the upper bounds of prediction error on

target domains, and then proposed a representation learning-
based method that learns adaptive invariant representations
across source domains. The resulting models trained with
the proposed method can generalize well to unseen target do-
mains. Experiments on both synthetic and real data demon-
strate the effectiveness of our proposed method.
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A PROOFS

A.1 ADDITIONAL LEMMAS

Lemma 1. Given two domains Dt and Dt′ , then for any classifier h ∈ H, the expected error of h in domain Dt can be
upper bounded:

ϵDt
(h) ≤ ϵDt′ (h) +

√
2C ×DJS

(
PX,Y
Dt

∥ PX,Y
Dt′

)1/2
where DJS (· ∥ ·) is JS-divergence between two distributions.

Proof of Lemma 1 Let DKL (· ∥ ·) be KL-divergence and U = (X,Y ) and L(U) = L (h(X), Y ). We first prove∫
E

∣∣∣PU=u
Dt

− PU=u
Dt′

∣∣∣ du = 1
2

∫ ∣∣∣PU=u
Dt

− PU=u
Dt′

∣∣∣ du where E is the event that PU=u
Dt

≥ PU=u
Dt′

(∗) as follows:

∫
E

∣∣∣PU=u
Dt

− PU=u
Dt′

∣∣∣ du =

∫
E

(
PU=u
Dt

− PU=u
Dt′

)
du

=

∫
E∪E

(
PU=u
Dt

− PU=u
Dt′

)
du−

∫
E

(
PU=u
Dt

− PU=u
Dt′

)
du

(1)
=

∫
E

(
PU=u
Dt′

− PU=u
Dt

)
du

=

∫
E

∣∣∣PU=u
Dt

− PU=u
Dt′

∣∣∣ du
=

1

2

∫ ∣∣∣PU=u
Dt

− PU=u
Dt′

∣∣∣ du

where E is the complement of E . We have
(1)
= because

∫
E∪E

(
PU=u
Dt

− PU=u
Dt′

)
du =

∫
U

(
PU=u
Dt

− PU=u
Dt′

)
du = 0. Then,

we have:



ϵDt
(h) = EDt

[L(U)]

=

∫
U
L(u)PU=u

Dt
du

=

∫
U
L(u)PU=u

Dt′
du+

∫
U
L(u)

(
PU=u
Dt

− PU=u
Dt′

)
du

= EDt′ [L(U)] +

∫
U
L(u)

(
PU=u
Dt

− PU=u
Dt′

)
du

= ϵDt′ (h) +

∫
E
L(u)

(
PU=u
Dt

− PU=u
Dt′

)
du+

∫
E
L(u)

(
PU=u
Dt

− PU=u
Dt′

)
du

(2)

≤ ϵDt′ (h) +

∫
E
L(u)

(
PU=u
Dt

− PU=u
Dt′

)
du

(3)

≤ ϵDt′ (h) + C

∫
E

(
PU=u
Dt

− PU=u
Dt′

)
du

= ϵDt′ (h) + C

∫
E

∣∣∣PU=u
Dt

− PU=u
Dt′

∣∣∣ du
(4)
= ϵDt′ (h) +

C

2

∫ ∣∣∣PU=u
Dt

− PU=u
Dt′

∣∣∣ du
(5)

≤ ϵDt′ (h) +
C

2

√
2min

(
DKL

(
PU
Dt′

∥ PU
Dt

)
,DKL

(
PU
Dt

∥ PU
Dt′

))
≤ ϵDt′ (h) +

C√
2

√
DKL

(
PU
Dt′

∥ PU
Dt

)
(∗∗)

We have
(2)

≤ because
∫
E L(u)

(
PU=u
Dt

− PU=u
Dt′

)
du ≤ 0;

(3)

≤ because L(u) is non-negative function and is bounded by C;

(4)
= by using (∗);

(5)

≤ by using Pinsker’s inequality between total variation norm and KL-divergence.

Let PU
Dt,t′

= 1
2

(
PU
Dt

+ PU
Dt′

)
. Apply (∗∗) for two domains Dt and Dt,t′ , we have:

ϵDt
(h) ≤ ϵDt,t′ (h) +

C√
2

√
DKL

(
PU
Dt

∥ PU
Dt,t′

)
(7)

Apply (∗∗) again for two domains Dt,t′ and Dt′ , we have:

ϵDt,t′ (h) ≤ ϵDt′ (h) +
C√
2

√
DKL

(
PU
Dt′

∥ PU
Dt,t′

)
(8)

Adding Eq. (7) to Eq. (8) and subtracting ϵDt,t′ , we have:

ϵDt
(h) ≤ ϵDt′ (h) +

C√
2

(√
DKL

(
PU
Dt

∥ PU
Dt,t′

)
+

√
DKL

(
PU
Dt′

∥ PU
Dt,t′

))
(6)

≤ ϵDt′ (h) +
C√
2

√
2
(
DKL

(
PU
Dt

∥ PU
Dt,t′

)
+DKL

(
PU
Dt′

∥ PU
Dt,t′

))
= ϵDt′ (h) +

C√
2

√
4DJS

(
PU
Dt′

∥ PU
Dt

)
= ϵDt′ (h) +

√
2C

√
DJS

(
PU
Dt′

∥ PU
Dt

)

We have
(6)

≤ by using Cauchy–Schwarz inequality.



Lemma 2. Given domain D, then for any δ > 0, with probability at least 1− δ over samples S of size n drawn i.i.d from
domain D, for all h ∈ H, the expected error of h in domain D can be upper bounded:

ϵD (h) ≤ ϵS (h) +
2B√
n
+ C

√
log(1/δ)

2n

Proof of Lemma 2 We start from the Rademacher bound Koltchinskii and Panchenko [2000] which is stated as follows.

Lemma 3. Rademacher Bounds. Let F be a family of functions mapping from Z to [0, 1]. Then, for any 0 < δ < 1, with
probability at least 1− δ over sample S = {z1, · · · , zn}, the following holds for all f ∈ F:

E
[
fZ
]
≤ 1

n

n∑
i=1

f(zi) + 2Rn(F) +

√
log(1/δ)

2n

where Rn (F) is a Rademacher complexity of function class F .

We then apply Lemma 3 to our setting with Z = (X,Y ), the loss function L bounded by C, and the function class
LH = {(x, y) → L (h (x) , y) : h ∈ H}. In particular, we scale the loss function L to [0, 1] by dividing by C and denote the
new class of scaled loss functions as LH/C. Then, for any δ > 0, with probability at least 1− δ, we have:

ϵD (h)

C
≤ ϵS (h)

C
+ 2Rn (LH/C) +

√
log(1/δ)

2n

(1)
=

ϵS (h)

C
+

2

C
Rn (LH) +

√
log(1/δ)

2n
(2)

≤ ϵS (h)

C
+

2B

C
√
n
+

√
log(1/δ)

2n
(9)

We have
(1)
= by using the property of Redamacher complexity that Rn(αF) = αRn(F),

(2)

≤ because of bounded Rademacher
complexity assumption. We derive Lemma 2 by multiplying Eq. (9) by C.

Lemma 4. Given domain sequence {Dt}, dataset sequence {St} sampled from {Dt}, M -optimal model sequence HM ={
hM
1 , · · · , hM

T+K

}
, M -empirical optimal model sequence ĤM =

{
ĥM
1 , · · · , ĥM

T+K

}
, then for any t and any δ > 0, with

probability at least 1− δ over samples St of size n drawn i.i.d from domain Dt, we have:

ϵDt

(
ĥM
t

)
≤ ϵDt

(
hM
t

)
+ 2

√
2CDJS

(
Dt ∥ DM

t

)1/2
+

4B√
n
+

√
2 log(1/δ)

n

Proof of Lemma 4 We have:

ϵDt

(
ĥM
t

) (1)

≤ ϵDM
t

(
ĥM
t

)
+
√
2CDJS

(
Dt ∥ DM

t

)1/2
(2)

≤ ϵSM
t

(
ĥM
t

)
+
√
2CDJS

(
Dt ∥ DM

t

)1/2
+

2B√
n
+

√
log(1/δ′)

2n
(w.p ≥ 1− δ′)

(3)

≤ ϵSM
t

(
hM
t

)
+
√
2CDJS

(
Dt ∥ DM

t

)1/2
+

2B√
n
+

√
log(1/δ′)

2n

(4)

≤ ϵDM
t

(
hM
t

)
+
√
2CDJS

(
Dt ∥ DM

t

)1/2
+

4B√
n
+

√
2 log(1/δ′)

n
(w.p ≥ 1− δ′)

(5)

≤ ϵDt

(
hM
t

)
+ 2

√
2CDJS

(
Dt ∥ DM

t

)1/2
+

4B√
n
+

√
2 log(1/δ′)

n

We have
(1)

≤ by using Lemma 1 for ϵDt

(
ĥM
t

)
,

(2)

≤ by using Lemma 2 for ϵDM
t

(
ĥM
t

)
,

(3)

≤ because ĥM
t =

argminh∈H ϵSM
t

(h),
(4)

≤ by using Lemma 2 for ϵSM
t

(
hM
t

)
,
(5)

≤ by using Lemma 1 for ϵDM
t

(
ĥM
t

)
. Finally, using union

bound for
(2)

≤ and
(4)

≤ , and denote δ = 2δ′, we have:

ϵDt

(
ĥM
t

)
≤ ϵDt

(
hM
t

)
+ 2

√
2CDJS

(
Dt ∥ DM

t

)1/2
+

4B√
n
+

√
2 log(1/δ)

n



Lemma 5. Given domain sequence {Dt}, dataset sequence {St} sampled from {Dt}, M -optimal model sequence HM ={
hM
1 , · · · , hM

T+K

}
, M -empirical optimal model sequence ĤM =

{
ĥM
1 , · · · , ĥM

T+K

}
, then for any t, we have:

ϵDt

(
hM
t

)
≤ ϵDt

(
ĥM
t

)
+ 2

√
2CDJS

(
Dt ∥ DM

t

)1/2
Proof of Lemma 5 We have:

ϵDt

(
hM
t

) (1)

≤ ϵDM
t

(
hM
t

)
+

√
2CDJS

(
Dt ∥ DM

t

)1/2
(2)

≤ ϵDM
t

(
ĥM
t

)
+
√
2CDJS

(
Dt ∥ DM

t

)1/2
(3)

≤ ϵDt

(
ĥM
t

)
+ 2

√
2CDJS

(
Dt ∥ DM

t

)1/2
We have

(1)

≤ by using Lemma 1 for ϵDt

(
hM
t

)
,
(2)

≤ because hM
t = argminh∈H ϵDM

t
(h),

(3)

≤ by using Lemma 1 for

ϵDM
t

(
ĥM
t

)
.

A.2 PROOF OF MAIN THEOREMS.

A.2.1 Proof of Theorem 1

We have:

Etgt

(
ĤM

)
=

1

K

T+K∑
t=T+1

ϵDt

(
ĥM
t

)
(1)

≤ 1

K

T+K∑
t=T+1

(
ϵDt

(
hM
t

)
+ 2

√
2C ×DJS

(
Dt ∥ DM

t

)1/2
+

4B√
n
+

√
2 log(1/δ′)

n

)
(w.p ≥ 1− δ′)

= Etgt

(
HM

)
+ 2

√
2C ×Dtgt (M) +

4B√
n
+

√
2 log(1/δ′)

n

= Esrc

(
HM

)
+
(
Etgt

(
HM

)
− Esrc

(
HM

))
+ 2

√
2C × (Dsrc (M) + (Dtgt (M)−Dsrc (M)))

+
4B√
n
+

√
2 log(1/δ′)

n

(2)

≤ 1

T

T∑
t=1

ϵDt

(
hM
t

)
+Φ(M) + 2

√
2C ×Dsrc (M) + 2

√
2C × Φ(M,H) +

4B√
n
+

√
2 log(1/δ′)

n

(3)

≤ 1

T

T∑
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(
ϵDt

(
ĥM
t

)
+ 2

√
2C ×DJS

(
Dt ∥ DM

t

)1/2)
+Φ(M) + 2

√
2C ×Dsrc (M) + 2

√
2C × Φ(M,H)

+
4B√
n
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√
2 log(1/δ′)

n

(4)

≤ 1

T
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ϵDM
t

(
ĥM
t

)
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√
2C ×Dsrc (M) + Φ(M) + 2

√
2C × Φ(M,H) +

4B√
n
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√
2 log(1/δ′)

n

(5)

≤ 1

T
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ϵSM
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ĥM
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√
2 log(1/δ′)
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= ÊM
src

(
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We have
(1)

≤ by using Lemma 4 for ϵDt

(
ĥM
t

)
,
(2)

≤ because Φ (M,H) = sup
M ′∈M

(
Etgt

(
HM ′

)
− Esrc

(
HM ′

))
amd

Φ (M) = sup
M ′∈M

(Dtgt (M
′)−Dsrc (M

′)),
(3)

≤ by using Lemma 5 for ϵDt

(
hM
t

)
,
(4)

≤ by using Lemma 2 for ϵDt

(
ĥM
t

)
,
(5)

≤

by using Lemma 1 for ϵDM
t

(
ĥM
t

)
. Finally, using union bound for

(2)

≤ and
(4)

≤ , and denote δ = (T +K)δ′, we have:

Etgt

(
ĤM

)
≤ ÊM

src

(
ĤM

)
+ 5

√
2C ×Dsrc (M) + Φ(M) + 2

√
2C × Φ(M,H) +

6B√
n
+ 3

√
log((T +K)/δ)

2n
(10)

Note that the high probability bounds in Lemma 2 and Lemma 4 relates to hypothesis class H only. Therefore, Eq. (10) still
holds for M depended on dataset sequence {St}T+K

t=1 .

A.2.2 Proof of Proposition 1

∀y ∈ Y , we have the following (∗):
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We have
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A.2.3 Proof of Proposition 2

First, we show that for any t ∈ [1, · · · , T ], we have:

E
[
DJS

(
PZ
α̂t

∥ PZ
β̂t

)]
≤ DJS

(
PZ
α∗

t
∥ PZ

β∗
t

)
+O

((
1√
n

)
× C(A,B,Γ)

)
(12)

Proposition 2 is then obtained by applying Eq.( 12) for all t ∈ [1, · · · , T ] followed by averaging over t.

Proof of Eq.( 12). To simplify the mathematical notation, we omit the index t in the following. Our proof is based on
the proof provided for GAN model by Biau et al. [2020]. Let L(α, β, γ) =

∫
Z

(
log (Dγ(z))P

z
α + log (1−Dγ(z))P

z
β

)
dz

and L̂(α, β, γ) is the corresponding empirical error, we have:
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We have
(1)

≤ by using inequality | inf A− inf B| ≤ sup |A−B|,
(2)

≤ by using inequality | supA− supB| ≤ sup |A−B|.
Take the expectation and rearrange the both sides, we have:
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Note that (As (α, β, γ))α∈A,β∈B,γ∈Γ and (At (α, β, γ))α∈A,β∈B,γ∈Γ are the subgaussian processes in the metric spaces
(A× B × Γ, C1 ∥·∥ /

√
n) and (A× B × Γ, C1 ∥·∥ /

√
n) where C1 is a constant and ∥·∥ is the Euclidean norm on A×B×Γ.

Then using Dudley’s entropy integral, we have:
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where diam(·) and dim(·) are the diameter and the dimension of the metric space, and C(A,B,Γ) is the function of

diam(A× B × Γ) and dim(A× B × Γ). We have
(3)
= because N(A× B × Γ, ∥·∥ , ϵ) = 1 for ϵ > diam(A× B × Γ),
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where T lied in Euclidean space Rd is the set of vectors whose length is at

most C2.



B MODEL DETAILS

Our proposed model AIRL consists of three components: (i) encoder Enc that maps inputs to representation (i.e., equivalent
to gt in our theoretical results), (ii) transformer layer Trans that helps to enforce the invariant representation (i.e., Enc +
Trans equivalent to ft in our theoretical results), and (iii) classification network LSTM that generates classifiers mapping
representations to the output space. At each target domain, LSTM layer is used to generate the new classifier based on
the sequences of previous classifiers. The detailed architectures of these networks used in our experiment are presented in
Tables 4 and 5 below.

Table 4: Detailed architecture of AIRL for RMNIST (n_channel = 1, n_output = 10), Yearbook (n_channel = 3, n_output
= 1), and CLEAR (n_channel = 3, n_output = 10) datasets.

Networks Layers

Representation Mapping G

Conv2d(input channel = n_channel, output channel = 32, kernel = 3, padding = 1)

BatchNorm2d

ReLU

MaxPool2d

Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)

BatchNorm2d

ReLU

MaxPool2d

Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)

BatchNorm2d

ReLU

MaxPool2d

Conv2d(input channel = 32, output channel = 32, kernel = 3, padding = 1)

BatchNorm2d

ReLU

MaxPool2d

Transformer Trans

Q: Linear(input dim = 32, output dim = 32)

K: Linear(input dim = 32, output dim = 32)

V : Linear(input dim = 32, output dim = 32)

U : Linear(input dim = 32, output dim = 32)

Linear(input dim = 32, output dim = 32)

Batchnorm1d

LeakyReLU

Classification Network LSTM

Linear(input dim = (32 * 32 + 32) + (32 * n_output + n_output), output dim = 128)

LSTM(input dim = 128, output dim = 128)

Linear(input dim = 128, output dim = (32 * 32 + 32) + (32 * n_output + n_output))

ĥt (Output of LSTM)

Linear(input dim = 32, output dim = 32)

ReLU

Linear(input dim = 32, output dim = n_output)



Table 5: Detailed architecture of AIRL for Circle and Circle-Hard datasets.

Networks Layers

Encoder Enc

Linear(input dim = 2, output dim = 32)

ReLU

Linear(input dim = 32, output dim = 32)

ReLU

Linear(input dim = 32, output dim = 32)

ReLU

Linear(input dim = 32, output dim = 32)

Transformer Trans

Q: Linear(input dim = 32, output dim = 32)

K: Linear(input dim = 32, output dim = 32)

V : Linear(input dim = 32, output dim = 32)

U : Linear(input dim = 32, output dim = 32)

Linear(input dim = 32, output dim = 32)

Batchnorm1d

LeakyReLU

Classification Network LSTM

Linear(input dim = (32 * 32 + 32) + (32 * 1 + 1), output dim = 128)

LSTM(input dim = 128, output dim = 128)

Linear(input dim = 128, output dim = (32 * 32 + 32) + (32 * 1 + 1))

ĥt (Output of LSTM)

Linear(input dim = 32, output dim = 32)

ReLU

Linear(input dim = 32, output dim = 1)



C DETAILS OF EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

C.1 EXPERIMENTAL SETUP

Datasets. Our experiments are conducted on two synthetic and two real-world datasets. The data statistics of these datasets
are presented in Table 6. For Eval-S scenario, the first half of domains in the domain sequences are used for training and the
following domains are used for testing. For Eval-D scenario, we vary the size of the training set starting from the first half of
domains by sequentially adding new domains to this set. In both scenarios, we split the training set into smaller subsets with
a ratio 81 : 9 : 10; these subsets are used as training, validation, and in-distribution testing sets. The data descriptions are
given as follow:

• Circle [Pesaranghader and Viktor, 2016]: A synthetic dataset containing 30 domains. Features X := [X1, X2]
T

in domain t are two-dimensional and Gaussian distributed with mean X̄t = [r cos(πt/30), r sin(πt/30)] where r
is radius of semicircle; the distributions of different domains have the same covariance matrix but different means
that uniformly evolve from right to left on a semicircle. Binary label Y are generated based on labeling function
Y = 1

[
(X1 − xo

1)
2 + (X2 − xo

2)
2 ≤ r

]
, where (xo

1, x
o
2) are center of semicircle. Models trained on the right part are

evaluated on the left part of the semicircle.

• Circle-Hard: A synthetic dataset adapted from Circle dataset, where mean X̄t does not uniformly evolve. Instead,
X̄t = [r cos(θt), r sin(θt)] where θt = θt−1 + π(t− 1)/180 and θ1 = 0 rad.

• RMNIST: A dataset constructed from MNIST [LeCun et al., 1998] by R-degree counterclockwise rotation. We evenly
select 30 rotation angles R from 0◦ to 180◦ with step size 6◦; each angle corresponds to a domain. The domains with
R ≤ r are considered source domains, those with R > r are the target domains used for evaluation. In this dataset, the
goal is to train a multi-class classifier on source domains that predicts the digits of images in target.

• Yearbook [Ginosar et al., 2015]: A real dataset consisting of frontal-facing American high school yearbook photos
from 1930-2013. Due to the evolution of fashion, social norms, and population demographics, the distribution of facial
images changes over time. In this dataset, we aim to train a binary classifier using historical data to predict the genders
of images in the future.

• CLEAR [Lin et al., 2021]: A real dataset built from existing large-scale image collections (YFCC100M) which captures
the natural temporal evolution of visual concepts in the real world that spans a decade (2004-2014). In this dataset, we
aim to train a multi-class classifier using historical data to predict 10 object types in future images.

Table 6: Data statistics.

Data type Label type #instance #domain
Circle Synthetic Binary 30000 30
Circle-Hard Synthetic Binary 30000 30
RMNIST Semi-synthetic Multi 30000 30
Yearbook Real-world Binary 33431 84
CLEAR Real-world Multi 29747 10

Non-stationary mechanisms in synthetic datasets. We note that in synthetic datasets, we precisely known the non-
stationary mappings that generate domain sequences.

• Circle: A synthetic dataset containing 30 domains. Features X := [X1, X2]
T in domain t are two-dimensional and

Gaussian distributed with mean X̄t = [r cos(πt/30), r sin(πt/30)] where r is radius of semicircle; the distributions of
different domains have the same covariance matrix but different means that uniformly evolve from right to left on a
semicircle. Binary label Y are generated based on labeling function Y = 1

[
(X1 − xo

1)
2 + (X2 − xo

2)
2 ≤ r

]
, where

(xo
1, x

o
2) are center of semicircle.

⇒mt =

[
cos(π/30) − sin(π/30)
sin(π/30) cos(π/30)

]
∀t ∈ [1, · · · , 29]

• Circle-Hard: A synthetic dataset adapted from Circle dataset, where mean X̄t does not uniformly evolve. Instead,
X̄t = [r cos(θt), r sin(θt)] where θt = θt−1 + π(t− 1)/180 and θ1 = 0 rad.

⇒mt =

[
cos(πt/180) − sin(πt/180)
sin(πt/180) cos(πt/180)

]
∀t ∈ [1, · · · , 19]



• RMNIST: A dataset constructed from MNIST by R-degree counterclockwise rotation. We evenly select 30 rotation
angles R from 0◦ to 180◦ with step size 6◦; each angle corresponds to a domain.

⇒mt =

[
cos(6◦) − sin(6◦)
sin(6◦) cos(6◦)

]
∀t ∈ [1, · · · , 29]

Baseline methods. We compare the proposed AIRL with existing methods from related areas, including the followings:

• Empirical risk minimization (ERM): A simple method that considers all source domains as one domain.

• Last domain (LD): A method that only trains model using the most recent source domain.

• Fine tuning (FT): The baseline trained on all source domains in a sequential manner.

• Domain invariant representation learning: Methods that learn the invariant representations across source domains and
train a model based on the representations. We experiment with G2DM [Albuquerque et al., 2019], DANN [Ganin et al.,
2016], CDANN [Li et al., 2018b], CORAL [Sun and Saenko, 2016], IRM [Arjovsky et al., 2019].

• Data augmentation: We experiment with MIXUP [Zhang et al., 2018] that generates new data using convex combinations
of source domains to enhance the generalization capability of models.

• Continual learning: We experiment with EWC [Kirkpatrick et al., 2017], method that learns model from data streams
that overcomes catastrophic forgetting issue.

• Continuous domain adaptation: We experiment with CIDA [Wang et al., 2020], an adversarial learning method designed
for DA with continuous domain labels.

• Distributionally robust optimization: We experiment with GROUPDRO [Sagawa et al., 2019] that minimizes the
worst-case training loss over pre-defined groups through regularization.

• Gradient-based DG: We experiment with FISH [Shi et al., 2022] that targets domain generalization by maximizing the
inner product between gradients from different domains.

• Contrastive learning-based DG: We experiment with SELFREG [Kim et al., 2021] that utilizes the self-supervised
contrastive losses to learn domain-invariant representation by mapping the latent representation of the same-class
samples close together.

• Non-stationary environment DG: We experiment with DRAIN [Bai et al., 2022], TKNets [Zeng et al., 2024b], LSSAE
[Qin et al., 2022]. and DDA [Zeng et al., 2023]. DRAIN, DPNET, and DDA focus on domain DT+1 only so we use the
same model when making predictions for all target domains {Dt}t>T .

Evaluation method. In the experiments, models are trained on a sequence of source domains Dsrc, and their performance
is evaluated on target domains Dtgt under two different scenarios: Eval-S and Eval-D.

In the scenario Eval-S, models are trained one time on the first half of domain sequence Dsrc = [D1, D2, · · · , DT ]
and are then deployed to make predictions on the next K domains in the second half of domain sequence Dtgt =
[DT+1, DT+2, · · · , DT+K ] (T + 1 ≤ K ≤ 2T ). The average and worst-case performances can be evaluated using two
matrices OODAvg and OODWrt defined below.

OODAvg =
1

K

K∑
k=1

accT+k; OODWrt = min
k∈[K]

accT+k

where accT+k denotes the accuracy of model on target domain DT+k.

In the scenario Eval-D, source and target domains are not static but are updated periodically as new data/domain becomes
available. This allows us to update models based on new source domains. Specifically, at time step t ∈ [T, 2T − K],
models are updated on source domains Dsrc = [D1, D2, · · · , Dt] and are used to predict target domains Dtgt =
[Dt+1, Dt+2, · · · , Dt+K ]. The average and worst-case performances of models in this scenario can be defined as fol-
lows.

OODAvg = 1
(T−K+1)K

∑2T−K
t=T

∑K
k=1 acct+k

OODWrt = min
t∈[T,2T−K]

1
K

∑K
k=1 acct+k

In our experiment, the time step t starts from the index denoting half of the domain sequence.



Table 7: Performances of DANN on RMNIST dataset.

Target Domain 0◦-rotated 15◦-rotated 30◦-rotated 45◦-rotated 60◦-rotated

Model Performance 51.2 59.1 70.0 69.2 53.9

Table 8: The average training times (i.e., seconds) of non-stationary DG methods for Circle,Circle-Hard, RMNIST,
Yearbook, and CLEAR datasets.

Circle Circle-Hard RMNIST Yearbook CLEAR

AIRL 32 25 382 749 1504

LSSAE 184 175 1727 1850 13287

DRAIN 460 230 2227 5538 1920

TKNets 18 13 208 448 1542

Implementation and training details. Data, model implementation, and training script are included in the supplementary
material. We train each model on each setting with 5 different random seeds and report the average prediction performances.
All experiments are conducted on a machine with 24-Core CPU, 4 RTX A4000 GPUs, and 128G RAM.

C.2 ADDITIONAL EXPERIMENT RESULTS

Performance gap between in-distribution and out-of-distribution predictions. This study is motivated based on the
assumption that the environment changes over time and that there exist distribution shifts between training and test data.
To verify this assumption in our datasets, we compare the performances of ERM on in-distribution and out-of-distribution
testing sets. Specifically, we show the gaps between the performances of ERM measured on the in-distribution (i.e., IDAvg)
and out-of-distribution (i.e., OODAvg) testing sets under Eval-D scenario (i.e., K = 5) in Figure 5.

Performance of fixed invariant representation learning in conventional and non-stationary DG settings. A key
distinction from non-stationary DG is that the model evolves over the domain sequence to capture non-stationary patterns
(i.e., learn invariant representations between two consecutive domains but adaptive across domain sequence). This stands in
contrast to the conventional DG [Ganin et al., 2016, Phung et al., 2021] which relies on an assumption that target domains
lie on or are near the mixture of source domains, then enforcing fixed invariant representations across all source domains
can help to generalize the model to target domains. We argue that this assumption may not hold in non-stationary DG where
the target domains may be far from the mixture of source domains resulting in the failure of the existing methods.

To verify this argument, we conduct an experiment on rotated RMNIST dataset with DANN [Ganin et al., 2016] – a model
that learns fixed invariant representations across all domains. Specifically, we create 5 domains by rotating images by 0, 15,
30, 45, and 60 degrees, respectively, and follow leave-one-out evaluation (i.e., one domain is target while the remaining
domains are source). Clearly, the setting where the target domain are images rotated by 0 or 60 degrees can be considered as
non-stationary domain generalization while other settings can be considered as conventional domain generalization. The
performances of DANN with different target domains are shown in Table 7. As we can see, the accuracy drops significantly
when the target domain are images rotated by 0 or 60 degrees. This result demonstrates that learning fixed invariant
representations across all domains is not suitable for non-stationary DG.

Computation complexity of non-stationary DG methods. Compared to existing works for non-stationary DG, our
method also shows better computational efficiency. It’s because of our effective design to capture non-stationary patterns.
Specifically, LSSAE and DRAIN have more complex architectures and objective functions resulting in much more training
time than our method. While TKNets has slightly better training time than ours, this model requires storing previous data
to make predictions and is not generalized to multiple target domains. To further support our claim, the average training
times (i.e., seconds) of these methods for different datasets are shown in Table 8.

Experimental results for Eval-S scenario. The prediction performances of AIRL and baselines on synthetic (i.e., Circle,
Circle-Hard) and real-world (i.e., RMNIST, Yearbook) data under Eval-S scenario are presented in Figure 6 below. In this



(a) Circle (b) Circle-Hard

(c) RMNIST (d) Yearbook

Figure 5: Gaps between the performances of ERM measured on the in-distribution and out-of-distribution testing sets (i.e.,
IDAvg −OODAvg) under Eval-D scenario (i.e., K = 5). This experiment is conducted on Circle, Circle-Hard, RMNIST,
and Yearbook datasets.

scenario, the training set is fixed as the first half of domains while the testing set is varied from the five subsequent domains
to the second half of domains in the domain sequences. We report averaged results with error bars (std) for training over 5
different random seeds.

We can see that AIRL consistently outperforms baselines in most datasets. We also observe that the prediction performances
decreases when the predictions are made for the distant target domains (i.e., the number of testing domain increases) for all
models in Circle, Circle-Hard, and RMNIST datasets. This pattern is reasonable because domains in these datasets are
generated monotonically. For Yearbook dataset, the performance curves are U-shaped that they decrease first but increase
later. This dataset is from a real-world environment so we expect the shapes of the curves are more complex compared to
those in the other datasets.



(a) Circle (b) Circle-Hard

(c) RMNIST (d) Yearbook

Figure 6: Prediction performances (i.e., OODAvg) of AIRL and baselines under Eval-S scenario. The training set is fixed as
the first half of domains while the testing set is varied from the five subsequent domains to the second half of domains in the
domain sequences. We report average results for training over 5 different random seeds. This experiment is conducted on
Circle, Circle-Hard, RMNIST, and Yearbook datasets.
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