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Many data analytics applications rely on temporal data, generated (and possibly acquired) sequentially for online analysis. How to

release this type of data in a privacy-preserving manner is of great interest and more challenging than releasing one-time, static data.

Because of the (potentially strong) temporal correlation within the data sequence, the overall privacy loss can accumulate significantly

over time; an attacker with statistical knowledge of the correlation can be particularly hard to defend against. An idea that has been

explored in the literature to mitigate this problem is to factor this correlation into the perturbation/noise mechanism. Existing work,

however, either focuses on the offline setting (where perturbation is designed and introduced after the entire sequence has become

available), or requires a priori information on the correlation in generating perturbation. In this study we propose an approach where

the correlation is learned as the sequence is generated, and is used for estimating future data in the sequence. This estimate then

drives the generation of the noisy released data. This method allows us to design better perturbation and is suitable for real-time

operations. Using the notion of differential privacy, we show this approach achieves high accuracy with lower privacy loss compared

to existing methods.

CCS Concepts: • Security and privacy → Privacy protections.

Additional Key Words and Phrases: differential privacy, sequential data

ACM Reference Format:
Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu. 2021. Differentially Private Real-Time Release of Sequential Data. 1, 1

(June 2021), 28 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

The collection and analysis of sequential data are crucial for many applications, such as monitoring web browsing

behavior, analyzing daily physical activities recorded by wearable sensors, and so on. Privacy concerns arise when data

is shared with third parties, a common occurrence. Toward this end, differential privacy [Dwork 2006] has been widely

used to provide a strong privacy guarantee; it is generally achieved by disclosing a noisy version of the underlying data

so that changes in the data can be effectively obscured.

To achieve differential privacy in sharing sequential data, a simple approach is to add independent noise to the data

at each time instant (Figure 1(a)). This is problematic because of the temporal correlation in the data (see Section 3). A

number of studies have attempted to address this issue. For example, [Rastogi and Nath 2010] applies Discrete Fourier

Transform (DFT) of the sequence and release a private version generated using inverse DFT with the perturbed DFT
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coefficients; [Wang et al. 2017] proposes a correlated perturbation mechanism where the correlated noise is generated

based on the autocorrelation of the original sequence; [Kellaris and Papadopoulos 2013] decomposes the sequence

into disjoint groups of similar data, and uses the noisy averages of these groups to reconstruct the original sequence;

[Xiao and Xiong 2015] constructs a Hidden Markov Model (HMM) from the independent-noise-added data sequence,

and releases the sequence inferred from the HMM; method proposed in [Fioretto and Van Hentenryck 2019] first

reconstructs the non-sampled data from perturbed sampled points and then solves a convex optimization to improve

accuracy. [Ghane et al. 2019] proposes Trajectory Generative Mechanism that generates synthetic trajectory data under

differential privacy; it first learns a probabilistic graphical generative model that encodes the trajectories, synthetic

trajectory is then generated privately based on it. [Gursoy et al. 2018] developes a differentially private synthetic

trajectory publisher (DP-Star) for spacial data; it first reduces each trajectory into a sequence of representative points via

the minimum description length principle, a synthetic trajectory is then generated privately from these representative

points. [Chen et al. 2011] proposes a data-dependent sanitization algorithm that generates a differentially private

release for trajectory data; it first constructs a noisy prefix tree to group the sequences with same prefixes into the same

branch, sanitized data is then generated from it. This approach was further extended in [Chen et al. 2012] by using

a variable 𝑛-gram model to sanitize general sequential data. [Hua et al. 2015] considers more general trajectories by

removing the implicit assumption used in [Chen et al. 2012, 2011] that the trajectories contain a lot of identical prefixes

or 𝑛-grams. However, all of the above studies rely on the availability of the entire sequence, so can only be applied

offline as post-processing methods. [Fan and Xiong 2014] are the closest to our work, where the sequence is adaptively

sampled first; Kalman/particle filters are then used to estimate non-sampled data based on the perturbed sampled data.

However, it requires a priori knowledge of the correlation of the sequence.

In this paper we start from sequential data that can be modeled by first-order autoregressive (AR(1)) processes. We

consider Gaussian AR(1) process as an example but the idea can be generalized to all (weakly) stationary processes.

Leveraging time-invariant statistical properties of stationary process, our proposed approach in each time step estimates

the unreleased, future data from that already released, using correlation learned over time and not required a priori.

This estimate is then used, in conjunction with the actual data observed in the next time step, to drive the generation

of the noisy, released version of the data (Figure 1(b)). Both theoretical analysis and empirical results show that our

approach can release a sequence of high accuracy with less privacy loss.

Other related works: Our work focuses on user-level privacy, where each individual generates a sequence of data

and we aim to guarantee its privacy at all times. In contrast, some works in the literature study event-level privacy, which

only guarantees the privacy at one time step
1
. For example, [Chan et al. 2011; Dwork et al. 2010] propose binary tree

mechanism which at each time outputs the sum of the binary data points seen so far under event-level privacy. [Perrier

et al. 2018] generalizes these works to continuous data and developed a mechanism based on binary tree mechanism.

However, their method is only applicable to data sequences that obey a light-tailed distribution (i.e., distribution whose

tail lies below the exponential distribution) and cannot be operated fully online (i.e., a sufficiently large time-lag is

required before continual release).

Another line of research aims to develop new privacy notions for correlated data. Among them, some focus on

correlation between users [Liu et al. 2016; Yang et al. 2015; Zhu et al. 2015], while others focus on correlation between

data at different time steps. For example, [Song et al. 2017] proposes the notion of pufferfish privacy which captures

data correlation using a Bayesian Network, and Markov Quilt Mechanism was built that releases a data instance at one

1
User-level privacy is much stronger than event-level privacy because it guarantees the privacy of all events.
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time step under the proposed privacy notion. [Cao et al. 2019] proposes temporal privacy leakage (TPL) to quantify

privacy leakage of a temporal correlated sequence; they assume the probabilistic correlations between data points in

every two consecutive time steps are known and based on which develop an algorithm to calculate TPL. A privacy

budget allocation mechanism was also developed to convert a traditional differential privacy (DP) mechanism into TPL

mechanism. In contrast to these works, our work focuses on the releasing mechanism rather than the privacy definition

used to measure its efficacy. Specifically, we proposed an approach that can effectively reduce the total information

leakage as data is released. The algorithmic property of our mechanism is orthogonal to the privacy notion used.

Some works focus on developing mechanisms that dynamically allocate privacy budgets over time. For example,

[Kellaris et al. 2014] considers a setting where a subsequence of fixed length 𝑑 is released at each time, and develops two

privacy budget allocation mechanisms (i.e., Budget Distibution and Budget Absorption) that dynamically allocate privacy

budget over time based on the dissimilarity between the previous released data and new data. [Cao and Yoshikawa 2015]

develops dynamic privacy budget allocation and approximation framework, where privacy budget decays exponentially

over time and the previously released noisy data may be re-published if they are sufficiently close to the future data.

The rest of the paper is organized as follows. Section 2 presents background and preliminaries. Section 3 introduces

the baseline approach and its issues. Our approach is presented and analyzed in Sections 4, 5 and 6. Section 7 presents

Discussion. Experiments are presented in Section 8 and Section 9 concludes the paper. All proofs are given in the

appendices.

2 PRELIMINARIES

Consider a time-varying sequence {𝑍𝑡 }𝑇𝑡=1
, where 𝑍𝑡 ∈ R corresponds to a query Q ∈ D → R over a private dataset

𝐷𝑡 at time 𝑡 ∈ N, i.e., 𝑍𝑡 = Q(𝐷𝑡 ). The dataset 𝐷𝑡 = {𝑑𝑖𝑡 }𝑁𝑖=1
∈ D consists of data from 𝑁 individuals (𝑁 ≥ 1) where 𝑑𝑖𝑡

denotes the data of the 𝑖𝑡ℎ individual at time step 𝑡 and D denotes the set of all possible datasets. Then 𝑑𝑖
1:𝑇

= {𝑑𝑖𝑡 }𝑇𝑡=1
is

the data of the 𝑖𝑡ℎ individual over𝑇 time steps and 𝐷 = {𝑑𝑖
1:𝑇

}𝑁
𝑖=1

includes sequences of 𝑁 individuals over𝑇 time steps.

We assume {𝑍𝑡 }𝑇𝑡=1
can be modeled as a first-order autoregressive (AR(1)) process [Wei 2006], where the value

at each time depends linearly on the value of the immediate preceding time step; we will see that the approach can

be generalized to any (weakly) stationary process. The goal is to disclose/release this data in real time with privacy

guarantees for each individual at all times. We denote by {𝑋𝑡 }𝑇𝑡=1
the released sequence. Notationally, we will use 𝑋

to denote a random variable with probability distribution ℱ𝑋 (·), 𝑥 its realization and 𝑋 (𝑦) the estimate of 𝑋 given

observation 𝑌 = 𝑦; finally, 𝑋1:𝑡 := {𝑋𝑖 }𝑡𝑖=1
.

2.1 First-order autoregressive process

AR(1) processes are commonly used for modeling a time series, among which Gaussian AR(1) process is one type that

is widely used in various domains.

Definition 2.1. (Gaussian AR(1) process) 𝑍1:𝑇 is a Gaussian AR(1) process [Wei 2006] if:

𝑍𝑡 = 𝛼 + 𝜌𝑍𝑡−1 +𝑈𝑡 , 𝑡 ≥ 1 (1)

where𝑈𝑡
i.i.d∼ N(0, 𝜎2

𝑢 ), 𝑍0 ∼ N(𝜇, 𝜎2

𝑧 ) and 𝜎2

𝑢 , 𝛼, 𝜌 are constants. If |𝜌 | < 1, then {𝑍𝑡 }𝑇𝑡=1
is a stationary Markov process

with the following properties: (1) 𝑍𝑡 ∼ N(𝜇, 𝜎2

𝑧 ) with 𝜇 = 𝛼
1−𝜌 and 𝜎2

𝑧 =
𝜎2

𝑢

1−𝜌2
; (2) its autocorrelation function is given

by Corr(𝑍𝑡𝑍𝑡−𝜏 ) = Corr(𝜏) = 𝜌 |𝜏 |
.
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In this paper, Binomial AR(1) process is also studied and all results on Binomial AR(1) process are presented in

Appendix A.

2.2 Differential privacy

Definition 2.2. ((𝜖, 𝛿)- differential privacy (DP) [Dwork et al. 2006]) A randomized algorithmA(·) taking dataset
𝐷 as input satisfies (𝜖, 𝛿)-differential privacy if for any 𝐷 , 𝐷 that are different in at most one individual’s data and for

any set of possible output 𝑆 ⊆ range(A), we have

Pr(A(𝐷) ∈ 𝑆) ≤ exp(𝜖) · Pr(A(𝐷) ∈ 𝑆) + 𝛿,

where 𝜖 and 𝛿 ∈ [0, 1] are privacy parameters and 𝜖 bounds the privacy loss. Smaller 𝜖 and 𝛿 mean stronger privacy

guarantee.

In this study we consider the setting where each individual’s data is of a sequential nature and the response to a

query Q over 𝑁 individuals is released over 𝑇 time steps as it is generated. Within this context, 𝑥1:𝑇 = A(𝑧1:𝑇 ) =

A({Q(𝐷𝑡 )}𝑇𝑡=1
) and a randomized algorithm A(·) is (𝜖, 𝛿)-differentially private if ℱ𝑋1:𝑇 |𝑍1:𝑇

(𝑥1:𝑇 |𝑧1:𝑇 ) ≤ exp(𝜖) ·
ℱ𝑋1:𝑇 |𝑍1:𝑇

(𝑥1:𝑇 |𝑧̂1:𝑇 ) + 𝛿 holds for any possible 𝑥1:𝑇 and any pairs of 𝑧1:𝑇 , 𝑧̂1:𝑇 generated from 𝐷 , 𝐷 , where 𝐷 , 𝐷

are datasets differing in at most one individual’s sequence.
2
It suggests that the released sequence 𝑥1:𝑇 should be

relatively insensitive to the change of one individual’s sequential data, thereby preventing any meaningful inference on

any individual from observing 𝑥1:𝑇 . Differential privacy has been widely adopted as the privacy notion and privacy-

preserving technique for different applications such as machine learning [Abadi et al. 2016; Khalili et al. 2021b,a; Wei

et al. 2020; Zhang et al. 2018a,b, 2020], data mining [Friedman and Schuster 2010; Task and Clifton 2012], data market

[Khalili et al. 2019, 2021c; Li et al. 2014; Zheng 2020], etc.

Definition 2.3. (Sensitivity of query Q at time 𝑡 ) Consider a query Q : D → R taking a dataset as input, the

sensitivity of Q at 𝑡 is defined as: ΔQ𝑡 = sup∀𝐷𝑡∼𝐷𝑡 |Q(𝐷𝑡 ) − Q(𝐷𝑡 ) |, where 𝐷𝑡 , 𝐷𝑡 ∈ D are two datasets at 𝑡 that are

different in at most one individual’s data.

Since 𝑍𝑡 = Q(𝐷𝑡 ), ΔQ𝑡 quantifies the maximum impact of an individual on 𝑍𝑡 . In the rest of paper, unless explicitly

stated, we consider scenarios where ΔQ𝑡 does not change over time and use the notation ΔQ𝑡 = Δ. For instance, if

𝑑𝑖𝑡 ∈ {0, 1}, ∀𝑡 and Q(𝐷𝑡 ) =
∑𝑁
𝑖=1

𝑑𝑖𝑡 is the count query (e.g., daily count of patients), then Δ = 1. It is worth noting that

our method and analysis can be easily generalized to the case when ΔQ𝑡 also changes over time.

2.3 Minimum mean squared error estimate

The minimum mean squared error (MMSE) estimate of a random variable 𝑋 given observation 𝑌 = 𝑦 is 𝑋 (𝑦) =

argminℎ E𝑋 ((𝑋 − ℎ(𝑌 ))2 |𝑌 = 𝑦) = E(𝑋 |𝑌 = 𝑦). If ℎ(·) is constrained to be linear, i.e., ℎ(𝑌 ) = 𝑘1𝑌 + 𝑘2, then the

corresponding minimization leads to the linear MMSE (LMMSE) estimate and is given by 𝑋 (𝑦) = 𝜌𝑋𝑌
𝜎𝑋
𝜎𝑌

(𝑦 − E(𝑌 )) +
E(𝑋 ) with a mean squared error (MSE) = (1 − 𝜌2

𝑋𝑌
)𝜎2

𝑋
, where 𝜌𝑋𝑌 is the correlation coefficient of 𝑋 and 𝑌 , 𝜎2

𝑋
, 𝜎2

𝑌
the

variance of 𝑋 , 𝑌 respectively. Using these properties, we have the following result.

Proposition 2.4. Consider a Gaussian AR(1) process 𝑍1:𝑇 defined by (1), the MMSE estimate of 𝑍𝑡+1 given 𝑍𝑡 = 𝑧𝑡

is 𝑍𝑡+1 (𝑧𝑡 ) = 𝜇 (1 − 𝜌) + 𝜌𝑧𝑡 , with MSE 𝜎2

𝑧 (1 − 𝜌2). If we use a perturbed 𝑋𝑖 = 𝑍𝑖 + 𝑁𝑖 , 𝑖 ∈ {1, · · · , 𝑡}, to estimate 𝑍𝑡+1,

2
If we express 𝐷 in matrix form, i.e., 𝐷 ∈ R𝑁×𝑇

with 𝐷𝑖𝑡 = 𝑑𝑖𝑡 , then 𝐷 and 𝐷 are different in at most one row, i.e., the hamming distance between two

matrices is at most 1.
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(a) Baseline approach

z1 z2

x1 x2 x3 x4
xT−1 xT

 learn the correlation pattern during the releasing process 

Zˆ2

z3

Zˆ3

z4

Zˆ4

zT−1

ZˆT−1

zT

ZˆT

n1 n2
n3 n4 nT−1 nT

(b) Proposed approach

Fig. 1. Comparison of two data release methods:{𝑧𝑡 }𝑇𝑡=1
is the true sequence, {𝑥𝑡 }𝑇𝑡=1

the released private sequence, 𝑍𝑡 the estimate
of 𝑧𝑡 learned from 𝑥𝑡−1, and {𝑛𝑡 }𝑇𝑡=1

the added noise.

where 𝑁𝑖 ∼ N(0, 𝜎2

𝑛) is the added noise, then the MMSE estimate of 𝑍𝑡+1 given 𝑋𝑖 = 𝑥𝑖 is

𝑍𝑡+1 (𝑥𝑖 ) = 𝜇 (1 − 𝜌𝑡+1−𝑖 𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

) + 𝜌𝑡+1−𝑖 𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

𝑥𝑖 .

The (L)MMSE estimates for a Binomial AR(1) process are given in Appendix A.2. Note that for Gaussian AR(1)

processes, both MMSE estimates 𝑍𝑡+1 (𝑧𝑡 ), 𝑍𝑡+1 (𝑥𝑖 ) are linear. For Binomial AR(1), the MMSE estimate 𝑍𝑡+1 (𝑧𝑡 ) is also
linear, which may not hold for other AR(1) processes. However, due to the simple form of linear MMSE estimate and its

applicability to more general random processes, we will solely focus on LMMSE estimates in this study.

3 BASELINE APPROACH

The baseline approach (Figure 1(a)) provides differential privacy for a sequence 𝑧1:𝑇 by perturbing each 𝑧𝑡 directly:

𝑥𝑡 = 𝑧𝑡 + 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛. The upper bound of the total privacy loss, 𝜖𝑇 , can be characterized as a log-likelihood ratio of

the released output under two sequences, which can be decomposed as follows:

log

ℱ𝑋1:𝑇 |𝑍1:𝑇
(𝑥1:𝑇 |𝑧1:𝑇 )

ℱ𝑋1:𝑇 |𝑍1:𝑇
(𝑥1:𝑇 |𝑧1:𝑇 )

=

𝑇∑︁
𝑡=1

log

ℱ𝑋𝑡 |𝑍𝑡 (𝑥𝑡 |𝑧𝑡 )
ℱ𝑋𝑡 |𝑍𝑡 (𝑥𝑡 |𝑧𝑡 )

,

where the term log

ℱ𝑋𝑡 |𝑍𝑡 (𝑥𝑡 |𝑧𝑡 )
ℱ𝑋𝑡 |𝑍𝑡 (𝑥𝑡 |𝑧𝑡 )

bounds the privacy loss at time 𝑡 . As the total privacy loss accumulates over 𝑇 time

steps, balancing the privacy-accuracy tradeoff becomes more and more difficult as 𝑇 increases. As long as the variance

of perturbation is finite, as 𝑇 → ∞, 𝜖𝑇 inevitably approaches infinity.

We therefore propose a method that can (i) improve the privacy-accuracy tradeoff significantly, and (ii) bound the

total privacy loss over an infinite horizon when the variance of perturbation is finite.

4 THE PROPOSED APPROACH

In our proposed method, data point 𝑥𝑡 at time step 𝑡 is released based on the previously released data 𝑥𝑡−1 and its true

value 𝑧𝑡 (shown in Figure 1(b)).

The idea behind our approach is based on two observations: (1) Since 𝑥𝑡−1 is correlated with 𝑧𝑡 through 𝑧𝑡−1, we can

use 𝑥𝑡−1 to obtain an estimate
3
of 𝑧𝑡 , denoted by 𝑍𝑡 (𝑥𝑡−1), and release (the perturbed version of) 𝑍𝑡 (𝑥𝑡−1) instead of

𝑧𝑡 . (2) Since differential privacy is immune to post-processing [Dwork et al. 2014], using 𝑥𝑡−1 to estimate 𝑧𝑡 does not

3
This estimate can be obtained with or without the knowledge of the statistics of the AR(1) process; in the absence of such knowledge one can employ a

separate procedure to first estimate the statistics as detailed later in this section.
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introduce additional privacy loss. Thus, technically we can release an initial 𝑥1 (the perturbed version of 𝑧1), followed

by the sequence 𝑥𝑡 = 𝑍𝑡 (𝑥𝑡−1), 𝑡 > 1. However, doing so will lead to a fairly inaccurate released sequence compared

to the original, for which the privacy loss does not accumulate over time but the estimation error does. To balance

the competing needs of accuracy (having the released sequence resemble the true sequence) and privacy, one must

calibrate the released version using the true values.

There are different ways to calibrate the released sequence. In this study, we shall examine the use of the convex

combination (1−𝑤𝑡 )𝑍𝑡 (𝑥𝑡−1) +𝑤𝑡𝑧𝑡 , and the perturbed version of this as the released 𝑥𝑡 . Examples of other approaches

to calibrating released sequences are discussed in Section 7.

The weight parameter𝑤𝑡 serves four purposes:

• In addition to the perturbation 𝑁𝑡 ∼ N(0, 𝜎2

𝑛), 𝑤𝑡 can also be tuned to better balance the privacy-accuracy

tradeoff: larger 𝑤𝑡 results in a more accurate but less private sequence. In contrast, 𝜎2

𝑛 is the only means of

controlling this tradeoff in the baseline method.

• If MSE is themeasure of accuracy, then𝑤𝑡 can also be used to balance the bias-variance tradeoff. For a deterministic

sequence 𝑧1:𝑇 with estimator 𝑋𝑡 at 𝑡 , 𝐵𝑖𝑎𝑠 (𝑋𝑡 ) = E(𝑋𝑡 ) −𝑧𝑡 and𝑀𝑆𝐸 (𝑋𝑡 ) = E((𝑋𝑡 −𝑧𝑡 )2). The bias and variance
can be controlled jointly by adjusting𝑤𝑡 and 𝜎

2

𝑛 , which can result in smaller𝑀𝑆𝐸 as𝑀𝑆𝐸 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝐵𝑖𝑎𝑠2
.

In contrast, 𝑥1:𝑇 is always unbiased in the baseline method and𝑀𝑆𝐸 = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 always holds.

• If we keep𝑤𝑡 private, then the method can prevent certain attackers from knowing the detail of the perturbation

mechanism, resulting in stronger protection (Section 7).

• By adjusting𝑤𝑡 , it is possible to release the sequence spanning an infinite horizon with bounded total privacy

loss (Section 5).

Algorithm 1: Function Est

Input :𝑥1:𝑡−1, Var(𝑁𝑡 )
𝜇 = 1

𝑡−1

∑𝑡−1

𝑖=1
𝑥𝑖

𝜎̂2 = max{ 1

𝑡−2

∑𝑡−1

𝑖=1
(𝑥𝑖 − 𝜇)2 − Var(𝑁𝑡 ), 0}

𝜌 =

∑𝑡−2

𝑖=1
(𝑥𝑖−𝜇) (𝑥𝑖+1−𝜇)∑𝑡−2

𝑖=1
(𝑥𝑖−𝜇)2

+ 1

𝑡−1
1{𝜌𝑡𝑟𝑢𝑒 > 0}4

Output :𝜌, 𝜇, 𝜎̂2

ztzt−1

xt−1 Zˆt
xt

wt ntnt−1

1 − wt

Fig. 2. A two-step illustration of the proposedmethod: adding noise
𝑛𝑡 to the convex combination of estimate 𝑍𝑡 (𝑥𝑡−1) and true value
𝑧𝑡 gives the released 𝑥𝑡 .

4.1 Estimate of 𝑍𝑡 with learned correlation

We can estimate the true value 𝑍𝑡 from 𝑥𝑡−1 using the LMMSE estimate 𝑍𝑡 (𝑥𝑡−1) given in Section 2. However, it requires

the knowledge of mean 𝜇, variance 𝜎2
and autocorrelation 𝜌 of 𝑍1:𝑇 , which may be unknown in reality and should be

estimated. To avoid revealing more information about 𝑧1:𝑇 , this estimate is obtained using only the released 𝑥1:𝑇 , as

shown in Algorithm 1, where both 𝜇 and 𝜎̂2
are unbiased, and 𝜌 is adopted from [Huitema and McKean 1991]

5
.

5
The extra term

1

𝑡−1
is used for correcting the negative bias if there is prior knowledge of the positive autocorrelation 𝜌𝑡𝑟𝑢𝑒 > 0.
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4.2 Release 𝑥𝑡 with estimate 𝑍𝑡 (𝑥𝑡−1) and true value 𝑧𝑡

Given the estimated parameters 𝜇, 𝜎̂2
and 𝜌 , using results presented in Section 2, the LMMSE estimate 𝑍𝑡 (𝑥𝑡−1) can be

approximated as

𝑍𝑡 (𝑥𝑡−1) = 𝜇𝑡−1

(
1 − 𝜌𝑡−1

𝜎̂2

𝑡−1

𝜎̂2

𝑡−1
+ Var(𝑁𝑡 )

)
+ 𝜌𝑡−1

𝜎̂2

𝑡−1

𝜎̂2

𝑡−1
+ Var(𝑁𝑡 )

𝑥𝑡−1 .

Take the convex combination of estimate 𝑍𝑡 (𝑥𝑡−1) and true value 𝑧𝑡 with private weight𝑤𝑡 ∈ (0, 1), and release:

𝑥𝑡 = (1 −𝑤𝑡 )𝑍𝑡 (𝑥𝑡−1) +𝑤𝑡𝑧𝑡 + perturbation .

Algorithm 2: Sequential Data Release Algorithm
Input :Sensitivity of query Δ, {Var(𝑁𝑡 )}𝑡
for 𝑡 = 1, 2, · · · ,𝑇 do

Input : true state 𝑧𝑡 , weight𝑤𝑡

if 𝑡 ≤ 2 then
𝑤𝑡 = 1 ;

Release :𝑥𝑡 = 𝑧𝑡 + 𝑛𝑡 .
else

𝜌𝑡−1, 𝜇𝑡−1, 𝜎̂
2

𝑡−1
= Est(𝑥1:𝑡−1,Var(𝑁𝑡 ));

𝑟𝑡 = 𝜌𝑡−1

𝜎̂2

𝑡−1

𝜎̂2

𝑡−1
+Var(𝑁𝑡 )

;

Release :𝑥𝑡 = (1 −𝑤𝑡 ) (𝜇𝑡−1 (1 − 𝑟𝑡 ) + 𝑟𝑡𝑥𝑡−1) +𝑤𝑡𝑧𝑡 + 𝑛𝑡
Output :privacy parameter (𝜖𝑇 , 𝛿𝑇 )

paramEstimator

MMSE Estimator
Calibration


(convex
combination)


Perturbation













Var( )


INPUT

OUTPUT




Fig. 3. flowchart of the complete procedure: at each time step 𝑡 , true data point 𝑧𝑡 is first estimated based on previous released data
𝑥𝑡−1; the estimation𝑍𝑡 (𝑥𝑡−1) is then calibrated with true data 𝑧𝑡 using convex combination, i.e., (1−𝑤𝑡 )𝑍𝑡 (𝑥𝑡−1) +𝑤𝑡𝑧𝑡 , 𝑤𝑡 ∈ (0, 1) ;
finally, the noisy version of the calibrated result (i.e., 𝑥𝑡 ) is released.

4.3 Privacy mechanism

The perturbation term in the released data adds privacy protection, and existing literature provides methods on how to

generate them. We shall adopt the Gaussian mechanism [Dwork et al. 2014] and bound the privacy loss in terms of

perturbation.
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8 Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu

Lemma 4.1. (Gaussian Mechanism) Consider query Q : D → R with sensitivity ΔQ, and the Gaussian mechanism

G(𝑑) = Q(𝑑) + 𝑁 which adds zero-mean Gaussian noise 𝑁 with variance 𝜎2 to the output. If 𝜎 ≥ ΔQ
√

2 log(1.25/𝛿)
𝜖 for

𝜖, 𝛿 ∈ (0, 1), then it satisfies (𝜖, 𝛿)-differential privacy.

We also propose a Binomial mechanism in Appendix A.3, which is a generalization (for arbitrary ΔQ) to the version

(for the case ΔQ = 1) first proposed in [Dwork et al. 2006]. It is more suitable for discrete settings and doesn’t have a

restriction on 𝜖 < 1.

The complete procedure of our method is illustrated in Figure 3 and given in Algorithm 2, where 𝑛𝑡 is a realization

of Gaussian noise 𝑁𝑡 (resp. Binomial noise defined in Appendix A.3) when adopting the Gaussian (resp. Binomial)

mechanism. 𝐷𝐻 in Figure 3 represents the history data that can be used for estimating parameters but won’t be revealed

during this time horizon.

Note that the Gaussian/Binomial mechanism only specifies the privacy parameters over one time step. In the next

section we specify (𝜖𝑇 , 𝛿𝑇 ) over 𝑇 steps.

5 PRIVACY ANALYSIS

Next, we bound the total privacy loss when𝑋1:𝑇 is released using Algorithm 2. Since the total privacy loss is accumulated

over𝑇 steps, various composition methods can be applied to calculate (𝜖𝑇 , 𝛿𝑇 ). We use the moments accountant method

from [Abadi et al. 2016] when 𝑁𝑡 is Gaussian; the corresponding result is given in Theorem 5.1. In Appendix A.4, we

use the composition theorem from [Kairouz et al. 2017] when 𝑁𝑡 is Binomial with the corresponding result given in

Theorem A.5.

Theorem 5.1. Let 𝑍𝑡 = Q(𝐷𝑡 ) and Δ be the sensitivity of Q, ∀𝑡 . Consider Algorithm 2 using zero-mean Gaussian noise

with Var(𝑁𝑡 ) = 𝜎2

𝑛 , ∀𝑡 , that takes sequence 𝑧1:𝑇 as input and outputs 𝑥1:𝑇 . The following holds.

(i) Given any 𝜖𝑇 ≥ Δ2

2𝜎2

𝑛

∑𝑇
𝑡=1

𝑤2

𝑡 , the algorithm satisfies (𝜖𝑇 , 𝛿𝑇 )-differential privacy for

𝛿𝑇 = exp

(( Δ2

𝜎2

𝑛

∑𝑇
𝑡=1

𝑤2

𝑡

4

− 𝜖𝑇

2

) ( 𝜖𝑇
Δ2

𝜎2

𝑛

∑𝑇
𝑡=1

𝑤2

𝑡

− 1

2

))
.

(ii) Given any 𝛿𝑇 ∈ (0, 1), the algorithm satisfies (𝜖𝑇 , 𝛿𝑇 )-differential privacy for

𝜖𝑇 = 2

√√√
Δ2

2𝜎2

𝑛

𝑇∑︁
𝑡=1

𝑤2

𝑡 log( 1

𝛿𝑇
) + Δ2

2𝜎2

𝑛

𝑇∑︁
𝑡=1

𝑤2

𝑡 .

Theorem 5.1 says that if a sequence of noisy data is released following Algorithm 2 and the noise has variance 𝜎2

𝑛 ,

then with probability 1 − 𝛿𝑇 , the total amount of privacy loss incurred on each individual over 𝑇 time steps is bounded

by 𝜖𝑇 . Here
𝜎𝑛
Δ represents the degree of perturbation and𝑤𝑡 is the weight on the true value. Smaller perturbation and

larger weight result in higher privacy loss. Because of the mapping between 𝜎2

𝑛 and (𝜖𝑇 , 𝛿𝑇 ), we have the following
result.

Corollary 5.2. Let {𝑤𝑡 }𝑇𝑡=1
be the weights used in generating 𝑥1:𝑇 in Algorithm 2. To satisfy (𝜖𝑇 , 𝛿𝑇 )-differential

privacy, the variance of the Gaussian noise should be:

𝜎2

𝑛 ≥
Δ2

∑𝑇
𝑡=1

𝑤2

𝑡

2𝜖𝑇 + 4 ln
1

𝛿𝑇
− 4

√︃
(ln 1

𝛿𝑇
)2 + 𝜖𝑇 ln

1

𝛿𝑇

.
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To guarantee (𝜖𝑇 , 𝛿𝑇 )-differential privacy, the noise magnitude will depend on both 𝑤𝑡 and Δ. Larger sensitivity

means larger impact of each individual on the released information and thus requires more perturbation for privacy

protection; larger weights mean higher reliance on the true value in the released information, thus more perturbation is

needed.

Note that Algorithm 2 reduces to the baseline approach when 𝑤𝑡 = 1, ∀𝑡 . Theorems 5.1, A.5 and Corollary 5.2

also hold for the baseline method if we set 𝑤𝑡 = 1, ∀𝑡 . When the noise variance is finite, using the baseline method

we have ∀𝛿𝑇 , 𝜖𝑇 → ∞ as 𝑇 → ∞. However, under the proposed method, it is possible that lim𝑇→∞ 𝜖𝑇 < ∞ by

controlling𝑤𝑡 , e.g., by taking𝑤2

𝑡 = 𝑎𝑟𝑡−1, 𝑟 ∈ (0, 1) as a decreasing geometric sequence, we have lim𝑇→∞
∑𝑇
𝑡=1

𝑤2

𝑡 =

lim𝑇→∞
∑𝑇
𝑡=1

𝑎𝑟𝑡−1 = 𝑎
1−𝑟 , which leads to a bounded 𝜖𝑇 even when 𝑇 → ∞ (Theorem 5.1).

6 ACCURACY ANALYSIS

In this section, we compare the accuracy of our method and the baseline method using the MSE measure, defined as

E𝑋1:𝑇
( | |𝑥1:𝑇 − 𝑧1:𝑇 | |2) .

For simplicity of exposition, the analysis in this section is based on the assumption that the true values of parameters

(𝜌, 𝜇, 𝜎2
) of the underlying process are known. Additional error introduced by estimating parameters in Algorithm

1 is examined numerically in Section 8. In addition, we will only present the case of Gaussian AR(1) process and

Var(𝑁𝑡 ) = 𝜎2

𝑛,∀𝑡 .

Theorem 6.1. Let the sequence 𝑧1:𝑇 be generated by the Gaussian AR(1) process 𝑍1:𝑇 with 𝑍𝑡 ∼ N(𝜇, 𝜎2

𝑧 ) and

Corr(𝑍𝑡𝑍𝑡−𝜏 ) = 𝜌 |𝜏 | , ∀𝑡 . Let 𝑥1:𝑇 be the sequence released by Algorithm 2. Then E𝑋1:𝑇
( | |𝑥1:𝑇 − 𝑧1:𝑇 | |2) is given by

𝜎2

𝑧 (1 − 𝜌2
𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

)
𝑇∑︁
𝑡=1

(1 −𝑤𝑡 )2

︸                                     ︷︷                                     ︸
estimation error

+ 𝑇𝜎2

𝑛︸︷︷︸
perturbation error

.

Theorem 6.1 suggests that the total error consists of two parts: (i) estimation error and (ii) perturbation error. For

the former, a sequence with stronger autocorrelation (larger 𝜌) enables more accurate estimate, resulting in lower

estimation error. Further, higher weight on the true value 𝑧𝑡 (larger𝑤𝑡 ), or less perturbation (smaller 𝜎2

𝑛), also lowers

the estimation error.

Theorem 6.2 below further compares the privacy-accuracy tradeoff of the two methods, where MSE is compared

under the same privacy parameters (𝜖𝑇 , 𝛿𝑇 ).

Theorem 6.2. Let sequential data 𝑧1:𝑇 be generated by the Gaussian AR(1) process 𝑍1:𝑇 with 𝑍𝑡 ∼ N(𝜇, 𝜎2

𝑧 ) and
Corr(𝑍𝑡𝑍𝑡−𝜏 ) = 𝜌 |𝜏 | , ∀𝑡 . Let 𝑥𝐴

1:𝑇
, 𝑥𝐵

1:𝑇
be the sequences released by Algorithm 2 and the baseline method, respectively. Let

(𝜎2

𝑛)𝐴 , (𝜎2

𝑛)𝐵 be the corresponding noise variance. Suppose both outputs satisfy (𝜖𝑇 , 𝛿𝑇 )-differential privacy, then

𝑇

(𝜎2

𝑛)𝐵
=

∑𝑇
𝑡=1

𝑤2

𝑡

(𝜎2

𝑛)𝐴
=

2𝜖𝑇 + 4 ln
1

𝛿𝑇
− 4

√︃
(ln 1

𝛿𝑇
)2 + 𝜖𝑇 ln

1

𝛿𝑇

Δ2
. (2)

Furthermore, ∃ {𝑤𝑡 }𝑇𝑡=1
,𝑤𝑡 ∈ (0, 1) and (𝜎2

𝑛)𝐴 , that satisfy Eqn. (2) and with which 𝑥𝐴
1:𝑇

is more accurate than 𝑥𝐵
1:𝑇

.

Moreover, if a constant weight𝑤𝑡 = 𝑤,∀𝑡 is used, then 𝑥𝐴
1:𝑇

is more accurate than 𝑥𝐵
1:𝑇

if

𝑤 >
1 − (𝜎2

𝑛)𝐵/𝜎2

𝑧

1 + (𝜎2

𝑛)𝐵/𝜎2

𝑧

. (3)

Manuscript submitted to ACM



10 Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu

As mentioned earlier, when 𝑤𝑡 = 1,∀𝑡 , Algorithm 2 reduces to the baseline method, and 𝑥𝐴
1:𝑇

and 𝑥𝐵
1:𝑇

become

equivalent. Theorem 6.2 shows that our method can strictly improve the privacy-accuracy tradeoff by controlling

𝑤𝑡 ∈ (0, 1). It also provides the guidance on how to select a constant weight𝑤𝑡 = 𝑤,∀𝑡 , to guarantee this improvement

from Eqn. (3): (i) If (𝜎2

𝑛)𝐵 > 𝜎2

𝑧 , i.e., the privacy requirement is high and large perturbation is needed, then our method

can always outperform the baseline regardless of the choice of 𝑤 ∈ (0, 1). In particular, if choosing 𝑤 → 0, our

method will have large estimation error, but privacy can be provided with insignificant perturbation; the overall error

is dominated by the estimation error, which is still smaller than the perturbation error in the baseline. (ii) If (𝜎2

𝑛)𝐵 < 𝜎2

𝑧 ,

then𝑤 should be sufficiently large to maintain accuracy.

7 DISCUSSION

Generalization: The proposed method is not limited to AR(1) processes; it can be applied to any (weakly) stationary

random process. This is because the LMMSE estimate only depends on the mean, variance and correlation of the

random process. The methodologies used in Sections 5 and 6 are also not limited to AR(1) processes. For example, the

bound in Theorem 5.1 is not limited to Gaussian AR(1). The error bound derived in Theorem 6.1 only depends on the

MSE of 𝑍𝑡 (𝑥𝑡−1) at each time step (i.e., term 3 in Appendix B.4). That is, this bound can be generalized to sequences

following other random processes as long as we can quantify their MSE. In Section 8, the real-world datasets used in

the experiments do not necessarily follow AR(1), but our method is shown to achieve better performance.

Robustness against certain attacks: Differential privacy is a strong privacy guarantee and a worst-case measure, as

it bounds privacy loss over all possible outputs and inputs. In practice, how much information about 𝑧1:𝑇 can really be

inferred by an attacker depends on how strong it is assumed to be. An attacker is able to infer more information with

higher confidence if they know the exact perturbation mechanism used in generating 𝑥1:𝑇 , i.e., Pr(𝑋𝑡 |𝑍𝑡 ). Specifically,
real data sequence 𝑧1:𝑇 and observations 𝑥1:𝑇 form a Hidden Markov Model (HMM); if an attacker knows the transition

probability 𝑃 (𝑍𝑡+1 |𝑍𝑡 ) and emission probability 𝑃 (𝑋𝑡 |𝑍𝑡 ), then they can infer hidden states 𝑧1:𝑇 based on observations

𝑥1:𝑇 using dynamic programming such as the Viterbi algorithm [Forney 1973].

Therefore, if an attacker knows the noise distribution N(0, 𝜎2

𝑛), then they will know Pr(𝑋𝑡 |𝑍𝑡 ) automatically with

the baseline method, i.e., 𝑋𝑡 |𝑍𝑡 ∼ N(𝑍𝑡 , 𝜎2

𝑛). However, with our method, 𝑋𝑡 |𝑍𝑡 ∼ N(𝑤𝑡𝑍𝑡 + (1 −𝑤𝑡 )𝑍𝑡 (𝑥𝑡−1), 𝜎2

𝑛);
thus if𝑤𝑡 is private and unknown to the attacker, then Pr(𝑋𝑡 |𝑍𝑡 ) cannot be readily inferred even when they know the

noise distribution. As a result, in practice our method can prevent this class of attackers from knowing the details of the

perturbation mechanism, thus can be stronger.

Impact of estimating parameters from a noisy sequence: The analysis in Section 6 shows that when the true

parameters of the underlying process are known, our algorithm can always outperform the baseline method. However,

these may be unknown in reality and need to be estimated from the released sequence using Algorithm 1, which leads

to additional estimation error. Nevertheless, this can still outperform the baseline method. Consider the extreme case

where (𝜎2

𝑛)𝐴 → +∞. The LMMSE estimate from the noisy data 𝑍𝑡 (𝑥𝑡−1) → E(𝑍𝑡 ) ≈ 𝜇𝑡−1. Since the added noise is

zero-mean, with enough released data 𝜇𝑡−1 can attain sufficient accuracy. Then 𝑥𝑡 determined by both 𝜇𝑡−1 and true 𝑧𝑡

before adding noise becomes a filtered version of the true sequence, and its accuracy after adding noise will still be

higher than the baseline method under the same privacy measure; this point is further validated by experiments in

Section 8.

Other approaches to calibrating released sequence:We have used the convex combination of estimate 𝑍𝑡 (𝑥𝑡−1)
and true data 𝑧𝑡 to calibrate the released data. This method is effective and easy to use and analyze. In particular,

the weight in the convex combination provides an additional degree of freedom and serves four purposes (Section 4).
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There are also other approaches to calibrating the released sequence. For example, we can leverage all released points

to estimate new data, and use a sequence of estimates to calibrate, i.e.,

∑𝑡−1

𝑖=1
𝑤𝑖𝑍𝑡 (𝑥𝑖 ) +𝑤𝑡𝑧𝑡 . One could also use a

non-linear combination to calibrate, e.g.,𝑤𝑡𝑧𝑡 + (1 −𝑤𝑡 )
√︃
𝑧𝑡𝑍𝑡 (𝑥𝑡−1).

8 EXPERIMENTS

In this section, we compare the privacy-accuracy tradeoff of our method with other methods using real-world datasets.

Unless explicitly mentioned, fixed weights,𝑤𝑡 = 𝑤 , ∀𝑡 , are used in the proposed method.

Methods: For comparison, in addition to the baseline method, we also consider the following.

• Baseline-Laplace: Laplace noise 𝑛𝑡 ∼ 𝐿𝑎𝑝 (0, 𝑇Δ𝜖𝑇 ) is added to 𝑧𝑡 independently at each time step.

• FAST without sampling [Fan and Xiong 2014]
6
: Laplace noise 𝑛𝑡 ∼ 𝐿𝑎𝑝 (0, 𝑇Δ𝜖𝑇 ) is first added to 𝑧𝑡 , then a

posterior estimate of each 𝑧𝑡 using the Kalman filter is released. Since it assumes the time series follows a random

process 𝑍𝑡+1 = 𝑍𝑡 + 𝑈𝑡 with 𝑈𝑡 ∼ N(0, 𝜎2

𝑢 ), to use the Kalman filter it requires 𝜎2

𝑢 to be known in advance.

Moreover, it also needs to use a Gaussian noise 𝑛̃𝑡 ∼ N(0, 𝜎2

𝑎𝑝𝑝 ) to approximate the added Laplace noise 𝑛𝑡 . In

our experiments, 𝜎2

𝑎𝑝𝑝 is chosen based on the guidelines provided in [Fan and Xiong 2014] and 𝜎2

𝑢 that gives the

best performance is selected using exhaustive search.

• DFT [Rastogi and Nath 2010]: Discrete Fourier Transform is applied to the entire sequence first, then among 𝑇

Fourier coefficients 𝐷𝐹𝑇 (𝑧1:𝑇 ) 𝑗 =
∑𝑇
𝑖=1

exp( 2𝜋
√
−1

𝑇
𝑗𝑖)𝑥𝑖 , 𝑗 ∈ [𝑇 ], it selects the top 𝑑 and perturbs each of them

using Laplace noise

√
𝑑𝑇Δ
𝜖𝑇

. Lastly, it pads 𝑇 − 𝑑 0’s to this perturbed coefficients vector and applies Inverse

Discrete Fourier Transform. In our experiments, 𝑑 that gives the best performance is selected from {1, · · · ,𝑇 }
using exhaustive search.

• BA and BD [Kellaris et al. 2014]: Two privacy budget allocation mechanisms, Budget Distribution (BD) & Budget

Absorption (BA), are used to dynamically allocate privacy budget over time based on the dissimilarity between

the previously released data and the new data. The new private data is released at each time step only when

the data is sufficiently different from the previously released data; otherwise, the previous data is recycled and

released again. The idea is to improve accuracy by allocating more privacy budgets to the most important data

points.

• Binary tree mechanism [Chan et al. 2011]: binary tree mechanism at each time outputs the approximate sum of

the data points seen so far, i.e., 𝐵𝑡 =
∑𝑡
𝑖=1

𝑧𝑖 + noise, while preserving event-level privacy7. The idea is to first

internally group the data arrived so far based on the binary representation of current time 𝑡 , the partial sum

(p-sum) of data within each group can be computed and perturbed. Finally, sum over all these noisy p-sum’s

gives the result. To compare with our method, we generate sequence 𝑏1:𝑇 based on the summations released by

binary tree mechanism 𝐵1:𝑇 , i.e., ∀𝑡, 𝑏𝑡 = 𝐵𝑡 − 𝐵𝑡−1. Then the performance of sequence 𝑏1:𝑇 is compared with

the sequence released by our method 𝑥1:𝑇 .

Real-world Datasets:We use the following datesets in our experiments.

6
FAST samples 𝑘 < 𝑇 points and allocates privacy budget 𝜖𝑇 to the sampled points. It adds Laplace noise 𝐿𝑎𝑝 (0, 𝐾Δ

𝜖𝑇
) to each sampled point and outputs

the corresponding a posterior estimate, while for non-sampled points it outputs prior estimates. A similar sampling procedure can be added to our

proposed method where we set 𝑤𝑡 = 0 for non-sampled points.

7Event-level privacy only guarantees the privacy at one time step; it requires sequence pairs 𝑧1:𝑇 , 𝑧̂1:𝑇 defined in differential privacy (Definition 2.2) to be

different in at most one data point. In contrast, our work considers user-level privacy where privacy at all times is ensured.
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• Ride-sharing counts [Fanaee-T and Gama 2013]: this is generated using historical log from Capital Bikeshare

system in 2011. It includes the counts of rented bikes aggregated on both an hourly and daily basis. Because each

data point is a count over a dataset, query sensivity Δ = 1.

• NY traffic volume counts in 2011 [DOT 2011]: this is collected by the Department of Transportation (DOT). It

contains the counts of traffic in various roadways from 12AM to 1PM on an hourly basis each day. We aggregate

the counts from all roadways and concatenate sequences from different days in chronological order. Because

each data point is a count over a dataset, query sensivity Δ = 1.

• Federal Test Procedure (FTP) drive cycle [EPA 2008]: this dataset includes a speed profile for vehicles and simulates

urban driving patterns. It can be used for emission certification and fuel economy testing of vehicles in the

United States. Because each data point is the speed of one vehicle, query sensitivity Δ is the range of the vehicle’s

speed. In this setting, 𝐷𝑡 only includes one data point and the definition of differential privacy (Definition 2.2) is

reduced to that of local differential privacy [Kasiviswanathan et al. 2011].

Accuracy metric: We use relative error (RE) defined as the normalized MSE to measure the accuracy of 𝑥1:𝑇 :

𝑅𝐸 (𝑧1:𝑇 , 𝑥1:𝑇 ) =
1

𝑇

| |𝑧1:𝑇 − 𝑥1:𝑇 | |2
max1≤𝑡 ≤𝑇 |𝑧𝑡 |

.

8.1 Comparison with other methods
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Fig. 4. Comparison of different methods

0 100 200 300 400 500
Tdelay

0.00

0.02

0.04

0.06

0.08

0.10

0.12

re
la

tiv
e 

er
ro

r

εT = 10−4T

baseline-Laplace 
DFT 
online DFT

0 100 200 300 400 500
Tdelay

0.00

0.05

0.10

0.15

0.20

re
la

tiv
e 

er
ro

r

εT = 5 * 10−5T

baseline-Laplace 
DFT 
online DFT

Fig. 5. Comparison with Online DFT

The comparison results are shown in Figure 4, where we use 𝛿𝑇 = 10
−7

in baseline-Normal and the proposed method;

Δ = 1 as each data point 𝑧𝑡 is a count over a dataset. The left plot compares the relative error achieved by different

methods under the same 𝜖𝑇 . However, the baseline-Laplace, FAST and DFT methods satisfy (𝜖𝑇 , 0)-differential privacy
while the baseline-Normal and proposed methods satisfy (𝜖𝑇 , 10

−7)-differential privacy. Although 𝛿𝑇 = 10
−7

appears

small, the total privacy loss 𝜖𝑇 under these methods are calculated using different composition methods. Comparing

different methods solely based on 𝜖𝑇 may not be appropriate as the improvement in 𝜖𝑇 may come from the composition

strategy rather than the algorithm itself.

To address this issue, we add the right plot in Figure 4, where the noises in baseline-Laplace and baseline-Normal

are chosen such that the error achieved by baseline-Normal is no less than that under baseline-Laplace, i.e., the black

curve is slightly over the green curve in the plot. This would guarantee that baseline-Normal provides stronger privacy

than baseline-Laplace. By further controlling the proposed method to have the same privacy as baseline-Normal (noise

variances in two methods satisfy Eqn. (2)), and FAST and DFT to have the same privacy as baseline-Laplace, we can

guarantee that the proposed method is at least as private as FAST and DFT. In the plot, the 𝑥-axis denotes the variance

of added noise in baseline-Laplace and the noise parameters of the other methods are selected accordingly. It shows

that the proposed method outperforms FAST; the improvement is more significant when the privacy requirement is
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Fig. 6. Sequences aggregated from 10 runs of experiments using different methods under the same 𝜖𝑇 (upper plot). In the lower plot,
noise variance is selected in each method such that the proposed method and baseline-Normal are at least as private as FAST and
baseline-Laplace.

high. While generally DFT performs better than the proposed method, it is an offline method which requires the entire

sequence to be known a priori. However, as perturbation increases (more private), the proposed method can achieve

similar performance as DFT.

The DFT method can also be adapted online. One way to do this is to perform DFT over a subsequence of length

𝑇𝑑𝑒𝑙𝑎𝑦 ≪ 𝑇 (data released with delay 𝑇𝑑𝑒𝑙𝑎𝑦 ). We examine the performance of such a method on the Traffic dataset by

comparing it with DFT and baseline-Laplace. Figure 5 shows that when 𝑇𝑑𝑒𝑙𝑎𝑦 = 0 (data released in real-time, DFT

applied to one data point each time and on one coefficient), the performance is similar to baseline-Laplace; as 𝑇𝑑𝑒𝑙𝑎𝑦

increases, its accuracy increases at the expense of increased delay. Because the performance of the proposed algorithm

falls between baseline-Laplace and offline DFT (Figure 4), there exists a delay 0 < 𝑇𝑑𝑒𝑙𝑎𝑦 < 𝑇 such that the sequence

released using DFT with delay 𝑇𝑑𝑒𝑙𝑎𝑦 and the proposed method have similar performance.

Figure 6 shows the private traffic counts generated using various methods. For each method, we repeat the experiment

10 times and obtain 10 sample paths {𝑥1:𝑇 }10

𝑘=1
. The curves in the plot show the average

1

10

∑
10

𝑘=1
𝑥𝑘

1:𝑇
while the shaded

area indicates their variance whose upper and lower bound at each 𝑡 are max𝑘 𝑥
𝑘
𝑡 and min𝑘 𝑥

𝑘
𝑡 , respectively.
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Fig. 7. Comparison with BA and BD [Kellaris et al. 2014]. Fig. 8. Comparison with Binary Tree Mechanism

We also compare our proposed method with BA and BD proposed in [Kellaris et al. 2014]. Unlike our model, where a

single query is released at every time step, BA and BD are designed to release a vector of length 𝑑 each time. Moreover,

BA and BD adopt (𝜖, 0)-differential privacy. In order to compare with our method, we set 𝑑 = 1 and use baseline-Laplace

and baseline-Normal as two baselines. Specifically, we choose noises for different methods such that: (1) our proposed

method and baseline-Normal have the same privacy guarantee; (2) BA, BD, and baseline-Laplace have the same privacy

guarantee; and (3) baseline-Normal is at least as private as baseline-Laplace. The results are shown in Figure 7, where
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the 𝑦-axis indicates the averaged relative error of 10 independent runs of experiment and 𝑥-axis is the privacy loss per

time step under baseline-Laplace. As illustrated, our method outperforms others. It is worth noting that BA and BD

may not even outperform baseline-Laplace. This is because in both BA and BD, half of the privacy budget is assigned to

measure the dissimilarity between previously released data and new data; thus only half of the privacy budget is left for

releasing the sequence. Moreover, as mentioned, BA and BD are meant for releasing a vector, especially when 𝑑 is large;

the error of the released sequence can be large when 𝑑 is small (Theorems 6 and 7 in [Kellaris et al. 2014]). It further

suggests that in settings where only a single query is released (𝑑 = 1), BA and BD may not be suitable.

We then compare our method with the binary tree (BT) mechanism proposed in [Chan et al. 2011]. Figure 8 compares

the performance of different algorithms on Traffic volume counts data, similar results are observed for other datasets.

Since the BT mechanism adopts (𝜖, 0)-differential privacy, we use the same strategy above and take baseline-Laplace

and baseline-Normal as two baselines, and choose noises such that the proposed method is at least as private as the

BT mechanism. It shows that ours is significantly better than BT, and the performance of BT is even worse than

baseline-Laplace. This is mainly because the BT mechanism focuses on a different setting: (1) it is proposed for releasing

the sum of data points seen so far, i.e.,

∑𝑡
𝑖=1

𝑧𝑖 , which means that the data point 𝑧𝑡 needs to be repeatedly queried

∀𝑡 ′ ≥ 𝑡 , and (2) the BT mechanism aims at controlling event-level privacy (which our comparison is on user-level

privacy), which generally requires more perturbation depending on how events are defined.

8.2 Impact of parameters 𝜌 and𝑤𝑡
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Fig. 9. Impact of correlation on performance
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Fig. 10. Impact of estimation from noisy sequence: 𝑍1:𝑇

satisfies 𝑍𝑡+1 = 𝜌𝑍𝑡 +𝑈𝑡 with 𝑈𝑡 ∼ N(0, 10) , 𝑍0 = 0 and
weak (𝜌 = 0.1) or strong (𝜌 = 0.8) autocorrelation.

As mentioned earlier, the baseline is a special case (𝑤𝑡 = 1, ∀𝑡 ) of our method, which can always outperform the

former with better tuned weights. The achievable improvement depends on the correlation of the sequence. We show

this in Figure 9, the error of various synthetic sequences using different weights under the same privacy 𝜖𝑇 . Each

sequence follows Gaussian AR(1) with 𝑍𝑡 ∼ N(0, 1) but the correlation 𝜌 varies from 0.1 to 0.9. It shows that (i) in all

cases, one can find weights for our method to outperform the baseline; sequences with high 𝜌 have the highest accuracy

under the same 𝜖𝑇 ; (ii) with weak (resp. strong) privacy as shown on the right (resp. left), the smallest weights that

can give improvement are close to 1 (resp. 0) and the achievable improvement is small (resp. large) as compared to the

baseline. As released data depends less (resp. more) on estimates when weights are large (resp. small), the correlation

within the sequence does not (resp. does) affect performance significantly. In the right (resp. left) plot with weak (resp.

strong) privacy, curves with lowest error are similar under different 𝜌 (resp. decreases in 𝜌).

We also examine the impact of estimating parameters from a noisy sequence; the result is shown in Figure 10, where

Gaussian AR(1) sequences are generated. Red curves represent the relative error achieved using the proposed method
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(a) 𝜖𝑇 = 0.5 ∗ 10
−5 ×𝑇 (b) 𝜖𝑇 = 10

−5 ×𝑇 (c) 𝜖𝑇 = 0.5 ∗ 10
−4 ×𝑇

Fig. 11. Performance of the proposed method under a geometric sequence of weights 𝑤2

𝑡 = 𝑟𝑡−1, 𝑟 ∈ (0.97, 1) . It shows that for any
privacy loss 𝜖𝑇 , always there exists a lower bound 𝑟𝑜 ∈ (0, 1) such that ∀𝑟 ≥ 𝑟𝑜 , the proposed algorithm with weights 𝑤2

𝑡 = 𝑟𝑡−1

outperforms the baseline method.

where 𝜇𝑡 , 𝜎̂
2

𝑡 and 𝜌𝑡 at each time are estimated from the previous released sequence; blue curves represent the case

where we use true parameters 𝜇, 𝜎2
, 𝜌 to estimate 𝑧𝑡 using 𝑥𝑡−1. As expected, estimating parameters from a noisy

sequence degrades the performance. However, even with this impact the proposed method continues to outperform the

baseline significantly.

As mentioned in Section 5, the proposed method can attain a bounded total privacy loss (lim𝑇→∞ 𝜖𝑇 < ∞) by taking

weights𝑤2

𝑡 = 𝑎𝑟𝑡−1, 𝑟 ∈ (0, 1) as a decreasing geometric sequence. In Figure 11, we examine the performance of our

algorithm on traffic count dataset when weights𝑤2

𝑡 = 𝑟𝑡−1, 𝑟 ∈ (0, 1). Specifically, each figure shows the relative error

of the proposed method (red curves) and baseline (black curves) as functions of 𝑟 ∈ (0.97, 1) under a certain privacy

loss 𝜖𝑇 . Because 𝑟 doesn’t impact the baseline method, the error of baseline remains the same (the oscillation in the plot

comes from the randomness). The results show that for any privacy loss 𝜖𝑇 , always there exists a lower bound 𝑟𝑜 ∈ (0, 1)
such that ∀𝑟 ≥ 𝑟𝑜 , the proposed algorithm with weights 𝑤2

𝑡 = 𝑟𝑡−1
outperforms the baseline method. Moreover, as

privacy guarantee gets weaker (i.e., 𝜖𝑇 increases), the lower bound 𝑟𝑜 that leads to the improvement also increases. This

is consistent with Theorem 6.2.

8.3 Queries outside of count/stationary queries

As discussed in Section 7, the proposed method is not limited to AR(1) processes but is applicable to any (weakly)

stationary random process. In fact, the empirical results further show that the proposed method works well even for

non-stationary sequences. In particular, real-world datasets we considered such as ride sharing counts (daily), NY traffic

volume counts, FTP drive cycle are non-stationary, i.e., the mean/variance of data changes over time, the correlation

between values at any two time steps depend not only on their time difference, but also on the particular time step.

Next, we further demonstrate this on synthetic non-stationary data sequences (Figure 12).

Specifically, the synthetic data is generated based on the following:

𝑍𝑡 = 𝜌𝑍𝑡−1 +𝑈𝑡 + 𝜂 · 𝑡, ∀𝑡 ≥ 1 . (4)

We adopt Gaussian distributed𝑈𝑡 ∼ N(0, 𝜎2

𝑢 ) = N(0, 10) and 𝜌 = 0.8. When 𝜂 = 0, Eqn. (4) reduces to Gaussian AR(1)

process in (1). Term 𝜂 · 𝑡 in Eqn. (4) is added for interrupting stationarity: as 𝜂 ≥ 0 increases, the interruption is more

severe. Figure 12 illustrates the sample paths of 𝑍1:𝑇 under different values of 𝜂, where each 𝑍𝑡 is Gaussian distributed
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Fig. 12. Sample paths of synthetic non-stationary data sequence: 𝑍1:𝑇 satisfies 𝑍𝑡+1 = 𝜌𝑍𝑡 +𝑈𝑡 + 𝜂 · 𝑡 with𝑈𝑡 ∼ N(0, 10) , 𝑍0 = 0

and 𝜌 = 0.8. 𝜂 ∈ [0, 0.05] controls the degree of non-stationarity

with mean 𝜇 · 𝑡 and variance 𝜎2

𝑧 =
𝜎2

𝑢

1−𝜌2
≈ 27.8. Note that for these sequences, the sensitivity Δ𝑡 is same over time and

we set Δ𝑡 = 1 in the experiment. To examine the impact of non-stationarity, we adjust the accuracy metric and define

relative error as

𝑅𝐸 (𝑧1:𝑇 , 𝑥1:𝑇 ) =
1

𝑇

| |𝑧1:𝑇 − 𝑥1:𝑇 | |2
3𝜎𝑧

.

Figures 13 compares the accuracy of our method with baseline-Normal under the same privacy guarantee. We observe

that our method always outperforms the baseline significantly, and the impact of non-stationarity is minor; it is more

significant when the privacy guarantee is more restrictive: when 𝜖𝑇 = 10
−3 × 𝑇 , the performance of our method

deteriorates as the data becomes more non-stationary.

(a) 𝜖𝑇 = 10
−1 ×𝑇 (b) 𝜖𝑇 = 10

−2 ×𝑇 (c) 𝜖𝑇 = 10
−3 ×𝑇

Fig. 13. Impact of non-stationarity:𝑍1:𝑇 satisfies𝑍𝑡+1 = 𝜌𝑍𝑡 +𝑈𝑡 +𝜂 · 𝑡 with𝑈𝑡 ∼ N(0, 10) ,𝑍0 = 0 and 𝜌 = 0.8. 𝜂 ∈ [0, 0.05] controls
the degree of non-stationarity. In each plot, the accuracy of the proposed method and baseline-Normal are compared under the same
privacy guarantee. Results show that the impact of non-stationarity is minor; it is more significant when the privacy guarantee is
more restrictive: when 𝜖𝑇 = 10

−3 ×𝑇 , the performance of our method deteriorates as the data becomes more non-stationary.

The proposed method is not limited to count queries and is more broadly applicable. For example, this method

can be used in intelligent transportation systems to enable private vehicle-to-vehicle communication. In our studies

[Huang et al. 2020; Zhang et al. 2019], a predictive cruise controller is designed for a follower vehicle using a private

speed profile transmitted from its leader vehicle. Specifically, instead of broadcasting the real speed profile (FTP drive

cycle), the leader vehicle generates a differentially private speed profile using the proposed method. A follower vehicle

then designs an optimal speed planner based on the received information. Within this application context, query Q(𝑣)
represents the vehicle’s speed information, and sensitivity Δ is the range of the vehicle’s speed. Figure 14 shows the

Manuscript submitted to ACM



Differentially Private Real-Time Release of Sequential Data 17

0 200 400 600 800 1000 1200 1400
time step

20

0

20

40

60

sp
ee

d 
[m

/s
]

FTP Drive Cycle
baseline-Normal
proposed
original

0 200 400 600 800 1000 1200 1400
time step

0

20

40

60

sp
ee

d 
[m

/s
]

FTP Drive Cycle
baseline-Normal
proposed
original

Fig. 14. Drive cycles under different levels of privacy: the privacy guarantee in the upper plot is stronger than that of the lower plot.

private speed profiles generated using the proposed method and baseline-Normal. A private optimal speed planner is

designed in [Huang et al. 2020; Zhang et al. 2019] using these private profiles. The results show that the controller

performance deteriorates significantly under the baseline method. In contrast, the controller designed with the proposed

method can attain an accuracy that is sufficient for predictive control purposes. We refer an interested reader to [Huang

et al. 2020; Zhang et al. 2019] for more details and the performance of the private controller.

9 CONCLUSION

This paper presented a method for releasing a differentially private data sequence in real time. It estimates the unreleased

data from those already released based on their correlation, which is learned on the fly during the release process. This

estimate along with the actual data is then released as a convex combination with added perturbation. This is shown to

achieve higher accuracy with lower privacy loss compared to various existing approaches.
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APPENDIX

A RESULTS OF BINOMIAL AR(1) PROCESS

A.1 Definition

Definition A.1. (Binomial AR(1) process) Let 𝜋 ∈ (0, 1) and 𝜌 ∈ [max(− 𝜋
1−𝜋 ,−

1−𝜋
𝜋 ), 1]. Define 𝛽 = 𝜋 (1 − 𝜌),

𝛼 = 𝛽 + 𝜌 , and fix 𝑛 ∈ N. Then 𝑍1:𝑇 is a binomial AR(1) process [McKenzie 1985] if:

𝑍𝑡 = 𝛼 ◦ 𝑍𝑡−1 + 𝛽 ◦ (𝑛 − 𝑍𝑡−1), 𝑡 ≥ 1 (5)

where 𝑍0 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 𝜋) and “◦" is called the thinning operator defined as 𝑎 ◦ 𝑍𝑡−1 =
∑𝑍𝑡−1

𝑖=1
𝑌𝑖,𝑡−1, where 𝑌𝑖,𝑡−1, 𝑖 =

1, · · · , 𝑍𝑡−1 are i.i.d Bernoulli random variables with Pr(𝑌𝑖,𝑡−1 = 1) = 𝑎, and all thinnings are independent of each

other. Binomial AR(1) is also a stationary Markov process with the following properties: (1) 𝑍𝑡 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 𝜋); (2) its
autocorrelation is Corr(𝑍𝑡𝑍𝑡−𝜏 ) = Corr(𝜏) = 𝜌 |𝜏 |

.

Binomial AR(1) is typically used for modeling integer-valued counts sequences. Consider 𝑛 independent entities,

each of which can be either in state “1” or state “0”. Then 𝑍𝑡 can be interpreted as the number of entities in state “1” at

time 𝑡 . Eqn. (5) implies that this “1”-entity count (𝑍𝑡 ) can be given by the number of “1”-entities in the previous time

instant that didn’t change state (𝛼 ◦ 𝑍𝑡−1) plus the number of “0”-entities in the previous time instant that changed to

state “1” (𝛽 ◦ (𝑛 − 𝑍𝑡−1)); here 𝛼 , 𝛽 can be interpreted as the respective transition probabilities. Binomial AR(1) has

been used to model many real-world scenarios such as counts of computer log-ins and log-outs [Weiß 2009], daily

counts of occupied rooms in a hotel, etc.
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A.2 MMSE estimates

Proposition A.2. Consider a Binomial AR(1) process 𝑍1:𝑇 defined by (5), the MMSE estimate of 𝑍𝑡+1 given 𝑍𝑡 = 𝑧𝑡 is

𝑍𝑡+1 (𝑧𝑡 ) = 𝜌𝑧𝑡 + 𝑛𝜋 (1 − 𝜌).If we use a perturbed 𝑋𝑖 = 𝑍𝑖 + 𝑁𝑖 , 𝑖 ∈ {1, · · · , 𝑡} with Var(𝑁𝑡 ) = 𝑚
2
to estimate 𝑍𝑡+1, then

the LMMSE estimate of 𝑍𝑡+1 given 𝑋𝑖 = 𝑥𝑖 is

𝑍𝑡+1 (𝑥𝑖 ) = 𝑛𝜋 (1 − 𝜌𝑡+1−𝑖 𝑛𝜋 (1 − 𝜋)
𝑛𝜋 (1 − 𝜋) + 𝑚

2

) + 𝜌𝑡+1−𝑖 𝑛𝜋 (1 − 𝜋)
𝑛𝜋 (1 − 𝜋) + 𝑚

2

𝑥𝑖

A.3 Binomial Mechanism

Definition A.3. (Binomial noise) We call random variable 𝑁 the binomial noise if it is zero mean and follows the

shifted binomial distribution:

𝑁 +𝑚 ∼ Binomial (2𝑚,
1

2

),

whose probability mass function (PMF) is

Pr(𝑁 = 𝑘) =
(

2𝑚

𝑘 +𝑚

)
1

2
2𝑚

, 𝑘 ∈ {−𝑚, · · · ,𝑚 − 1,𝑚},

with a variance
𝑚
2
.

Lemma A.4. (Binomial Mechanism) Consider a query Q : D → Z that takes data 𝑑 ∈ D as input and outputs an integer.

The Binomial mechanism B(𝑑) = Q(𝑑) +𝑁 adds binomial noise 𝑁 with variance 𝑚
2
to the output. If 1 ≤ ΔQ+ 2𝑚+1

exp( 𝜖
ΔQ )+1

≤
𝑚 + 1 for 𝜖 > 0, then the following holds:

(i) ∀ 𝜖 > 0, it satisfies (𝜖, 𝛿)-differential privacy with:

𝛿 = exp(− 1

𝑚
(𝑚 − ΔQ + 1 − 2𝑚 + 1

exp( 𝜖
ΔQ ) + 1

)2) .

(ii) ∀ 𝛿 ∈ (0, 1), it satisfies (𝜖, 𝛿)-differential privacy with:

𝜖 = ΔQ log( 2𝑚 + 1

𝑚 − ΔQ + 1 −
√︃
𝑚 log

1

𝛿

− 1) .

Note that this is a generalization (for arbitrary sensitivity ΔQ) to the version (for the case ΔQ = 1) first proposed in

[Dwork et al. 2006]. This is an approximation of the Gaussian mechanism; it has a much looser bound compared to the

latter and more noise is needed to ensure a same level of privacy, which is consistent with the conclusion in [Dwork

et al. 2006]. However, the Gaussian mechanism only works when 𝜖 < 1, while our Binomial mechanism does not have

this restriction and is more suitable for a discrete setting.

A.4 Privacy Analysis using Binomial Noise

Theorem A.5. Let 𝑍𝑡 = Q(𝐷𝑡 ) and Δ be the sensitivity of Q ∀𝑡 , consider Algorithm 2 using Binomial noise with

Var(𝑁𝑡 ) = 𝑚
2
, ∀𝑡 that takes sequence 𝑧1:𝑇 as input and outputs 𝑥1:𝑇 , ∀ ˜𝛿 ∈ [0, 1], if 1 ≤ 𝑤𝑡Δ + 2𝑚+1

exp( 𝜖
𝑤𝑡 Δ

)+1
≤ 𝑚 + 1, ∀𝑡 ,

then the algorithm is (𝜖
˜𝛿
, 1 − (1 − ˜𝛿)∏𝑇

𝑡=1
(1 − 𝛿𝑡 ))-differentially private for:

𝜖
˜𝛿
= min


𝑇∑︁
𝑡=1

𝜖𝑡 ,

𝑇∑︁
𝑡=1

(𝑒𝜖𝑡 − 1)𝜖𝑡
𝑒𝜖𝑡 + 1

+

√√√√√ 𝑇∑︁
𝑡=1

2𝜖2

𝑡 log(𝑒 +

√︃∑𝑇
𝑡=1

𝜖2

𝑡

˜𝛿
),

𝑇∑︁
𝑡=1

(𝑒𝜖𝑡 − 1)𝜖𝑡
𝑒𝜖𝑡 + 1

+

√√√
𝑇∑︁
𝑡=1

2𝜖2

𝑡 log( 1

˜𝛿
)


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with any 𝜖𝑡 > 0 and corresponding

𝛿𝑡 = exp(− 1

𝑚
(𝑚 −𝑤𝑡Δ + 1 − 2𝑚 + 1

exp( 𝜖𝑡
𝑤𝑡Δ

) + 1

)2),

or with any 𝛿𝑡 ∈ (0, 1) and corresponding

𝜖𝑡 = 𝑤𝑡Δ log( 2𝑚 + 1

𝑚 −𝑤𝑡Δ + 1 −
√︃
𝑚 log

1

𝛿𝑡

− 1).

A.5 Proofs for results of binomial AR(1) process

A.5.1 Proof of Proposition A.2. The MMSE estimate of 𝑍𝑡+1 given 𝑍𝑡 = 𝑧𝑡 is E(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ). Since the thinning is

performed independently, given 𝑍𝑡 = 𝑧𝑡 , the probability generating function satisfies the following:

𝐺 (𝑠) = E𝑍𝑡+1 |𝑍𝑡=𝑧𝑡 (𝑠
𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ) = E(𝑠𝛼◦𝑍𝑡 |𝑍𝑡 = 𝑧𝑡 )E(𝑠𝛽◦(𝑛−𝑍𝑡 ) |𝑍𝑡 = 𝑧𝑡 ) = (1 − 𝛽 + 𝛽𝑠)𝑛 ( 1 − 𝛼 + 𝛼𝑠

1 − 𝛽 + 𝛽𝑠
)𝑧𝑡

𝐺 ′(𝑠) = 𝑛𝛽 (1 − 𝛽 + 𝛽𝑠)𝑛−1 ( 1 − 𝛼 + 𝛼𝑠

1 − 𝛽 + 𝛽𝑠
)𝑧𝑡 + (1 − 𝛽 + 𝛽𝑠)𝑛𝑧𝑡 (

1 − 𝛼 + 𝛼𝑠

1 − 𝛽 + 𝛽𝑠
)𝑧𝑡−1

𝛼

𝛽

1

𝛽
− 1

𝛼

( 1

𝛽
− 1 + 𝑠)2

𝐺 ′′(𝑠) = 𝑛𝛽2 (𝑛 − 1) (1 − 𝛽 + 𝛽𝑠)𝑛−2 ( 1 − 𝛼 + 𝛼𝑠

1 − 𝛽 + 𝛽𝑠
)𝑧𝑡 + 2𝑛𝛽 (1 − 𝛽 + 𝛽𝑠)𝑛−1𝑧𝑡 (

1 − 𝛼 + 𝛼𝑠

1 − 𝛽 + 𝛽𝑠
)𝑧𝑡−1

𝛼

𝛽

1

𝛽
− 1

𝛼

( 1

𝛽
− 1 + 𝑠)2

+(1 − 𝛽 + 𝛽𝑠)𝑛𝑧𝑡 ((𝑧1 − 1) ( 1 − 𝛼 + 𝛼𝑠

1 − 𝛽 + 𝛽𝑠
)𝑧𝑡−2 (𝛼

𝛽

1

𝛽
− 1

𝛼

( 1

𝛽
− 1 + 𝑠)2

)2 + ( 1 − 𝛼 + 𝛼𝑠

1 − 𝛽 + 𝛽𝑠
)𝑧𝑡−1

𝛼

𝛽
2

1

𝛼 − 1

𝛽

( 1

𝛽
− 1 + 𝑠)3

)

Since 𝛽 = 𝜋 (1 − 𝜌), 𝛼 = 𝛽 + 𝜌 , E(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ) = lim𝑠→1𝐺
′(𝑠) and Var(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ) = lim𝑠→1𝐺

′′(𝑠) +𝐺 ′(𝑠) −
(𝐺 ′(𝑠))2

gives:

E(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ) = 𝜌𝑧𝑡 + 𝑛𝜋 (1 − 𝜌) ;

Var(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ) = 𝜌 (1 − 𝜌) (1 − 2𝜋)𝑧𝑡 + 𝑛𝛽 (1 − 𝛽) .

The corresponding MSE is:

E((𝑍𝑡+1 − E(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ))2 |𝑍𝑡 = 𝑧𝑡 ) = Var(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 )

A.5.2 Proof of Lemma A.4. Consider any 𝑑, ˆ𝑑 ∈ D, and with them the binomial mechanism outputs the same results 𝑏.

Let
¯𝑏 = 𝑏 − Q(𝑑)

Pr(𝑏 = Q(𝑑) + 𝑛𝑜𝑖𝑠𝑒)
Pr(𝑏 = Q( ˆ𝑑) + ˆ𝑛𝑜𝑖𝑠𝑒)

=
ℱ𝑁 (𝑏 − Q(𝑑))
ℱ𝑁 (𝑏 − Q( ˆ𝑑))

=

(
2𝑚

𝑚+𝑏−Q(𝑑)
)(

2𝑚

𝑚+𝑏−Q( ˆ𝑑)
) =

(
2𝑚
𝑚+ ¯𝑏

)(
2𝑚

𝑚+ ¯𝑏+ΔQ
) =

ΔQ∏
𝑖=1

𝑚 + ¯𝑏 + 𝑖
𝑚 − ¯𝑏 + 1 − 𝑖

A sufficient condition for (6) being bounded by exp(𝜖) is:

∀𝑖 ∈ {1, 2, · · · ,ΔQ}, 𝑚 + ¯𝑏 + 𝑖
𝑚 − ¯𝑏 + 1 − 𝑖

≤ exp( 𝜖

ΔQ )
˜𝑏= ¯𝑏+𝑖⇐⇒ 𝑚 + ˜𝑏

𝑚 − ˜𝑏 + 1

≤ exp( 𝜖

ΔQ ) (6)

from (6), we have:

¯𝑏 ≤ min

𝑖∈[ΔQ]
𝑚 + 1 − 2𝑚 + 1

exp( 𝜖
ΔQ ) + 1

− 𝑖 =𝑚 + 1 − 2𝑚 + 1

exp( 𝜖
ΔQ ) + 1

− ΔQ
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Let 𝐵 be the random variable of shifted 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2𝑚, 1

2
) with zero mean and realization

¯𝑏. According to Chernoff

bound, ∀𝑡 ∈ [0,
√

2𝑚], there is Pr(𝐵 ≥ 𝑡

√
2𝑚
2

) ≤ 𝑒−𝑡
2/2

.

Then if 1 ≤ ΔQ + 2𝑚+1

exp( 𝜖
ΔQ )+1

≤ 𝑚 + 1, there is:

Pr(𝐵 ≥ 𝑚 + 1 − 2𝑚 + 1

exp( 𝜖
ΔQ ) + 1

− ΔQ) ≤ exp(− 1

𝑚
(𝑚 − ΔQ + 1 − 2𝑚 + 1

exp( 𝜖
ΔQ ) + 1

)2) = 𝛿

Similarly, given 𝛿 ∈ [0, 1], the corresponding 𝜖 is:

𝜖 = ΔQ log

©­­«
2𝑚 + 1

𝑚 − ΔQ + 1 −
√︃
𝑚 log

1

𝛿

− 1

ª®®¬
A.5.3 Proof of Theorem A.5. The data of each individual here spans over 𝑇 time steps, the total privacy loss is the

accumulation of privacy loss from 𝑇 time steps:

ℱ𝑋1:𝑇 |𝑍1:𝑇
(𝑥1:𝑇 |𝑧1:𝑇 )

ℱ𝑋1:𝑇 |𝑍1:𝑇
(𝑥1:𝑇 |𝑧1:𝑇 )

=
ℱ𝑋1 |𝑍1

(𝑥1 |𝑧1)
ℱ𝑋1 |𝑍1

(𝑥1 |𝑧1)
·

𝑇∏
𝑡=2

ℱ𝑋𝑡 |𝑍𝑡 ,𝑋1:𝑡−1
(𝑥𝑡 |𝑧𝑡 , 𝑥1:𝑡−1)

ℱ𝑋𝑡 |𝑍𝑡 ,𝑋1:𝑡−1
(𝑥𝑡 |𝑧𝑡 , 𝑥1:𝑡−1)

If 𝑥𝑡 is released under (𝜖𝑡 , 𝛿𝑡 )-differential privacy at time 𝑡 , then the total privacy loss can be calculated using advanced

composition theorem below:

Theorem A.6. (Advanced composition theorem for differential privacy [Kairouz et al. 2017]) For any 𝜖𝑘 > 0, 𝛿𝑘 ∈ [0, 1]
for 𝑘 ∈ {1, 2, · · · ,𝑇 }, and ˜𝛿 ∈ [0, 1], the class of (𝜖𝑘 , 𝛿𝑘 )-differentially private mechanisms satisfy (𝜖

˜𝛿
, 1− (1− ˜𝛿)∏𝑇

𝑘=1
(1−

𝛿𝑘 ))-differential privacy under 𝑇 -fold adaptive composition, for

𝜖
˜𝛿
= min


𝑇∑︁
𝑘=1

(𝑒𝜖𝑘 − 1)𝜖𝑘
𝑒𝜖𝑘 + 1

+

√√√√√ 𝑇∑︁
𝑘=1

2𝜖2

𝑘
log(𝑒 +

√︃∑𝑇
𝑘=1

𝜖2

𝑘

˜𝛿
),

𝑇∑︁
𝑘=1

𝜖𝑘 ,

𝑇∑︁
𝑘=1

(𝑒𝜖𝑘 − 1)𝜖𝑘
𝑒𝜖𝑘 + 1

+

√√√ 𝑇∑︁
𝑘=1

2𝜖2

𝑘
log( 1

˜𝛿
)


First calculate the (𝜖𝑡 , 𝛿𝑡 ) at each stage by Lemma A.4. Since 𝑁𝑡 +𝑚 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (2𝑚, 1

2
), for 𝑡 ≤ 2, 𝑋𝑡 = 𝑍𝑡 + 𝑁𝑡

so that the sensitivity ΔQ𝑡 = Δ; for 𝑡 > 2, 𝑋𝑡 = [(1 −𝑤𝑡 ) (𝜇𝑡−1 (1 − 𝑟𝑡 ) + 𝑟𝑡𝑋𝑡−1) +𝑤𝑡𝑍𝑡 + 𝑁𝑡 ] and the sensitivity is

ΔQ𝑡 = 𝑤𝑡Δ. Let𝑤𝑡 = 1 for 𝑡 ≤ 2. Then ∀𝜖𝑡 > 0,

𝛿𝑡 = exp(− 1

𝑚
(𝑚 −𝑤𝑡Δ + 1 − 2𝑚 + 1

exp( 𝜖𝑡
𝑤𝑡Δ

) + 1

)2)

or ∀𝛿𝑡 ∈ (0, 1),
𝜖𝑡 = 𝑤𝑡Δ log( 2𝑚 + 1

𝑚 −𝑤𝑡Δ + 1 −
√︃
𝑚 log

1

𝛿𝑡

− 1)

Apply Theorem A.6 directly, Theorem A.5 is proved.

B PROOFS

B.1 Proof of Proposition 2.4

Finding the MMSE estimate of 𝑍𝑡+1 given 𝑍𝑡 = 𝑧𝑡 is equivalent to finding the mapping

𝑓 ∗ = argmin

𝑓

E((𝑍𝑡+1 − 𝑓 (𝑍𝑡 ))2 |𝑍𝑡 = 𝑧𝑡 ) = argmin

𝑓

∫ ∞

−∞
𝑝 (𝑧𝑡+1 |𝑧𝑡 ) (𝑧𝑡+1 − 𝑓 (𝑧𝑡 ))2𝑑𝑧𝑡+1
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Differentiating with respect to 𝑓 and equating the result to zero gives:∫ ∞

−∞
𝑝 (𝑧𝑡+1 |𝑧𝑡 ) 𝑓 ∗ (𝑧𝑡 )𝑑𝑧𝑡+1 = 𝑓 ∗ (𝑧𝑡 ) =

∫ ∞

−∞
𝑝 (𝑧𝑡+1 |𝑧𝑡 )𝑧𝑡+1𝑑𝑧𝑡+1 = E(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 )

Therefore, the MMSE estimate of 𝑍𝑡+1 given 𝑍𝑡 = 𝑧𝑡 is E(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ).
Since (𝑍𝑡 , 𝑍𝑡+1) is jointly Gaussian: (

𝑍𝑡

𝑍𝑡+1

)
∼ N

([
𝜇

𝜇

]
,

[
𝜎2

𝑧 𝜌𝜎2

𝑧

𝜌𝜎2

𝑧 𝜎2

𝑧

])
,

it implies that 𝑍𝑡+1 |𝑍𝑡 ∼ N(𝜇 (1 − 𝜌) + 𝜌𝑍𝑡 , 𝜎
2

𝑧 (1 − 𝜌2)), combining with the above result, the MMSE estimate of 𝑍𝑡+1

given 𝑍𝑡 = 𝑧𝑡 is E(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ) = 𝜇 (1 − 𝜌) + 𝜌𝑧𝑡 . The corresponding MSE is:

E((𝑍𝑡+1 − E(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ))2 |𝑍𝑡 = 𝑧𝑡 ) = Var(𝑍𝑡+1 |𝑍𝑡 = 𝑧𝑡 ) = 𝜎2

𝑧 (1 − 𝜌2)

Since 𝑍𝑖 ∼ N(𝜇, 𝜎2

𝑧 ), 𝑁𝑖 ∼ N(0, 𝜎2

𝑛), there is 𝑋𝑖 = 𝑍𝑖 + 𝑁𝑖 ∼ N(𝜇, 𝜎2

𝑧 + 𝜎2

𝑛) and Corr(𝑋𝑖𝑍𝑡+1) = 𝜌𝑡+1−𝑖 𝜎𝑧√
𝜎2

𝑧+𝜎2

𝑛

.

(𝑋𝑖 , 𝑍𝑡+1) is jointly Gaussian: (
𝑋𝑖

𝑍𝑡+1

)
∼ N

([
𝜇

𝜇

]
,

[
𝜎2

𝑧 + 𝜎2

𝑛 𝜌𝑡+1−𝑖𝜎2

𝑧

𝜌𝑡+1−𝑖𝜎2

𝑧 𝜎2

𝑧

])
,

it implies the MMSE estimate of 𝑍𝑡+1 given 𝑋𝑖 = 𝑥𝑖 :

E(𝑍𝑡+1 |𝑋𝑖 = 𝑥𝑖 ) = 𝜇 (1 − 𝜌𝑡+1−𝑖 𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

) + 𝜌𝑡+1−𝑖 𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

𝑥𝑖

The corresponding MSE is:

𝜎2

𝑧 (1 − (𝜌𝑡+1−𝑖 )2
𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

)

B.2 Proof of Theorem 5.1

According to [Abadi et al. 2016], for a mechanismℳ outputs 𝑜 , with inputs 𝑑 and
ˆ𝑑 , let a random variable 𝑐 (𝑜 ;ℳ, 𝑑, ˆ𝑑) =

log
Pr(ℳ (𝑑)=𝑜)
Pr(ℳ ( ˆ𝑑)=𝑜)

denote the privacy loss at 𝑜 , and

𝛼ℳ (𝜆) = max

𝑑, ˆ𝑑

logE𝑜∼ℳ (𝑑) {exp(𝜆𝑐 (𝑜 ;ℳ, 𝑑, ˆ𝑑))}

There is:

𝑐 (𝑥1:𝑇 ;ℳ, 𝑧1:𝑇 , 𝑧1:𝑇 ) = log

ℱ𝑋1:𝑇 |𝑍1:𝑇
(𝑥1:𝑇 |𝑧1:𝑇 )

ℱ𝑋1:𝑇 |𝑍1:𝑇
(𝑥1:𝑇 |𝑧1:𝑇 )

=

𝑇∑︁
𝑡=2

log

ℱ𝑋𝑡 |𝑍𝑡 ,𝑋1:𝑡−1
(𝑥𝑡 |𝑧𝑡 , 𝑥1:𝑡−1)

ℱ𝑋𝑡 |𝑍𝑡 ,𝑋1:𝑡−1
(𝑥𝑡 |𝑧𝑡 , 𝑥1:𝑡−1)

+ log

ℱ𝑋1 |𝑍1
(𝑥1 |𝑧1)

ℱ𝑋1 |𝑍1
(𝑥1 |𝑧1)

=

𝑇∑︁
𝑡=1

𝑐 (𝑥𝑡 ;ℳ𝑡 , 𝑧𝑡 , 𝑧𝑡 )

and for any pair of sequences 𝑧1:𝑇 , 𝑧1:𝑇 , the following holds

logE𝑋1:𝑇 ∼ℳ (𝑍1:𝑇 ) {exp(𝜆𝑐 (𝑥1:𝑇 ;ℳ, 𝑧1:𝑇 , 𝑧1:𝑇 ))} = logE𝑋1:𝑇 ∼ℳ (𝑍1:𝑇 ) {exp(𝜆
𝑇∑︁
𝑡=1

𝑐 (𝑥𝑡 ;ℳ𝑡 , 𝑧𝑡 , 𝑧𝑡 )}

≤
𝑇∑︁
𝑡=1

logE𝑋𝑡∼ℳ (𝑍𝑡 ) {exp(𝜆𝑐 (𝑥𝑡 ;ℳ𝑡 , 𝑧𝑡 , 𝑧𝑡 )} (7)

Manuscript submitted to ACM



24 Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu

Therefore, 𝛼ℳ (𝜆) ≤ ∑𝑇
𝑡=1

𝛼ℳ𝑡
(𝜆) also holds.

Consider 𝛼ℳ𝑡
(𝜆) first.

For 𝑡 ≤ 2 −𝑇0, 𝑋𝑡 = 𝑍𝑡 + 𝑁𝑡 with 𝑁𝑡 ∼ N(0, 𝜎2

𝑛)

𝑐 (𝑥𝑡 ;ℳ𝑡 , 𝑧𝑡 , 𝑧𝑡 ) = log

ℱ𝑋𝑡 |𝑍𝑡 ,𝑋1:𝑡−1
(𝑥𝑡 |𝑧𝑡 , 𝑥1:𝑡−1)

ℱ𝑋𝑡 |𝑍𝑡 ,𝑋1:𝑡−1
(𝑥𝑡 |𝑧𝑡 , 𝑥1:𝑡−1)

= log

ℱ𝑁𝑡 (𝑛𝑡 )
ℱ𝑁𝑡 (𝑛̂𝑡 )

≤ 1

2𝜎2

𝑛

Δ(2𝑛𝑡 + Δ) .

𝛼ℳ𝑡
(𝜆) = logE𝑁𝑡∼N(0,𝜎2

𝑛) {exp(𝜆 1

2𝜎2

𝑛

Δ(2𝑛𝑡 + Δ))}

= log

∫ ∞

−∞

1

√
2𝜋𝜎𝑛

exp(− 1

2𝜎2

𝑛

(𝑛𝑡 − 𝜆Δ)2) · exp( 1

2𝜎2

𝑛

(𝜆2 + 𝜆)Δ2)𝑑𝑛𝑡

=
𝜆(𝜆 + 1)Δ2

2𝜎2

𝑛

.

For 𝑡 > 2,

𝑋𝑡 = (1 −𝑤𝑡 ) (𝜇𝑡−1 (1 − 𝑟𝑡 ) + 𝑟𝑡𝑋𝑡−1) +𝑤𝑡𝑍𝑡 + 𝑁𝑡

with 𝑁𝑡 ∼ N(0, 𝜎2

𝑛).

𝑐 (𝑥𝑡 ;ℳ𝑡 , 𝑧𝑡 , 𝑧𝑡 ) = log

ℱ𝑋𝑡 |𝑍𝑡 ,𝑋1:𝑡−1
(𝑥𝑡 |𝑧𝑡 , 𝑥1:𝑡−1)

ℱ𝑋𝑡 |𝑍𝑡 ,𝑋1:𝑡−1
(𝑥𝑡 |𝑧𝑡 , 𝑥1:𝑡−1)

= log

ℱ𝑁𝑡 (𝑛𝑡 )
ℱ𝑁𝑡 (𝑛̂𝑡 )

≤ 1

2𝜎2

𝑛

𝑤𝑡Δ(2𝑛𝑡 +𝑤𝑡Δ) .

𝛼ℳ𝑡
(𝜆) = logE{exp(𝜆 1

2𝜎2

𝑛

𝑤𝑡Δ(2𝑛𝑡 +𝑤𝑡Δ))}

= log

∫ ∞

−∞

1

√
2𝜋𝜎𝑛

exp(− 1

2𝜎2

𝑛

(𝑛𝑡 − 𝜆𝑤𝑡Δ)2) · exp( 1

2𝜎2

𝑛

(𝜆2 + 𝜆)𝑤2

𝑡 Δ
2)𝑑𝑛𝑡

=
𝜆(𝜆 + 1)𝑤2

𝑡 Δ
2

2𝜎2

𝑛

.

If let𝑤𝑡 = 1 for 𝑡 ≤ 2, there is:

𝛼ℳ (𝜆) ≤ 𝜆(𝜆 + 1) Δ
2

2𝜎2

𝑛

𝑇∑︁
𝑡=1

𝑤2

𝑡

Use the tail bound [Theorem 2, [Abadi et al. 2016]], for any 𝜖𝑇 ≥ Δ2

2𝜎2

𝑛

∑𝑇
𝑡=1

𝑤2

𝑡 , the algorithm is (𝜖𝑇 , 𝛿𝑇 )-differentially
private for

𝛿𝑇 = min

𝜆:𝜆≥0

ℎ(𝜆) = min

𝜆:𝜆≥0

exp(𝜆(𝜆 + 1) Δ
2

2𝜎2

𝑛

𝑇∑︁
𝑡=1

𝑤2

𝑡 − 𝜆𝜖𝑇 )

To find 𝜆∗ = argmin

𝜆:𝜆≥0

ℎ(𝜆), take derivative of ℎ(𝜆) and assign 0 gives the solution
¯𝜆 =

𝜖𝑇
Δ2

𝜎2

𝑛

∑𝑇
𝑡=1

𝑤2

𝑡

− 1

2
≥ 0, and

ℎ′′( ¯𝜆) > 0, implies 𝜆∗ = ¯𝜆. Plug into (8) gives:

𝛿𝑇 = exp
©­«(

Δ2

𝜎2

𝑛

∑𝑇
𝑡=1

𝑤2

𝑡

4

− 𝜖𝑇

2

) ( 𝜖𝑇
Δ2

𝜎2

𝑛

∑𝑇
𝑡=1

𝑤2

𝑡

− 1

2

)ª®¬ (8)

Similarly, for any 𝛿𝑇 ∈ [0, 1], the algorithm is (𝜖𝑇 , 𝛿𝑇 )-differentially private for

𝜖𝑇 = min

𝜆:𝜆≥0

ℎ1 (𝜆) = min

𝜆:𝜆≥0

(𝜆 + 1) Δ
2

2𝜎2

𝑛

𝑇∑︁
𝑡=1

𝑤2

𝑡 +
1

𝜆
log

(
1

𝛿𝑇

)
(9)
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with 𝜆∗ = argmin

𝜆:𝜆≥0

ℎ1 (𝜆) =
√︄

log
1

𝛿𝑇

Δ2

2𝜎2

𝑛

∑𝑇
𝑡=1

𝑤2

𝑡

. Plug into (9) gives:

𝜖𝑇 = 2

√√√
Δ2

2𝜎2

𝑛

𝑇∑︁
𝑡=1

𝑤2

𝑡 log( 1

𝛿𝑇
) + Δ2

2𝜎2

𝑛

𝑇∑︁
𝑡=1

𝑤2

𝑡 (10)

B.3 Proof of Corollary 5.2

Let 𝜙 =
Δ2

∑𝑇
𝑡=1

𝑤2

𝑡

𝜎2

𝑛
, then according to Theorem 5.1,

ln𝛿𝑇 = (𝜙
4

− 𝜖𝑇

2

) ( 𝜖𝑇
𝜙

− 1

2

)

reorganize gives:

𝜙2 + (8 ln𝛿𝑇 − 4𝜖𝑇 )𝜙 + 4𝜖2

𝑇 = 0

𝜙 = 2𝜖𝑇 − 4 ln𝛿𝑇 ± 4

√︁
(ln𝛿𝑇 )2 − 𝜖𝑇 ln𝛿𝑇

Since 𝜖𝑇 ≥ 𝜙
2
must hold, only one case is possible.

𝜙 =
Δ2

∑𝑇
𝑡=1

𝑤2

𝑡

𝜎2

𝑛

= 2𝜖𝑇 − 4 ln𝛿𝑇 − 4

√︁
(ln𝛿𝑇 )2 − 𝜖𝑇 ln𝛿𝑇

Therefore,

𝜎2

𝑛 =
Δ2

∑𝑇
𝑡=1

𝑤2

𝑡

2𝜖𝑇 + 4 ln
1

𝛿𝑇
− 4

√︃
(ln 1

𝛿𝑇
)2 + 𝜖𝑇 ln

1

𝛿𝑇

B.4 Proof of Theorem 6.1

E𝑋1:𝑇
( | |𝑥1:𝑇 − 𝑧1:𝑇 | |2) = E𝑋1:𝑇

(
𝑇∑︁
𝑡=1

(𝑥𝑡 − 𝑧𝑡 )2) = E𝑋1:𝑇−1
{
𝑇−1∑︁
𝑡=1

(𝑥𝑡 − 𝑧𝑡 )2 + E𝑋𝑇 |𝑋1:𝑇−1
[(𝑥𝑇 − 𝑧𝑇 )2]︸                        ︷︷                        ︸

term 1

} (11)

Replacing 𝑥𝑇 = (1 −𝑤𝑇 )𝑧𝑇 (𝑥𝑇−1) +𝑤𝑇 𝑧𝑇 + 𝑛𝑇 into term 1 gives:

term 1 = E𝑋𝑇 |𝑋1:𝑇−1
[((1 −𝑤𝑡 ) (𝑧𝑇 (𝑥𝑇−1) − 𝑧𝑇 ) + 𝑛𝑇 )2] = (1 −𝑤𝑇 )2 (𝑧𝑇 (𝑥𝑇−1) − 𝑧𝑇 )2 + 𝜎2

𝑛

Plug into Eqn. (11):

(11) = E𝑋1:𝑇−1
{
𝑇−1∑︁
𝑡=1

(𝑥𝑡 − 𝑧𝑡 )2 + (1 −𝑤𝑇 )2 (𝑧𝑇 (𝑥𝑇−1) − 𝑧𝑇 )2 + 𝜎2

𝑛} = E𝑋1:𝑇−2
{
𝑇−2∑︁
𝑡=1

(𝑥𝑡 − 𝑧𝑡 )2 + 𝜎2

𝑛 + term 2}

with

term 2 = E𝑋𝑇−1 |𝑋1:𝑇−2
{(𝑥𝑇−1 − 𝑧𝑇−1)2 + (1 −𝑤𝑇 )2 (𝑧𝑇 (𝑥𝑇−1) − 𝑧𝑇 )2}

= (1 −𝑤𝑇−1)2 (𝑧𝑇−1 (𝑥𝑇−2) − 𝑧𝑇−1)2 + 𝜎2

𝑛 + (1 −𝑤𝑇 )2 E𝑋𝑇−1
{(𝑧𝑇 (𝑥𝑇−1) − 𝑧𝑇 )2}︸                            ︷︷                            ︸

term 3
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Since 𝑧𝑇 (𝑥𝑇−1) is the LMMSE estimator of 𝑍𝑇 given 𝑋𝑇−1, term 3 is just the corresponding MSE. For a Gaussian AR(1)

process 𝑍1:𝑇 with 𝑍𝑡 ∼ N(𝜇, 𝜎2

𝑧 ) and Corr(𝑍𝑡𝑍𝑡−1) = 𝜌 . There is:

term 3 = 𝜎2

𝑧 (1 − 𝜌2
𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

)

Therefore,

(11) = E𝑋1:𝑇−2
{
𝑇−2∑︁
𝑡=1

(𝑥𝑡 − 𝑧𝑡 )2 + (1 −𝑤𝑇−1)2 (𝑧𝑇−1 (𝑥𝑇−2) − 𝑧𝑇−1)2} + (1 −𝑤𝑇 )2𝜎2

𝑧 (1 − 𝜌2
𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

) + 2𝜎2

𝑛

= · · ·

= E𝑋1
{(𝑥1 − 𝑧1)2 + (1 −𝑤2)2 (𝑧2 (𝑥1) − 𝑧2)2} + 𝜎2

𝑧 (1 − 𝜌2
𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

)
𝑇∑︁
𝑡=3

(1 −𝑤𝑡 )2 + (𝑇 − 1)𝜎2

𝑛

= 𝜎2

𝑧 (1 − 𝜌2
𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

)
𝑇∑︁
𝑡=2

(1 −𝑤𝑡 )2 +𝑇𝜎2

𝑛

Since𝑤1 = 1,

E𝑋1:𝑇
( | |𝑥1:𝑇 − 𝑧1:𝑇 | |2) = 𝜎2

𝑧 (1 − 𝜌2
𝜎2

𝑧

𝜎2

𝑧 + 𝜎2

𝑛

)
𝑇∑︁
𝑡=1

(1 −𝑤𝑡 )2 +𝑇𝜎2

𝑛

B.5 Proof of Theorem 6.2

Since both satisfy (𝜖𝑇 , 𝛿𝑇 )-differential privacy, according to Corollary 5.2, (𝜎2

𝑛)𝐴 , (𝜎2

𝑛)𝐵 should satisfy:

𝑇

(𝜎2

𝑛)𝐵
=

∑𝑇
𝑡=1

𝑤2

𝑡

(𝜎2

𝑛)𝐴
=

2𝜖𝑇 + 4 ln
1

𝛿𝑇
− 4

√︃
(ln 1

𝛿𝑇
)2 + 𝜖𝑇 ln

1

𝛿𝑇

Δ2

By Theorem 6.1,

E𝑋𝐴
1:𝑇

( | |𝑥1:𝑇 − 𝑧1:𝑇 | |2) = 𝜎2

𝑧 (1 − 𝜌2
𝜎2

𝑧

𝜎2

𝑧 + (𝜎2

𝑛)𝐴
)

𝑇∑︁
𝑡=1

(1 −𝑤𝑡 )2 +𝑇 (𝜎2

𝑛)𝐴

E𝑋𝐵
1:𝑇

( | |𝑥1:𝑇 − 𝑧1:𝑇 | |2) = 𝑇 (𝜎2

𝑛)𝐵 = 𝑇 (𝜎2

𝑛)𝐴
𝑇∑𝑇

𝑡=1
𝑤2

𝑡

If E𝑋𝐴
1:𝑇

( | |𝑥1:𝑇 − 𝑧1:𝑇 | |2) < E𝑋𝐵
1:𝑇

( | |𝑥1:𝑇 − 𝑧1:𝑇 | |2), then ∃𝑡 s.t.𝑤𝑡 ≠ 1 and

𝜎2

𝑧 (1 − 𝜌2
𝜎2

𝑧

𝜎2

𝑧 + (𝜎2

𝑛)𝐴
)

𝑇∑︁
𝑡=1

(1 −𝑤𝑡 )2 < 𝑇 (𝜎2

𝑛)𝐴 (
𝑇∑𝑇

𝑡=1
𝑤2

𝑡

− 1)

Reorganize it implies:

(𝜎2

𝑛)𝐴/𝜎2

𝑧

1 − 𝜌2

1+(𝜎2

𝑛)𝐴/𝜎2

𝑧

>

∑𝑇
𝑡=1

(1 −𝑤𝑡 )2

𝑇 ( 𝑇∑𝑇
𝑡=1

𝑤2

𝑡

− 1)
(12)

Therefore, if ∃ {𝑤𝑡 }𝑇𝑡=1
,𝑤𝑡 ∈ (0, 1) and (𝜎2

𝑛)𝐴 satisfy both (12) and (12), then 𝑥𝐴
1:𝑇

will be more accurate than 𝑥𝐵
1:𝑇

.

Consider the case when𝑤𝑡 = 𝑤 ∈ (0, 1),∀𝑡 .
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Then the right hand side of (12) is reduced to ℎ1 (𝑤) = (1−𝑤)2

1

𝑤2
−1

, since

lim

𝑤→1

ℎ1 (𝑤) = 0; lim

𝑤→0

ℎ1 (𝑤) = 0

ℎ′
1
(𝑤) =

−2𝑤 (𝑤2 +𝑤 − 1)
(1 +𝑤)2

∃ only one 𝑤̄ over (0, 1) such that 𝑤̄2 + 𝑤̄ − 1 = 0. Therefore, ℎ1 (𝑤) is strictly increasing from 0 to ℎ1 (𝑤̄) > 0 over

(0, 𝑤̄) and strictly decreasing over from ℎ1 (𝑤̄) > 0 to 0 over (𝑤̄, 1).
Let 𝜉 = (𝜎2

𝑛)𝐴/𝜎2

𝑧 ≥ 0, then the left hand side of (12) can be re-written as ℎ2 (𝜉) = 𝜉

1− 𝜌2

1+𝜉
, we have:

ℎ′
2
(𝜉) = 𝜉2 + 2𝜉 (1 − 𝜌2) + (1 − 𝜌2)

(1 + 𝜉 − 𝜌2)2

Since ℎ2 (0) = 0 and ℎ′
2
(𝜉) > 0 over 𝜉 ∈ [0,∞), ℎ2 (𝜉) is strictly increasing from 0 to +∞ over 𝜉 ∈ [0,∞). For all pairs of

(𝑤, (𝜎2

𝑛)𝐴) satisfying (12),𝑤 and (𝜎2

𝑛)𝐴 is bijective and we can write 𝜉 = ℎ3 (𝑤) for some strictly increasing function ℎ3.

Since both ℎ2, ℎ3 are strictly increasing functions, ℎ2 (ℎ3 (𝑤)) is strictly increasing from 0 over𝑤 ∈ (0, 1). Therefore,
∃𝑤 ∈ (0, 1), such that ℎ2 (ℎ3 (𝑤)) > ℎ1 (𝑤) and 𝑥𝐴

1:𝑇
released by our method is more accurate than 𝑥𝐵

1:𝑇
.

Moreover, if𝑤 >
1−(𝜎2

𝑛)𝐵/𝜎2

𝑧

1+(𝜎2

𝑛)𝐵/𝜎2

𝑧
, then re-organize it implies

𝑤2
(𝜎2

𝑛)𝐵

𝜎2

𝑧

> ℎ1 (𝑤).

Since ℎ2 (ℎ3 (𝑤)) =
𝑤2

(𝜎2

𝑛 )𝐵

𝜎2

𝑧

1− 𝜌2

1+𝑤2
(𝜎2

𝑛 )𝐵
𝜎2

𝑧

> 𝑤2 (𝜎2

𝑛)𝐵
𝜎2

𝑧
, it further implies ℎ2 (ℎ3 (𝑤)) > ℎ1 (𝑤).

Therefore, if

𝑤 >
1 − (𝜎2

𝑛)𝐵/𝜎2

𝑧

1 + (𝜎2

𝑛)𝐵/𝜎2

𝑧

,

then 𝑥𝐴
1:𝑇

will be more accurate than 𝑥𝐵
1:𝑇

.

C ADDITIONAL EXPERIMENTS

Results on ride-sharing counts datasets are shown in Figures 15-19. Specifically, Figures 16-19 show the private sequences

aggregated from 10 runs of experiments using different methods, Figure 15 shows the comparison of various methods

under different privacy guarantee.
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Fig. 15. Comparison of different methods
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Fig. 16. Private sequences using different methods under the same 𝜖𝑇 = 2 ∗ 10
−2𝑇 (left) and 𝜖𝑇 = 1.3 ∗ 10

−2𝑇 (right)
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Fig. 17. Private sequences using different methods where parameters are selected such that error achieved by baseline-Normal is
slightly larger than baseline-Laplace: 𝜎2

𝑛 (Laplace) = 5 ∗ 10
3(left) and 𝜎2

𝑛 (Laplace) = 1.18 ∗ 10
4(right)
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Fig. 18. Private sequences using different methods under the same 𝜖𝑇 = 2 ∗ 10
−3𝑇 (left) and 𝜖𝑇 = 10

−4𝑇 (right)
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Fig. 19. Private sequences using different methods where parameters are selected such that error achieved by baseline-Normal is
slightly larger than baseline-Laplace: 𝜎2

𝑛 (Laplace) = 5 ∗ 10
5(left) and 𝜎2

𝑛 (Laplace) = 2 ∗ 10
8(right)
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