
ar
X

iv
:1

91
0.

04
58

1v
1

 [
cs

.L
G

]
 8

 O
ct

 2
01

9
1

Recycled ADMM: Improving the Privacy and Accuracy of

Distributed Algorithms

Xueru Zhang, Mohammad Mahdi Khalili, Mingyan Liu

Abstract—Alternating direction method of multiplier (ADMM)
is a powerful method to solve decentralized convex optimization
problems. In distributed settings, each node performs computa-
tion with its local data and the local results are exchanged among
neighboring nodes in an iterative fashion. During this iterative
process the leakage of data privacy arises and can accumulate
significantly over many iterations, making it difficult to balance
the privacy-accuracy tradeoff. We propose Recycled ADMM (R-
ADMM), where a linear approximation is applied to every even
iteration, its solution directly calculated using only results from
the previous, odd iteration. It turns out that under such a scheme,
half of the updates incur no privacy loss and require much less
computation compared to the conventional ADMM. Moreover,
R-ADMM can be further modified (MR-ADMM) such that each
node independently determines its own penalty parameter over
iterations. We obtain a sufficient condition for the convergence
of both algorithms and provide the privacy analysis based
on objective perturbation. It can be shown that the privacy-
accuracy tradeoff can be improved significantly compared with
conventional ADMM.

Index Terms—differential privacy, distributed learning,
ADMM

I. INTRODUCTION

D ISTRIBUTED optimization and learning are crucial for

many settings where the data is possessed by multiple

parties or when the quantity of data prohibits processing at

a central location. Many problems can be formulated as a

convex optimization of the following form: minx

∑N
i=1 fi(x).

In a distributed setting, each entity/node i has its own local

objective fi, N entities/nodes collaboratively work to solve

this objective through an interactive process of local compu-

tation and message passing. At the end all local results should

ideally converge to the global optimum.

The information exchanged over the iterative process gives

rise to privacy concerns if the local training data contains

sensitive information such as medical or financial records, web

search history, and so on [2]–[5]. It is therefore highly desir-

able to ensure such iterative processes are privacy-preserving.

We adopt the ε-differential privacy to measure such privacy

guarantee; it is generally achieved by perturbing the algorithm

such that the probability distribution of its output is relatively

insensitive to any change to a single record in the input [6].

Existing approaches to decentralizing the above problem

primarily consist of subgradient-based algorithms [7]–[9] and

ADMM-based algorithms [10]–[16]. It has been shown that

ADMM-based algorithms can converge at the rate of O(1k)

This work is supported by the NSF under grants CNS-1422211, CNS-
1646019, and CNS-1739517. An earlier version of this paper appeared in the
2018 Allerton Conference on Communication, Control and Computing [1].

X. Zhang, M. Khalili and M. Liu are with the Dept. of Electrical Engineer-
ing and Computer Science, University of Michigan, Ann Arbor, MI 48105,
{xueru, khalili, mingyan}@umich.edu

while subgradient-based algorithms typically converge at the

rate of O(1√
k
), where k is the number of iterations [12].

In this study, we will solely focus on ADMM-based algo-

rithms. While a number of differentially private (sub)gradient-

based distributed algorithms have been proposed [17]–[20],

the same is much harder for ADMM-based algorithms due

to its computational complexity stemming from the fact that

each node is required to solve an optimization problem in

each iteration. Differentially private ADMM has been studied

in [21]–[23]. In particular, Zhang and Zhu [21] proposes the

dual/primal variable perturbation method to inspect the privacy

loss of one node in every single iteration; this, however,

is not sufficient for guaranteeing privacy as an adversary

can potentially use the revealed results from all iterations to

perform inference. Zhang et al. [22] addresses this issue by

inspecting the total privacy loss over the entire process and

the entire network; A penalty perturbation method is proposed

which may improve the privacy-accuracy tradeoff significantly.

Huang et al. [23] applies the first-order approximation to the

augmented Lagrangian in all iterations; however, this method

requires a central server to average all updated primal variables

over the network in each iteration.

Since privacy leakage accumulates over iterations, the total

privacy loss over the entire process can be substantial, making

it difficult to balance the privacy-accuracy tradeoff. In our prior

work [22] we introduced a penalty perturbation method to

achieve a better tradeoff. While the method shows significant

improvement with the right choice of penalty parameters, this

improvement is heavily dependent on such choices and is

not guaranteed. It is therefore important to seek guaranteed

improvement in the privacy-accuracy tradeoff for ADMM-

based algorithms, which is the subject of the present paper.

In this study, we present Recycled ADMM (R-ADMM), a

modified version of ADMM where the privacy leakage only

happens during half of the updates (Algorithm 1). Specifically,

we adopt a linearized approximated optimization in every even

iteration, whose solution is calculated directly using results

from the previous, odd iteration; this solution is also used

for updating the primal variable. These approximated updates

incur no privacy loss and require much less computation.

Compared with conventional ADMM, R-ADMM requires

much less perturbation to provide the same level of privacy

protection, thereby improving the privacy-accuracy trade-off.

We then further generalize R-ADMM and present a mod-

ified R-ADMM, referred to as MR-ADMM, which employs

ideas proposed in [22] and can accommodate non-constant

penalty parameters which are also entity’s own private infor-

mation (Algorithm 2). Since the penalty parameter controls

the updating step size, the algorithm can be more robust by

decreasing the step size. It allows the algorithm to tolerate

http://arxiv.org/abs/1910.04581v1

2

more noise, i.e., be more private, without jeopardizing too

much accuracy. As a result the privacy-accuracy trade-off is

further improved.

Both of these algorithms are essentially modifications of

the original distributed ADMM algorithm; privacy in these

algorithms are provided by introducing noise. Accordingly,

the private versions of these algorithms are developed using

the objective perturbation method [24] (Algorithm 3). We

establish a sufficient condition for the convergence of both

algorithms and characterize their corresponding total privacy

loss for private algorithms. Both analysis and experiments

on real-world datasets show that as compared with conven-

tional ADMM algorithm, R-ADMM can improve the privacy-

accuracy tradeoff significantly with much less computation.

Moreover, by controlling the penalty parameters in MR-

ADMM, this privacy-accuracy tradeoff is further improved.

The remainder of the paper is organized as follows. We

present problem formulation and the definition of differential

privacy and ADMM in Section II. Three algorithms are intro-

duced in Section III including R-ADMM, MR-ADMM and the

private MR-ADMM. The convergence analysis of non-private

MR-ADMM, privacy analysis and generalization performance

analysis of (non)-private MR-ADMM are presented in Section

IV, V and VI, respectively. Discussion is given in Section VII.

Numerical results are illustrated in Section VIII and Section

IX concludes the paper.

II. PRELIMINARIES

A. Problem Formulation

Consider a connected network1 given by an undirected

graph G(N , E), which consists of a set of nodes N =
{1, 2, · · · , N} and a set of edges E = {1, 2, · · · , E}. Two

nodes can exchange information if and only if they are

connected by an edge. Let Vi denote node i’s set of neighbors,

excluding itself. Let Di be node i’s dataset.

Consider an optimization problem over this network of N
nodes, where the overall objective function can be decomposed

into N sub-objective functions and each depends on a node’s

local dataset, i.e.,

min
fc

Obj(fc, Dall) =

N∑

i=1

O(fc, Di) (1)

The goal is to find a (centralized) optimal solution fc ∈ R
d

over the union of all local datasets Dall = ∪i∈N Di in a

distributed manner using ADMM, while providing privacy

guarantee for each data sample.

B. Differential Privacy [6]

A randomized algorithm A (·) taking a dataset as input

satisfies ε-differential privacy if for any two datasets D, D̂
differing in at most one data point, and for any set of possible

outputs S ⊆ range(A), Pr(A (D) ∈ S) ≤ eεPr(A (D̂) ∈ S)
holds. We call two datasets differing in at most one data point

as neighboring datasets. ε ∈ [0,∞) can be used to quantify

1A connected network is one in which every node is reachable (via a path)
from every other node.

the privacy loss/guarantee. The above definition suggests that

for a sufficiently small ε, an adversary will observe almost the

same output regardless of the presence (or value change) of

any one individual in the dataset; this is what provides privacy

protection for that individual, the smaller ε, the smaller privacy

loss, the stronger privacy guarantee.

Differential privacy is a worse-case measure; i.e., the bound

is over all possible random outputs and all possible inputs. It is

a strong guarantee, as it can protect against attackers with any

side information. Moreover, it is immune to post-processing

[25]; i.e., given only the differentially private output without

additional information about the true data, it is impossible for

attackers to make it less differentially private.

For an optimization problem over a dataset, there are many

approaches to randomizing the output to preserve differential

privacy and some of the most commonly used are as follows.

(1) Output perturbation: solve the optimization problem first

and then add zero-mean noise (e.g., Laplace, Gaussian) to the

optimal solution. (2) Objective perturbation: add a noisy term

to the objective function first and then solve the perturbed opti-

mization problem. Because of this randomness, the accuracy of

the output also decreases accordingly. The more perturbation,

the output will be less accurate but it also provides the stronger

privacy for individuals. Therefore, there is a privacy-accuracy

tradeoff, and an important issue is how to improve this tradeoff

so that the output can be more accurate under the same privacy

guarantee.

C. Conventional ADMM

To decentralize (1), let fi be the local classifier of each node

i. To achieve consensus, i.e., f1 = f2 = · · · = fN , a set of

auxiliary variables {wij |i ∈ N , j ∈ Vi} are introduced for

every pair of connected nodes. As a result, (1) is reformulated

equivalently as:

min
{fi},{wij}

Õbj({fi}Ni=1, Dall) =

N∑

i=1

O(fi, Di)

s.t. fi = wij , wij = fj , i ∈ N , j ∈ Vi

(2)

Let {fi} and {wij} be the shorthand for {fi}i∈N and

{wij}i∈N ,j∈Vi
, respectively. Let {wij , λ

k
ij} be the short-

hand for {wij , λ
k
ij}i∈N ,j∈Vi,k∈{a,b}, where λa

ij , λb
ij are dual

variables corresponding to equality constraints fi = wij and

wij = fj respectively. The objective in (2) can be solved using

ADMM with the augmented Lagrangian:

Lη({fi}, {wij , λ
k
ij}) =

N∑

i=1

O(fi, Di)

+

N∑

i=1

∑

j∈Vi

(λa
ij)

T (fi − wij) +

N∑

i=1

∑

j∈Vi

(λb
ij)

T (wij − fj) (3)

+

N∑

i=1

∑

j∈Vi

η

2
(||fi − wij ||22 + ||wij − fj ||22) .

3

where η is called the penalty parameter. In the (t + 1)-th
iteration, the ADMM updates consist of the following:

fi(t+ 1) = argmin
fi

Lη({fi}, {wij(t), λ
k
ij(t)}); (4)

wij(t+ 1) = argmin
wij

Lη({fi(t+ 1)}, {wij, λ
k
ij(t)});(5)

λa
ij(t+ 1) = λa

ij(t) + η(fi(t+ 1)− wij(t+ 1)); (6)

λb
ij(t+ 1) = λb

ij(t) + η(wij(t+ 1)− fj(t+ 1)). (7)

Using Lemma 3 in [26], if dual variables λa
ij(t) and λb

ij(t)
are initialized to zero for all node pairs (i, j), then λa

ij(t) =
λb
ij(t) and λk

ij(t) = −λk
ji(t) will hold for all iterations with

k ∈ {a, b}, i ∈ N , j ∈ Vi. Let λi(t) =
∑

j∈Vi
λa
ij(t) =∑

j∈Vi
λb
ij(t), then the ADMM iterations (4)-(7) can be sim-

plified as (Refer to Appendix A in [22] for proof):

fi(t+ 1) = argmin
fi

{O(fi, Di) + 2λi(t)
T fi

+η
∑

j∈Vi

||1
2
(fi(t) + fj(t))− fi||22 } ; (8)

λi(t+ 1) = λi(t) +
η

2

∑

j∈Vi

(fi(t+ 1)− fj(t+ 1)) . (9)

D. Private ADMM [21] & Private M-ADMM [22]

In private ADMM [21], noise is added either to the updated

primal variable before broadcasting to its neighbors (primal

variable perturbation), or to the dual variable before updating

its primal variable using (8) (dual variable perturbation). The

privacy property is only evaluated for a single node and a

single iteration, but neither method can effectively balance the

privacy-accuracy tradeoff if the total privacy loss is considered.

In our prior work [22], the total privacy loss of the whole

network over the entire iterative process is considered. A

modified ADMM (M-ADMM) was proposed to improve the

privacy-accuracy tradeoff. Specifically, it explores the use of

the penalty parameter η in stabilizing the algorithm. M-

ADMM allows each node to independently determine its

penalty parameter and randomizes the objective function in

primal update (8) by adding a linear noise term correlated to

the penalty parameter while at the same time increasing the

penalty over time. By doing so it is shown that the privacy

and accuracy can be improved simultaneously.

III. ALGORITHMS

A. Recycled ADMM (R-ADMM)

1) Main idea: Fundamentally, the accumulation of privacy

loss over iterations stems from the fact that the individual

data Dall is used in every primal update. If the updates

can be made without directly using this original data, but

only from computational results that already exist, then the

privacy loss originating from these updates will be zero, while

at the same time the computational cost may be reduced

significantly. This idea of “recycling information” is also

supported by the immunity to post-processing that differential

privacy possesses [25], i.e., any computation over an output

that is already differentially private cannot incur additional

privacy loss. Toward this end, R-ADMM modifies the ADMM

algorithm such that we repeatedly use earlier computational

results to make updates.

Algorithm 1: Recycled-ADMM (R-ADMM)

Input: {Di}Ni=1

Initialize: ∀i, generate fi(0) randomly, λi(0) = 0d×1

for k = 1 to K do

for i = 1 to N do
Update primal variable fi(2k − 1) via (12);

Calculate the gradient ∇O(fi(2k − 1), Di);
Broadcast fi(2k − 1) to all neighbors j ∈ Vi.

for i = 1 to N do
Calculate η

∑
j∈Vi

(fi(2k − 1)− fj(2k − 1));
Update dual variable λi(2k − 1) via (13).

for i = 1 to N do
Use the stored ∇O(fi(2k − 1), Di) and

η
∑

j∈Vi
(fi(2k − 1)− fj(2k − 1)) to update

primal variable fi(2k) via (10);

Keep the dual variable λi(2k) = λi(2k − 1);
Broadcast fi(2k) to all neighbors j ∈ Vi.

Output: primal {fi(2K)}Ni=1 and dual {λi(2K)}Ni=1

2) Making information recyclable: ADMM can outperform

gradient-based methods in terms of requiring fewer number of

iterations for convergence; this however comes at the price of

high computational cost in every iteration. In particular, the

primal variable is updated by performing an optimization in

each iteration. In [13], [27], [28], either a linear or quadratic

approximation of the objective function is used to obtain

an inexact solution in each iteration in lieu of solving the

original optimization problem. While this clearly lowers the

computational cost, the approximate computation is performed

using the local, individual data in every iteration, which means

that privacy loss inevitably accumulates over the iterations.

We begin by modifying ADMM in such a way that in every

even iteration, without using data Dall, the primal variable

is updated solely based on the existing computational results

from the previous, odd iteration. Compared with conventional

ADMM, these updates incur no privacy loss and less com-

putation. Since the computational results are repeatedly used,

this method is referred to as Recycled ADMM (R-ADMM).

Specifically, in the 2k-th (even) iteration, O(fi, Di)
(Eqn. (8), primal update optimization) is approximated by

O(fi, Di) ≈ O(fi(2k − 1), Di) +∇O(fi(2k − 1), Di)
T (fi −

fi(2k − 1)) + γ
2 ||fi − fi(2k − 1)||22 (γ ≥ 0) and only the

primal variables are updated. Using the first-order condition,

the updates in the 2k-th iteration become:

fi(2k) = fi(2k − 1)− 1

2ηVi + γ
{∇O(fi(2k − 1), Di)

+2λi(2k − 1) + η
∑

j∈Vi

(fi(2k − 1)− fj(2k − 1))} ; (10)

λi(2k) = λi(2k − 1) . (11)

In the (2k − 1)-th (odd) iteration, the updates are kept the

4

same as (8)(9):

fi(2k − 1) = argmin
fi

{O(fi, Di) + 2λi(2k − 2)T fi

+η
∑

j∈Vi

||1
2
(fi(2k − 2) + fj(2k − 2))− fi||22 } ; (12)

λi(2k − 1) = λi(2k − 2)

+
η

2

∑

j∈Vi

(fi(2k − 1)− fj(2k − 1)) . (13)

Note that in the (2k)-th (even) iteration, we need the gradient

∇O(fi(2k − 1), Di) and primal difference
η

2

∑
j∈Vi

(fi(2k −
1) − fj(2k − 1)) for the updates; these are available di-

rectly from the previous, (2k − 1)-th (odd) iteration, i.e., this

information can be recycled. In this sense, R-ADMM may

be viewed as alternating between conventional ADMM (odd

iterations) and a variant of gradient descent (even iterations),

where 1
2ηVi+γ is the step-size with a slightly modified gradient

term. The complete procedure is shown in Algorithm 1.

Algorithm 2: Modified R-ADMM (MR-ADMM)

Input: {Di}Ni=1

Initialize: ∀i, generate fi(0) randomly, λi(0) = 0d×1

Parameter: ∀i, select {ηi(2k − 1)}Kk=1 s.t.

0 < ηi(2k − 1) ≤ ηi(2k + 1) < +∞, ∀k
for k = 1 to K do

for i = 1 to N do
Update primal variable fi(2k − 1) via (14);

Calculate the gradient ∇O(fi(2k − 1), Di);
Broadcast fi(2k − 1) to all neighbors j ∈ Vi.

for i = 1 to N do
Calculate

ηi(2k − 1)
∑

j∈Vi
(fi(2k − 1)− fj(2k − 1));

Update dual variable λi(2k − 1) via (15).

for i = 1 to N do
Use the stored ∇O(fi(2k − 1), Di) and

ηi(2k − 1)
∑

j∈Vi
(fi(2k − 1)− fj(2k − 1)) to

update primal variable fi(2k) via (16);

Keep the dual variable λi(2k) = λi(2k − 1);
Broadcast fi(2k) to all neighbors j ∈ Vi.

Output: primal {fi(2K)}Ni=1 and dual {λi(2K)}Ni=1

B. Modified R-ADMM (MR-ADMM)

1) Making η a node’s private information: R-ADMM re-

quires that the penalty parameter η be fixed for all nodes in

all iterations. Inspired by M-ADMM in [22], we modify R-

ADMM such that each node can independently determine its

penalty parameter in each iteration. Specifically, replace η in

(10), (12) and (13) with ηi(2k − 1). The updating formula is

then given in (14)-(17). The complete procedure is shown in

Algorithm 2.

2) Relationship between R-ADMM and MR-ADMM: MR-

ADMM is a generalized version of R-ADMM. If fix ηi(2k −
1) = η, ∀k, then MR-ADMM will be reduced to R-ADMM.

Algorithm 3: Private MR-ADMM

Input: {Di}Ni=1, {αi(1), · · · , αi(K)}Ni=1

Initialize: ∀i, generate fi(0) randomly, λi(0) = 0d×1

Parameter: ∀i, select {ηi(2k − 1)}Kk=1 s.t.

0 < ηi(2k − 1) ≤ ηi(2k + 1) < +∞, ∀k and ηi(1)
satisfies 2c1 < mini{Bi

C (ρ
N + 2ηi(1)Vi)}

for k = 1 to K do

for i = 1 to N do
Generate noise ǫi(2k − 1) ∼ exp(−αi(k)||ǫ||2);
Update primal variable fi(2k − 1) via (18);

Broadcast fi(2k − 1) to all neighbors j ∈ Vi.

for i = 1 to N do
Calculate

ηi(2k − 1)
∑

j∈Vi
(fi(2k − 1)− fj(2k − 1));

Update dual variable λi(2k − 1) via (15).

for i = 1 to N do
Use the stored information

ǫi(2k − 1) +∇O(fi(2k − 1), Di) and

ηi(2k − 1)
∑

j∈Vi
(fi(2k − 1)− fj(2k − 1)) to

update primal variable fi(2k) via (19);

Keep the dual variable λi(2k) = λi(2k − 1);
Broadcast fi(2k) to all neighbors j ∈ Vi.

Output: Upper bound of the total privacy loss β; primal

{fi(2K)}Ni=1 and dual {λi(2K)}Ni=1

3) Role of ηi(2k − 1) in stabilizing the algorithm: The

penalty parameter ηi(2k− 1) directly controls the step size of

the algorithm. Since the goal is to minimize the objective in

(14), if ηi(2k − 1) is larger, the solution fi(2k − 1) will be

closer to the primal variable in the previous iteration so that

the penalty term
∑

j∈Vi
||1
2
(fi(2k−2)+fj(2k−2))−fi||22 will

be small. In other words, larger ηi(2k − 1) results in smaller

update of the primal variable fi(2k−1). In even updates (16),
1

2ηi(2k−1)Vi+γ can also be regarded as step size as mentioned

earlier. Therefore, increasing ηi(2k−1) decreases the step size

in both even and odd iterations.
Without perturbation, a decreasing step size might slow

down the convergence. However, when the algorithm is per-

turbed with added noise, a smaller step size could prevent the

variable from deviating too much from the optimal solution in

each update, which in turn stabilizes the algorithm. In the rest

of paper, we will introduce a private algorithm by perturbing

MR-ADMM and illustrate how we can use our ability to

control stability via ηi(2k − 1) to improve the accuracy of

algorithm without jeopardizing privacy.

C. Private MR-ADMM

In this section we present a privacy preserving version of

MR-ADMM. Since MR-ADMM is a generalized version of

R-ADMM, the private version of R-ADMM can be built in a

similar way. In odd iterations, we adopt the objective pertur-

bation [24] where a random linear term ǫi(2k−1)T fi is added

to the objective function in (12)2, where ǫi(2k−1) follows the

2Pure differential privacy was adopted in this work, but the weaker (ǫ, δ)-
differential privacy can be applied as well.

5

fi(2k − 1) = argmin
fi

{O(fi, Di) + 2λi(2k − 2)T fi + ηi(2k − 1)
∑

j∈Vi

||1
2
(fi(2k − 2) + fj(2k − 2))− fi||22 } ; (14)

λi(2k − 1) = λi(2k − 2) +
ηi(2k − 1)

2

∑

j∈Vi

(fi(2k − 1)− fj(2k − 1)) . (15)

fi(2k) = fi(2k − 1)− 1

2ηi(2k − 1)Vi + γ
{∇O(fi(2k − 1), Di) + 2λi(2k − 1)

+ηi(2k − 1)
∑

j∈Vi

(fi(2k − 1)− fj(2k − 1))} ; (16)

λi(2k) = λi(2k − 1) . (17)

probability density proportional to exp{−αi(k)||ǫi(2k−1)||2}.

Consequently the objective function for updating the primal

variable fi(2k − 1) becomes Lpriv
i (2k − 1) given as follows:

Lpriv
i (2k − 1) = O(fi, Di) + (2λi(2k − 2) + ǫi(2k − 1))T fi

+ηi(2k − 1)
∑

j∈Vi

||1
2
(fi(2k − 2) + fj(2k − 2))− fi||22

To generate this noisy vector ǫi(2k−1), choose the norm from

the gamma distribution with shape d and scale 1
αi(k)

and the

direction uniformly, where d is the dimension of the feature

space. Node i’s local result (primal variable) is obtained by

finding the optimal solution to the private objective function:

fi(2k − 1) = argmin
fi

Lpriv
i (2k − 1), i ∈ N . (18)

In the 2k-th iteration, use the stored results ǫi(2k − 1) +
∇O(fi(2k − 1), Di) and ηi(2k − 1)

∑
j∈Vi

(fi(2k − 1) −
fj(2k−1)) to update primal variables, where the latter can be

obtained from the dual update in the (2k − 1)-th update, and

the former can be obtained directly from the KKT condition

in the (2k − 1)-th iteration:

ǫi(2k − 1) +∇O(fi(2k − 1), Di) = −2λi(2k − 2)

−ηi(2k − 1)
∑

j∈Vi

(2fi(2k − 1))− fi(2k − 2)− fj(2k − 2)) .

Then the even update is given by:

fi(2k) = fi(2k − 1)− 1

2ηi(2k − 1)Vi + γ
{2λi(2k − 1)

+ ǫi(2k − 1) +∇O(fi(2k − 1), Di)︸ ︷︷ ︸
the existing result by KKT

+ ηi(2k − 1)
∑

j∈Vi

(fi(2k − 1)− fj(2k − 1))

︸ ︷︷ ︸
the existing result by the previous dual update

} . (19)

Algorithm 3 shows the complete procedure, where the

condition used to generate ηi(1) helps to bound the worst-case

privacy loss but is not necessary in guaranteeing convergence.

IV. CONVERGENCE OF NON-PRIVATE MR-ADMM

Since MR-ADMM is a generalized version of R-ADMM,

we focus on the convergence analysis of MR-ADMM in this

section while the results immediately apply to R-ADMM by

fixing ηi(2k − 1) = η, ∀k.

We next show that the MR-ADMM (Eqn. (14)-(17)) con-

verges to the optimal solution under a set of common technical

assumptions.

Assumption 1: Function O(fi, Di) is convex and differen-

tiable in fi, ∀i.
Assumption 2: The solution set to the original problem (1)

is nonempty and there exists at least one bounded element.

Assumption 3: For all i ∈ N , O(fi, Di) has Lipschitz

continuous gradients, i.e., for any f1
i and f2

i , we have:

||∇O(f1
i , Di)−∇O(f2

i , Di)||2 ≤ Mi||f1
i − f2

i ||2 (28)

By the KKT condition of the primal update (14):

0 = ∇O(fi(2k − 1), Di) + 2λi(2k − 2) + ηi(2k − 1)

·
∑

j∈Vi

(2fi(2k − 1)− (fi(2k − 2) + fj(2k − 2))) . (29)

Define the adjacency matrix A ∈ R
N×N as:

aij =

{
1, if node i and node j are connected

0, otherwise .

Stack the variables fi(t), λi(t) and ∇O(fi(t), Di) for i ∈
N into matrices, i.e.,

f̂(t) =




f1(t)
T

f2(t)
T

...

fN(t)T


 ∈ R

N×d , Λ(t) =




λ1(t)
T

λ2(t)
T

...

λN (t)T


 ∈ R

N×d

∇Ô(f̂(t), Dall) =




∇O(f1(t), D1)
T

∇O(f2(t), D2)
T

...

∇O(fN (t), DN)T


 ∈ R

N×d

Let Vi = |Vi| be the number of neighbors of node i,
and define the degree matrix D = diag([V1;V2; · · · ;VN]) ∈
R

N×N , the diagonal matrix D̃(2k − 1) with D̃(2k − 1)ii =
2ηi(2k − 1)Vi + γ, and the weight matrix W (2k − 1) =
diag([η1(2k−1); η2(2k−1); · · · ; ηN (2k−1)]) ∈ R

N×N . Then

for each k, the matrix form of (16)(17)(29)(15) are given in

(20)-(23):

6

f̂(2k) = f̂(2k − 1)− D̃(2k − 1)−1{∇Ô(f̂(2k − 1), Dall) + 2Λ(2k − 1) +W (2k − 1)(D −A)f̂(2k − 1)} ;(20)

2Λ(2k) = 2Λ(2k − 1) ; (21)

0N×d = ∇Ô(f̂(2k − 1), Dall) + 2Λ(2k − 2) +W (2k − 1)(2Df̂(2k − 1)− (D +A)f̂(2k − 2)) ; (22)

2Λ(2k − 1) = 2Λ(2k − 2) +W (2k − 1)(D − A)f̂(2k − 1) . (23)

0N×d = ∇Ô(f̂(2k − 1), Dall) +W (2k − 1)(D +A)D̃(2k − 3)−1∇Ô(f̂(2k − 3), Dall)

+ W (2k − 1)(D +A)(f̂ (2k − 1)− f̂(2k − 3))

+ W (2k − 1)(D +A)D̃(2k − 3)−1W (2k − 3)(D −A)f̂(2k − 3)

+ 2Λ(2k − 1) +W (2k − 1)(D +A)D̃(2k − 3)−12Λ(2k − 3) ; (24)

2Λ(2k − 1) = 2Λ(2k − 3) +W (2k − 1)(D −A)f̂(2k − 1) . (25)

0N×d = ∇Ô(f̂(t+ 1), Dall) +W (t+ 1)(D +A)D̃(t)−1∇Ô(f̂(t), Dall) +W (t+ 1)(D +A)(f̂(t+ 1)− f̂(t))

+ W (t+ 1)(D +A)D̃(t)−1W (t)(D −A)f̂(t) + 2Λ(t+ 1) +W (t+ 1)(D +A)D̃(t)−12Λ(t) ; (26)

2Λ(t+ 1) = 2Λ(t) +W (t+ 1)(D −A)f̂(t+ 1) . (27)

Writing f̂(2k−2) and Λ(2k−2) in (22)(23) as functions of

f̂(2k−3), Λ(2k−3) using (20)(21), we obtain Eqn. (24)(25).

The convergence of the MR-ADMM is proved by showing

that the pair (f̂(2k − 1), Λ(2k − 1)) from odd iterations

converges to the optimal solution. To simplify the notation,

we will re-index every two consecutive odd iterations 2k − 3
and 2k − 1 using t and t+ 1, it results in Eqn. (26)(27).

Note that D−A is the laplacian and D+A is the signless

Laplacian matrix of the network, with the following properties

if the network is connected: (i) D ± A � 0 is positive semi-

definite; (ii) Null(D−A) = c1, i.e., every member in the null

space of D − A is a scalar multiple of 1 with 1 being the

vector of all 1’s [29].

Lemma IV.1. [First-order Optimality Condition [16]] Un-

der Assumptions 1 and 2, the following two statements are

equivalent:

• f̂∗ = [(f∗
1)

T ; (f∗
2)

T ; · · · ; (f∗
N)T] ∈ R

N×d is consensual,

i.e., f∗
1 = f∗

2 = · · · = f∗
N = f∗

c where f∗
c is the optimal

solution to (1).

• There exists a pair (f̂∗,Λ∗) with 2Λ∗ = (D − A)X for

some X ∈ R
N×d such that

∇Ô(f̂∗, Dall) + 2Λ∗ = 0N×d ; (30)

(D −A)f̂∗ = 0N×d . (31)

Lemma IV.1 shows that a pair (f̂∗,Λ∗) satisfying (30)(31)

is equivalent to the optimal solution of our problem, hence

the convergence of the MR-ADMM is proved by showing that

(f̂(t),Λ(t)) in (26)(27) converges to a pair (f̂∗,Λ∗) satisfying

(30)(31).

Theorem IV.1. [Sufficient Condition] Consider the modified

ADMM defined by (26)(27). Let {f̂(t),Λ(t)} be outputs in

each iteration and {f̂∗,Λ∗} a pair satisfying (30)(31). Denote

DM = diag([M2
1 ;M

2
2 ; · · · ;M2

N]) ∈ R
N×N with 0 < Mi <

+∞ as given in Assumption 3. If ηi(t + 1) ≥ ηi(t) > 0 and

ηi(t) < +∞ hold and the following two conditions can also

be satisfied for some constants L > 0 and µ > 1:

(i) I +W (t+ 1)(D +A)D̃(t)−1

≻ Lµ

2σmin(D̃(t))
(W (t+ 1)(D −A))+DM ;

(ii) W (t+ 1)(D +A)

≻ W (t+ 1)(D +A)D̃(t)−1
(
W (t)(D −A)

+
2

L
W (t+ 1)(D +A)

)
+

Lµ

2σmin(D̃(t))(µ − 1)
DM .

where σmin(D̃(t)) = min
i
{2ηi(t)Vi + γ} is the smallest sin-

gular value of D̃(t), then (f̂(t),Λ(t)) converges to (f̂∗,Λ∗).

Proof. See Appendix A.

By controlling γ to be sufficiently large, D̃(t)ii =
2ηi(t)Vi + γ will be large and conditions (i)(ii) can always

be satisfied under some constants L > 0 and µ > 1. Note

that the conditions (i)(ii) are sufficient but not necessary, so in

practice convergence may be attained under weaker settings.

For R-ADMM, take L = 2 and µ = 2, then condition (i)(ii)

are reduced to:

(iii) I + η(D +A)D̃−1 ≻ 2

ησmin(D̃)
((D −A))+DM ;

(iv) η(D +A) ≻ 2η(D +A)D̃−1ηD +
2

σmin(D̃)
DM .

Again for a sufficiently large γ ≥ 0, (iii)(iv) can be easily

satisfied.

V. PRIVACY ANALYSIS

In this section, we characterize the total privacy loss of

private MR-ADMM as presented in Algorithm 3. Similar to

7

the previous section, the results also apply to private R-ADMM

by fixing ηi(2k − 1) = η, ∀k.

As mentioned earlier, Zhang and Zhu [21] only quantifies

the privacy loss of a single node in a single iteration, i.e.,
Pr(fi(t)∈Si|Di)

Pr(fi(t)∈Si|D̂i)
≤ exp(αi(t)) holds ∀t, i, where αi(t) is the

bound on the privacy loss of node i at iteration t. However, in

a distributed and iterative setting, the “output” of the algorithm

is not merely the end result, but includes all intermediate

results generated and exchanged during the iterative process;

an attacker can use all such intermediate results to perform

inference. For this reason, we adopt the differential privacy

definition proposed in [22] as follows, which bounds the total

privacy loss during the entire iterative process.

Definition V.1. Consider a connected network G(N , E) with

a set of nodes N = {1, 2, · · · , N}. Let f(t) = {fi(t)}Ni=1 de-

note the information exchange of all nodes in the t-th iteration.

A distributed algorithm is said to satisfy β-differential privacy

during T iterations if for any two datasets Dall = ∪iDi and

D̂all = ∪iD̂i, differing in at most one data point, and for any

set of possible outputs S during T iterations, the following

holds:
Pr({f(t)}Tt=0 ∈ S|Dall)

Pr({f(t)}Tt=0 ∈ S|D̂all)
≤ exp(β)

The analysis is focused on the regularized empirical risk

minimization (ERM) problem for binary classification, while

its generalization is discussed in Section VII. Let node i’s
dataset be Di = {(xn

i , y
n
i)|n = 1, 2, · · · , Bi}, where xn

i ∈ R
d

is the feature vector representing the n-th sample belonging

to i, yni ∈ {−1, 1} the corresponding label, and Bi the size of

Di. Then the sub-objective function for each node i is defined

as follows:

O(fi, Di) =
C

Bi

Bi∑

n=1

L (yni f
T
i xn

i) +
ρ

N
R(fi) ,

where C ≤ Bi and ρ > 0 are constant parameters of the

algorithm, the loss function L (·) measures the accuracy of the

classifier, and the regularizer R(·) helps prevent overfitting.

For this binary classification problem, we now state another

result on the privacy property of the private MR-ADMM

(Algorithm 3) using definition V.1 above and additional as-

sumptions on L (·) and R(·) as follows.

Assumption 4: The loss function L is strictly convex and

twice differentiable. |∇L | ≤ 1 and 0 < L ′′ ≤ c1 with c1
being a constant.

Assumption 5: The regularizer R is 1-strongly convex and

twice continuously differentiable.

Lemma V.1. Consider the private MR-ADMM (Algorithm

3), ∀k = 1, · · ·K , assume the total privacy loss up to the

(2k− 1)-th iteration can be bounded by β2k−1, then the total

privacy loss up to the 2k-th iteration can also be bounded

by β2k−1. In other words, given the private results in odd

iterations, outputting private results in the even iterations does

not release more information about the input data.

Proof. See Appendix B.

Theorem V.1. Normalize feature vectors in the training set

such that ||xn
i ||2 ≤ 1 for all i ∈ N and n. Then the private

MR-ADMM algorithm (Algorithm 3) satisfies the β-differential

privacy with

β ≥ max
i∈N

{
K∑

k=1

2C

Bi
(

1.4c1
(ρ
N + 2ηi(2k − 1)Vi)

+ αi(k))} . (32)

Proof. See Appendix C.

VI. SAMPLE COMPLEXITY ANALYSIS

We next quantify the generalization performance of (non)-

private MR-ADMM. The analysis is focused on the ERM

problem defined in Section V and we assume samples from

each node i are drawn i.i.d. from a fixed distribution P . The

expected loss of node i using classifier fi(t) at time t is

given as L(fi(t)) = E(X,Y)∼P (L (Y fi(t)
TX)). Similar to the

analysis in [21], [24], we introduce a reference classifier fref
with expected loss L(fref) and evaluate the generalization

performance using the number of samples (Bi) required at

each node to achieve L(fi(t)) ≤ L(fref) + τ with high

probability.

A. Non-private MR-ADMM

As shown in Section IV, the sequence of outputs

{fnon
i (2k−1)} from odd iterations in non-private MR-ADMM

converges to f∗
i = f∗

c as k → ∞. Therefore, there exists a

constant ∆i(k) for each node i at the (2k − 1)-th iteration

such that L(fnon
i (2k− 1)) ≤ L(f∗

c)+∆i(k). Using the same

method as [21], [24], we have the following result.

Theorem VI.1. Consider a regularized ERM problem with

regularizer R(f) = 1
2 ||f ||2 and let fref be a reference

classifier for all nodes and {fnon
i (2k − 1)} be a sequence

of outputs of non-private MR-ADMM in odd iterations (Eqn.

(14)). If the number of samples at node i satisfies

Bi ≥ wmax
k

{ ||fref ||
2 log(1/δ)

(τ −∆i(k))2
}

for some constant w, then fnon
i (2k − 1) satisfies

Pr(L(fnon
i (2k − 1)) ≤ L(fref) + τ) ≥ 1− δ

where τ > ∆i(k), ∀i, k ∈ Z+.

Proof. See Appendix D.

As expected, the number of required samples depends on the

choice of the reference classifier via its l2 norm ||fref ||2, by

imposing an upper bound bref on ||fref ||2. The result shows

that if Bi satisfies Bi ≥ wmaxk{ bref log(1/δ)
(τ−∆i(k))2

}, then the non-

private intermediate classifier of each node at odd iterations

will have an additional error no more than τ as compared to

any classifier with ||fref ||2 ≤ bref .

8

B. private MR-ADMM

We next present the result on the sample complexity of the

private MR-ADMM algorithm. Similar to the analysis of non-

private MR-ADMM, we bound the error of the intermediate

classifier of each node at odd iterations. Since the algorithm is

perturbed with different random noise in different iterations, to

better analyze the effect of noise in a single iteration, we adopt

a strategy similar to that used in [21], by intentionally fixing

the noise in iterations after the targeted iteration. Specifically,

∀i, to compare the private fpriv
i (2k − 1) at the (2k − 1)-

th iteration with reference classifier fref , we slightly modify

Algorithm 3 such that ∀k′ > k, the added noise is fixed at

ǫi(2k
′ − 1) = ǫi(2k − 1), which allows us to solely study

the effect of ǫi(2k − 1). This problem can be formulated

as a new MR-ADMM optimization problem where node i’s
sub-objective function becomes Onew(fi, Di) = O(fi, Di) +
ǫi(2k−1)T fi and the initialization given by fi(0) = fi(2k−1),
λi(0) = λi(2k − 1). Let {fnew

i (2k − 1)} be a sequence of

outputs from odd iterations of this new algorithm; it converges

to a fixed point f∗
new as k → ∞. Therefore, there exists a

constant ∆new
i (k) for each node i at the (2k− 1)-th iteration

such that L(fnew
i (2k−1)) ≤ L(f∗

new)+∆new
i (k). Using this,

we have the following result.

Theorem VI.2. Consider a regularized ERM problem with

regularizer R(f) = 1
2 ||f ||2, let fref be a reference classifier

for all nodes and {fpriv
i (2k−1)} be a sequence of outputs of

private MR-ADMM in odd iterations. If the number of samples

at node i satisfies

Bi ≥ wmax
k

{ CN log(1/δ)
NC(τ−∆new

i (k))2

2||fref ||2 − (1 + a) Nd2

C(αi(k))2
(log(d/δ))2

}

for some constants w and a > 0, then fpriv
i (2k − 1) satisfies

Pr(L(fpriv
i (2k − 1)) ≤ L(fref) + τ) ≥ 1− 2δ

where τ > ∆new
i (k), ∀i, k ∈ Z+.

Proof. See Appendix E.

Compared to Theorem VI.1, we see an additional

term imposed by the privacy constraints, i.e., (1 +

a) Nd2

C(αi(k))2
(log(d/δ))2. If αi(k) → ∞, the result reduces

to Bi ≥ wmaxk{ 2||fref ||2 log(1/δ)
(τ−∆new

i (k))2 }, the same as given in

Theorem VI.1. The additional term shows that the higher

dimension of features, the more injected noise, which would

require more samples to achieve the same accuracy.

VII. DISCUSSION

A. Improving privacy-accuracy tradeoff

We now provide some intuitive explanation as to why

the ideas presented in this paper work. We explored two

key ideas to improve the privacy-accuracy tradeoff of a dif-

ferentially private algorithm. The first is to accomplish the

computational task by repeatedly using the already released

differentially private outputs. Utilizing differential privacy’s

immunity to post-processing, this information recycling incurs

no additional privacy loss. Since less information is revealed

during computation, less perturbation is required to obtain the

same privacy guarantee, which then improves the privacy-

accuracy tradeoff. The second idea is to improve the the

stability/robustness of the algorithm by directly controlling the

penalty parameter. This allows the algorithm to accommodate

more noise to improve privacy without sacrificing too much

accuracy, which improves the privacy-accuracy tradeoff.

B. Other perturbation methods and privacy analysis tools

While we have primarily used objective perturbation to

make an algorithm differentially private and to calculate the

privacy loss, it should be noted that this is done as an

example to illustrate how MR-ADMM can outperform both R-

ADMM and ADMM in the privacy-accuracy tradeoff. Other

perturbation methods such as output perturbation to achieve

differential privacy (each node perturbs its primal variable

before broadcasting to its neighbors) can be used as well; our

conclusion would still hold. This is because our key ideas

(revealing less information and making the algorithm more

robust/stable to noise via the penalty parameter) are orthogonal

to the choice of the perturbation method.

Similarly, in our privacy analysis we have adopted the

notion of pure ε-differential privacy to measure privacy. As

a result, the bound on the total privacy loss can be fairly

large. It is also possible to adopt a weaker notion, the (ε, δ)-
differential privacy, to find a tighter bound on privacy loss

by allowing the algorithm to violate ε-differential privacy

with a small probability δ. In this case, the total privacy loss

can be calculated using more advanced composition theorems

such as moments accountant [30] and zero-concentrated dif-

ferential privacy [31]. However, our key ideas (revealing less

information and making the algorithm more robust/stable to

noise via the penalty parameter) are orthogonal to the choice

of the privacy definition and analysis tools used; thus the

algorithmic properties will not be affected by such choices

and the conclusion remains valid.

C. Privacy analysis for a broader class of optimizations

In Section V, the privacy property of the private MR-

ADMM is analyzed for the ERM binary classification problem.

This is so that we can easily compare with ADMM and M-

ADMM in [21], [22]. This privacy analysis can be extended to

more general forms of O(fi, Di), such as multi-class settings.

There have been extensive studies on the differentially private

ERM with convex loss function [32], which can also be

adopted for our framework.

VIII. NUMERICAL EXPERIMENTS

We use the Adult dataset from the UCI Machine Learning

Repository [33]. It consists of personal information of around

48,842 individuals, including age, sex, race, education, occu-

pation, income, etc. The goal is to predict whether the annual

income of an individual is above $50,000.

Following the same pre-processing steps as in [22], the final

data includes 45,223 individuals, each represented as a 105-

dimensional vector of norm at most 1. We then randomly

9

0 5 10 15 20 25 30 35 40 45 50

t

0.32

0.34

0.36

0.38

0.4

0.42

0.44

A
v
e

ra
g

e
 L

o
s
s

N = 5, = 2

N = 5, = 1

N = 5, = 0.5

N = 5, = 0
N = 5, Original ADMM

N = 20, = 2

N = 20, = 1

N = 20, = 0.5

N = 20, = 0
N = 20, Original ADMM

30 31 32 33 34 35
0.34

0.345

0.35

0.355

10 11 12 13 14 15
0.35

0.355

0.36

0.365

0.37

(a) R-ADMM: η = 0.5

0 10 20 30 40 50
t

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

A
ve

ra
ge

 L
os

s

R-ADMM
MR-ADMM (q

1
 = 1 + q

2
)

MR-ADMM (q
1
 = 1 + 2q

2
)

MR-ADMM (q
1
 = 1 + 3q

2
)

MR-ADMM (q
1
 = 1 + 4q

2
)

MR-ADMM (q
1
 = 1 + 5q

2
)

(b) ηi(2k − 1) = η̂iq1(i)k

0 10 20 30 40 50
t

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

A
ve

ra
ge

 L
os

s

R-ADMM
MR-ADMM (q

1
 = 1.01)

MR-ADMM (q
1
 = 1.02)

MR-ADMM (q
1
 = 1.03)

MR-ADMM (q
1
 = 1.04)

MR-ADMM (q
1
 = 1.05)

(c) ηi(2k − 1) = qk
1

Fig. 1. Convergence properties of R-ADMM and MR-ADMM: Fig. 1(a)
illustrates the average loss over iterations of R-ADMM for the network of
different sizes under fixed η = 0.5 and different γ. Dashed (resp. solid)
curves represent the performance over a randomly generated small (resp. large)
network with N = 5 (resp. N = 20) nodes. Fig. 1(b)1(c) illustrate the average
loss over iterations of MR-ADMM for a randomly generated network with
N = 5 nodes. Black curve represents the R-ADMM where ηi(t) = η = 1
is fixed for all nodes and all iterations. Each colored curve represents MR-
ADMM with ηi(2k − 1) increasing over iterations at different speed. In
Fig. 1(b), each node i adopts ηi(2k − 1) = ηiq1(i)k as penalty parameter
in 2k− 1-th iteration, where [η1, · · · , η5] = [1, 1.03, 1.02, 0.8, 1.01], q1 =
[q1(1), · · · , q1(5)] = 1+kq2 (each k ∈ {1, · · · , 5} corresponds to one curve
in plot) and q2 = [q2(1), · · · , q2(5)] = [0.01, 0.005, 0.003, 0.015, 0.01]. In
Fig. 1(c), each node adopts the same penalty parameter ηi(2k − 1) = qk

1
in

odd iterations.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.159

0.1595

0.16

0.1605

0.161

0.1615

0.162

cl
as

si
fic

at
io

n
er

ro
r

ra
te

Fig. 2. The effect of ρ, fixing C = 1750.

partition this sample set into a training set (40,000 samples)

and a testing set (5,223 samples). The training samples are

then evenly distributed across nodes in a network.

We use as loss function the logistic loss L (z) = log(1 +
exp(−z)), with |L ′| ≤ 1 and L ′′ ≤ c1 = 1

4 . The regularizer

is R(fi) =
1
2 ||fi||22. We measure the accuracy of the algorithm

0 5 10 15 20 25 30 35 40 45 50
t

0.35

0.4

0.45

0.5

A
ve

ra
ge

 L
os

s

MR-ADMM (= 0.5)
MR-ADMM (= 1)
MR-ADMM (= 2)
Non-private

(a) Accuracy comparison for different γ (α = 1)

0 5 10 15 20 25 30 35 40 45 50
t

0.36

0.38

0.4

0.42

0.44

A
ve

ra
ge

 L
os

s

MR-ADMM (= 0.5)
MR-ADMM (= 1)
MR-ADMM (= 2)
Non-private

(b) Accuracy comparison for different γ (α = 2)

 = 2 = 1
0

0.05

0.1

0.15

0.2

0.25

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

MR-ADMM (= 0.5)
MR-ADMM (= 1)
MR-ADMM (= 2)
Non-private

(c) Classification error rate comparison

Fig. 3. The effect of γ on the performance of MR-ADMM, fixing
ηi(2k− 1) = 1.01k : in Fig. 3(a)3(b), green curves represent the non-private
conventional ADMM while other curves represent the private MR-ADMM
with different γ and each of them illustrates the overall result summarized
from 10 independent runs of experiments under the same parameter. The
corresponding classification error rates are shown in Fig. 3(c). It shows that
varying γ within a certain range doesn’t effect the performance significantly.

by the average loss over the training set:

L(t) :=
1

N

N∑

i=1

1

Bi

Bi∑

n=1

L (yni fi(t)
Txn

i),

and the classification error rate over the testing set Stest:

E =

∑
(xj,yj)∈Stest

1(yj 6= ŷj)∑
(xj ,yj)∈Stest

1
,

where ŷj is the prediction of sample (xj , yj) by using the

averaged classifier f̄(t) = 1
N

∑N
i=1 fi(t), and each fi(t) is

the local classifier(primal variable) of node i after t iterations.

We measure the privacy of an algorithm by the upper bound:

P (t) := max
i∈N

{
K∑

k=1

2C

Bi
(

1.4c1
(ρ
N + 2ηi(2k − 1)Vi)

+ αi(k))}.

The smaller L(t) and P (t), the higher accuracy and stronger

privacy guarantee.

10

0 5 10 15 20 25 30 35 40 45 50
t

0.36

0.38

0.4

0.42

0.44

A
ve

ra
ge

 L
os

s

35 40 45

0.355

0.36

0.365

0.37

(a) Accuracy comparison for different η(2k − 1) (α = 2)

0 5 10 15 20 25 30 35 40 45 50
t

0.35

0.4

0.45

0.5

A
ve

ra
ge

 L
os

s

(b) Accuracy comparison for different η(2k − 1) (α = 1)

0 10 20 30 40 50
t

0

5

10

15

20

25

P
riv

ac
y

Lo
ss

(c) Privacy comparison (α = 2)

0 10 20 30 40 50
t

0

2

4

6

8

10

12

P
riv

ac
y

Lo
ss

(d) Privacy comparison (α = 1)

 = 1 = 2

0.14

0.16

0.18

0.2

0.22

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

(e) Classification error rate comparison

Fig. 4. The effect of ηi(2k − 1) on the performance of MR-ADMM,
fixing γ = 0.5: in Fig. 4(a)4(b), green curves represent the non-private
conventional ADMM while other curves represent the private MR-ADMM
with different ηi(2k− 1) = qk

1
(q1 = 1.01, 1.02, 1.03, 1.04, 1.05) and each

of them illustrates the overall result summarized from 10 independent runs
of experiments under the same parameter. Fig. 4(c)4(d) illustrate the upper
bound of their privacy loss and the corresponding classification error rates are
shown in Fig. 4(e).

A. Convergence of non-private R-ADMM & MR-ADMM

Fig. 1(a) shows the convergence of R-ADMM with different

γ and fixed η = 0.5 for a small network (N = 5) and a

large network (N = 20), both are randomly generated. Due

to the linear approximation in even iterations, it’s possible to

cause an increased average loss as shown in the plot. However,

the odd iterations will always compensate this increase; if

we only look at the odd iterations, R-ADMM achieves a

similar convergence rate as conventional ADMM. γ can also

be thought of as an extra penalty parameter for each node

in even iterations to punish its update, i.e., the difference

between fi(2k) and fi(2k− 1). Larger γ can result in smaller

0 5 10 15 20 25 30 35 40 45 50
t

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

A
ve

ra
ge

 L
os

s

ADMM (DVP)
M-ADMM
R-ADMM
MR-ADMM
Non-private

(a) Accuracy comparison (α = 2)

0 5 10 15 20 25 30 35 40 45 50
t

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

A
ve

ra
ge

 L
os

s

ADMM (DVP)
M-ADMM
R-ADMM
MR-ADMM
Non-private

(b) Accuracy comparison (α = 1)

0 5 10 15 20 25 30 35 40 45 50
t

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
ve

ra
ge

 L
os

s

ADMM (DVP)
M-ADMM
R-ADMM
MR-ADMM
Non-private

(c) Accuracy comparison (α = 0.5)

0 10 20 30 40 50
t

0

5

10

15

20

25

P
riv

ac
y

Lo
ss

ADMM (DVP)
M-ADMM
R-ADMM
MR-ADMM

(d) α = 2

0 10 20 30 40 50
t

0

2

4

6

8

10

12

14

P
riv

ac
y

Lo
ss

ADMM (DVP)
M-ADMM
R-ADMM
MR-ADMM

(e) α = 1

0 10 20 30 40 50
t

0

1

2

3

4

5

6

7

P
riv

ac
y

Lo
ss

ADMM (DVP)
M-ADMM
R-ADMM
MR-ADMM

(f) α = 0.5

 = 2 = 1 = 0.5
0.05

0.1

0.15

0.2

0.25

0.3

C
la

ss
ifi

ca
tio

n
er

ro
r

ra
te

ADMM (DVP)
M-ADMM
R-ADMM
MR-ADMM
Non-private

(g) Classification error rate comparison

Fig. 5. Performance comparison: in Fig. 5(a)5(b)5(c), green curves represent
the non-private conventional ADMM while other curves represent different
private algorithms and each of them illustrates the overall result summarized
from 10 independent runs of experiments under the same parameter. M-
ADMM (blue) and MR-ADMM (magenta) adopt the varied penalty parameter
while ADMM (black) and R-ADMM (red) adopt the fixed ηi(t) = η = 1.
Fig. 5(d)5(e)5(f) illustrate the upper bound of their privacy loss and the
corresponding classification error rates are shown in Fig. 5(g).

11

oscillation between even and odd iterations but will also lower

the convergence rate.
Fig. 1(b)1(c) show the convergence of MR-ADMM with

penalty parameters ηi(2k − 1) increasing at different speed.

We see that increasing penalty slows down the convergence,

and larger increase in q1(i) slows it down more. In 1(b), each

node adopts different penalty parameter ηi(2k − 1) in each

iteration while in 1(c), the same penalty parameter is shared

among all the nodes. The convergence is attained in both cases.

B. Private R-ADMM & MR-ADMM

1) The effect of ρ, γ, ηi(2k − 1): We next inspect the ac-

curacy and privacy of the private R-ADMM and MR-ADMM

(Algorithm 3), and compare it with the private (conventional)

ADMM using dual variable perturbation (DVP) [21], the

private M-ADMM using penalty perturbation (PP) [22].

To begin, we first examine the effect of ρ in controlling

overfitting. Fig. 2 shows the classification error rate over the

testing set under different ρ, where the classifiers are trained

with original ADMM and the algorithm runs for 50 iterations.

Since the classification error rate is minimized at ρ ≈ 0.22,

we will use ρ = 0.22 in the following experiments.

For simplicity of presentation, in the next set of experiments

the penalty ηi(t) = η(t) in both M-ADMM and MR-ADMM

and noise αi(k) = α, ∀i, k. We observe similar results when

αi(t), ηi(t) vary from node to node.

For each parameter setting, we perform 10 independent

runs of the algorithm, and record both the mean and the

range of their accuracy. Specifically, Ll(t) denotes the average

loss over the training dataset in the t-th iteration of the l-th
experiment (1 ≤ l ≤ 10). The mean of average loss is given

by Lmean(t) = 1
10

∑10
l=1 L

l(t) and the range Lrange(t) =
max

1≤l≤10
Ll(t) − min

1≤l≤10
Ll(t). The larger the range Lrange(t)

the less stable the algorithm, i.e., under the same parameter

setting, the difference in performances (convergence curves)

of two experiments is larger. In the next few plots, Lrange(t)
is shown as the size of a vertical bar centered at Lmean(t).
Similarly, let El be the classification error rate over the testing

set in the l-th experiment, with an average error rate Emean =
1
10

∑10
l=1 E

l and range Erange = max
1≤l≤10

El− min
1≤l≤10

El shown

as the size of a vertical bar centered at Emean. Each parameter

setting also has a corresponding upper bound on the privacy

loss denoted by P (t).
In the non-private case, γ controls the oscillation between

even and odd iterations, as well as the convergence rate. We

now examine its effect when MR-ADMM is perturbed. Fig.

3 shows the average loss over the training set (Fig. 3(a)3(b))

and the classification error rate over the testing set (Fig. 3(c))

under different γ > 0, noting that the corresponding privacy

loss of these cases are the same under the same α. It shows that

varying γ (within a certain range) does not effect performance

significantly. For the next set of experiments, we fix γ = 0.5.

The effect of ηi(2k − 1) on the performance of private

MR-ADMM is illustrated in Fig. 4, where the pair Fig. 4(a),

4(c) is for the case when noise parameter is α = 2 (low

privacy requirement) and the pair Fig. 4(b), 4(d) is for the case

when α = 1 (high privacy requirement). Although increasing

ηi(2k − 1) over time can decrease the convergence rate of

non-private MR-ADMM (Fig. 1(b)1(c)), it helps to stabilize

the algorithm when MR-ADMM is perturbed and can improve

the accuracy while maintain the privacy guarantee. Moreover,

the improvement is more significant when algorithm is un-

der higher perturbation (high privacy requirement) and when

ηi(2k − 1) increases faster (within a range).

2) Performance comparison among different algorithms:

Our last set of experiments is conducted to compare the

performance of different algorithms with results illustrated

in Fig. 5. The noise parameters of both MR-ADMM and

R-ADMM are set as α shown in the plots, and the noise

parameters of conventional ADMM and M-ADMM are chosen

respectively such that they have approximately the same total

privacy loss bounds. We set ηi(2k − 1) = 1.04k in MR-

ADMM. We see that both private R-ADMM (red) and private

MR-ADMM (magenta) outperform private ADMM (black)

and M-ADMM (blue) with higher accuracy and lower privacy

loss. In particular, the private MR-ADMM (magenta) has

the highest accuracy with the lowest privacy loss among all

algorithms; the improvement is more significant with smaller

total privacy loss. This improvement is also illustrated by the

classification error rate over the testing set in Fig. 5(g).

IX. CONCLUSION

In this work, we presented Recycled ADMM (R-ADMM),

a modified version of ADMM that can improve the privacy-

utility tradeoff significantly with less computation. The idea is

to repeatedly use the existing computational results instead of

the original individuals’ data to make updates. We also modify

R-ADMM (MR-ADMM) by incorporating the idea from [22]

to further improve the privacy-utility tradeoff of R-ADMM.

The idea is to stabilize algorithm by decreasing its step-size,

i.e., increasing penalty parameters, over iterations. A sufficient

condition for the convergence and the privacy analysis using

objective perturbation of two algorithms are established. The

experiments on real-world dataset also validate the algorithm.

REFERENCES

[1] X. Zhang, M. M. Khalili, and M. Liu, “Recycled admm: Improve
privacy and accuracy with less computation in distributed algorithms,”
in 2018 56th Annual Allerton Conference on Communication, Control,

and Computing (Allerton). IEEE, 2018, pp. 959–965.
[2] I. Vakilinia, D. K. Tosh, and S. Sengupta, “Privacy-preserving cyberse-

curity information exchange mechanism,” in 2017 International Sympo-

sium on Performance Evaluation of Computer and Telecommunication

Systems (SPECTS), July 2017, pp. 1–7.
[3] M. M. Khalili, X. Zhang, and M. Liu, “Contract design for purchasing

private data using a biased differentially private algorithm,” in Proceed-
ings of the 14th Workshop on the Economics of Networks, Systems and

Computation. ACM, 2019, pp. 4:1–4:6.
[4] I. Vakilinia, J. Xin, M. Li, and L. Guo, “Privacy-preserving data

aggregation over incomplete data for crowdsensing,” in 2016 IEEE
Global Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.

[5] X. Zhang, C. Huang, M. Liu, A. Stefanopoulou, and T. Ersal, “Predictive
cruise control with private vehicle-to-vehicle communication for improv-
ing fuel consumption and emissions,” IEEE Communications Magazine,
2019.

[6] C. Dwork, “Differential privacy,” in Proceedings of the 33rd Interna-
tional Conference on Automata, Languages and Programming - Volume

Part II, ser. ICALP’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
1–12.

12

[7] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[8] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization over random networks,” IEEE Transactions on Automatic

Control, vol. 56, no. 6, pp. 1291–1306, 2011.
[9] S. Gade and N. H. Vaidya, “Private optimization on networks,” in 2018

Annual American Control Conference (ACC), June 2018, pp. 1402–1409.
[10] Z. Xu, G. Taylor, H. Li, M. A. Figueiredo, X. Yuan, and T. Goldstein,

“Adaptive consensus admm for distributed optimization,” in Interna-

tional Conference on Machine Learning, 2017, pp. 3841–3850.
[11] Z. Xu, M. A. Figueiredo, and T. Goldstein, “Adaptive admm with

spectral penalty parameter selection,” arXiv preprint arXiv:1605.07246,
2016.

[12] E. Wei and A. Ozdaglar, “Distributed alternating direction method of
multipliers,” in 2012 IEEE 51st Annual Conference on Decision and

Control (CDC). IEEE, 2012, pp. 5445–5450.
[13] Q. Ling and A. Ribeiro, “Decentralized linearized alternating direction

method of multipliers,” in Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp.
5447–5451.

[14] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the admm in decentralized consensus optimization.”
IEEE Trans. Signal Processing, vol. 62, no. 7, pp. 1750–1761, 2014.

[15] R. Zhang and J. Kwok, “Asynchronous distributed admm for consensus
optimization,” in International Conference on Machine Learning, 2014,
pp. 1701–1709.

[16] Q. Ling, Y. Liu, W. Shi, and Z. Tian, “Weighted admm for fast decen-
tralized network optimization,” IEEE Transactions on Signal Processing,
vol. 64, no. 22, pp. 5930–5942, 2016.

[17] M. Hale and M. Egerstedty, “Differentially private cloud-based multi-
agent optimization with constraints,” in American Control Conference

(ACC), 2015. IEEE, 2015, pp. 1235–1240.
[18] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed

optimization,” in Proceedings of the 2015 International Conference on

Distributed Computing and Networking. ACM, 2015, p. 4.
[19] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed

constrained optimization,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 50–64, 2017.

[20] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Fast and dif-
ferentially private algorithms for decentralized collaborative machine
learning,” Ph.D. dissertation, INRIA Lille, 2017.

[21] T. Zhang and Q. Zhu, “Dynamic differential privacy for admm-based
distributed classification learning,” IEEE Transactions on Information

Forensics and Security, vol. 12, no. 1, pp. 172–187, 2017.
[22] X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy and

accuracy of ADMM-based distributed algorithms,” in Proceedings of

the 35th International Conference on Machine Learning, vol. 80, 2018,
pp. 5796–5805.

[23] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “Dp-admm:
Admm-based distributed learning with differential privacy,” IEEE Trans-

actions on Information Forensics and Security, 2019.
[24] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private

empirical risk minimization,” Journal of Machine Learning Research,
vol. 12, no. Mar, pp. 1069–1109, 2011.

[25] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[26] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” Journal of Machine Learning Re-

search, vol. 11, no. May, pp. 1663–1707, 2010.
[27] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “Decentralized quadrat-

ically approximated alternating direction method of multipliers,” in
Signal and Information Processing (GlobalSIP), 2015 IEEE Global

Conference on. IEEE, 2015, pp. 795–799.
[28] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “Dlm: Decentralized linearized

alternating direction method of multipliers,” IEEE Transactions on

Signal Processing, vol. 63, no. 15, pp. 4051–4064, 2015.
[29] J. Kelner, “An algorithmists toolkit,” 2007. [Online]. Available:

http://bit.ly/2C4yRCX
[30] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,

K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. ACM, 2016, pp. 308–318.
[31] M. Bun and T. Steinke, “Concentrated differential privacy: Simplifi-

cations, extensions, and lower bounds,” in Theory of Cryptography

Conference. Springer, 2016, pp. 635–658.

[32] D. Wang, M. Ye, and J. Xu, “Differentially private empirical risk
minimization revisited: Faster and more general,” in Advances in Neural
Information Processing Systems, 2017, pp. 2722–2731.

[33] M. Lichman, “UCI machine learning repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

[34] K. Sridharan, S. Shalev-shwartz, and N. Srebro, “Fast rates for regular-
ized objectives,” in Advances in Neural Information Processing Systems

21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., 2009,
pp. 1545–1552.

http://bit.ly/2C4yRCX
http://archive.ics.uci.edu/ml

13

APPENDIX A

PROOF OF THEOREM IV.1

By convexity of O(fi, Di), (f1
i − f2

i)
T (∇O(f1

i , Di) −
∇O(f2

i , Di)) ≥ 0 holds ∀ f1
i , f

2
i . Let 〈·, ·〉F be frobenius

inner product of two matrices, there is:

〈f̂(t+ 1)− f̂∗,∇Ô(f̂(t+ 1), Dall)−∇Ô(f̂∗, Dall)〉F ≥ 0

According to (26)(30) and (27), substitute ∇Ô(f̂(t +
1), Dall)−∇Ô(f̂∗, Dall) and add an extra term W (t+1)(D+
A)D̃(t)−1(∇Ô(f̂∗, Dall) + 2Λ∗) = 0N×d, implies Eqn. (33).

To simplify the notation, for a matrix X , let ||X ||2J =
〈X, JX〉F and (X)+ be the pseudo inverse of X . Define:

G1(t+ 1) = W (t+ 1)(D +A)D̃(t)−1W (t)(D −A) ;

G2(t+ 1) = (W (t+ 1)(D −A))+

·(I +W (t+ 1)(D +A)D̃(t)−1) .

Use (27)(31) and the fact that 〈A, JB〉F = 〈JTA,B〉F ,

Eqn. (34)(35)(36) hold. Let
√
X denote the square root of a

symmetric positive semi-definite (PSD) matrix X that is also

symmetric PSD. Eqn. (37) holds, where the inequality uses

the facts that O(fi, Di) is convex for all i and that the matrix

W (t+ 1)(D +A)D̃(t)−1 is positive definite.

According to (28) in Assumption 3, define the matrix

DM = diag([M2
1 ;M

2
2 ; · · · ;M2

N]) ∈ R
N×N , it implies

||∇Ô(f̂1, Dall) − ∇Ô(f̂2, Dall)||2F ≤ 〈f̂1 − f̂2, DM (f̂1 −
f̂2)〉F . Since 〈A,B〉F ≤ 1

L ||A||2F + L
4 ||B||2F holds for any

L > 0, there is:

(37)

≤ 1

L
||W (t+ 1)(D +A)

√
D̃(t)−1(f̂(t)− f̂(t+ 1))||2F

+
L

4
||
√
D̃(t)−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))||2F

≤ 1

L
||(f̂(t)− f̂(t+ 1))||2

W (t+1)(D+A)D̃(t)−1W (t+1)(D+A)

+
Lσmax(D̃(t)−1)

4
||∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall)||2F

=
1

L
||(f̂(t)− f̂(t+ 1))||2

W (t+1)(D+A)D̃(t)−1W (t+1)(D+A)

+
L

4σmin(D̃(t))
||f̂∗ − f̂(t)||2DM

(41)

where σmax(·), σmin(·) denote the largest and smallest singular

value of a matrix respectively. Since for any µ > 1 and any

matrices C1, C2, J with the same dimensions, there is ||C1 +
C2||2J ≤ µ||C1||2J + µ

µ−1 ||C2||2J . which implies:

||f̂∗ − f̂(t)||2DM
= ||f̂∗ − f̂(t+ 1) + f̂(t+ 1)− f̂(t)||2DM

≤ µ||f̂∗ − f̂(t+ 1)||2DM
+

µ

µ− 1
||f̂(t+ 1)− f̂(t)||2DM

Plug into (41) and use (27)(31) gives Eqn. (38).

Combine (34)(35)(36)(38), (33) becomes Eqn. (39). Sup-

pose the following two conditions hold for all t under some

constants L > 0 and µ > 1:

(i) I +W (t+ 1)(D +A)D̃(t)−1

≻ Lµ

2σmin(D̃(t))
(W (t+ 1)(D −A))+DM ;

(ii) W (t+ 1)(D +A)

≻ W (t+ 1)(D +A)D̃(t)−1
(
W (t)(D −A)

+
2

L
W (t+ 1)(D +A)

)
+

Lµ

2σmin(D̃(t))(µ − 1)
DM .

Substitute G1(t + 1) and G2(t + 1), define R1(t + 1) and

R2(t + 1) as (42)(43). By conditions (i)(ii), both R1(t + 1)
and R2(t+ 1) are positive definite.

R1(t+ 1) = W (t+ 1)(D + A)−G1(t+ 1)

− 2

L
W (t+ 1)(D +A)D̃(t)−1W (t+ 1)(D + A)

− Lµ

2σmin(D̃(t))(µ− 1)
DM ≻ 0N×N ; (42)

R2(t+ 1) = − Lµ

2σmin(D̃(t))
((W (t+ 1)(D −A))+)2DM

+ G2(t+ 1) ≻ 0N×N . (43)

Eqn. (39) becomes Eqn. (40).

Since W (t+1), W (t) and D̃(t) are all diagonal matrices of

the same size, define new diagonal matrix Dnew
1 (t + 1) with

Dnew
1 (t+1)ii =

ηi(t+1)ηi(t)
2ηi(t)Vi+γ , then G1(t+1) can be rewritten

as:

G1(t+ 1) = Dnew
1 (t+ 1)(D +A)(D −A).

Consider

1

2
||f̂(t+ 1)− f̂∗||2G1(t+1) −

1

2
||f̂(t)− f̂∗||2G1(t+1)

=
1

2
||f̂(t+ 1)− f̂∗||2G1(t+1) −

1

2
||f̂(t)− f̂∗||2G1(t)

+
1

2
||f̂(t)− f̂∗||2G1(t)

− 1

2
||f̂(t)− f̂∗||2G1(t+1)

If ηi(t+1) ≥ ηi(t), ∀t, i, then Dnew
1 (t+1)ii ≥ Dnew

1 (t)ii.
Therefore, G1(t + 1) − G1(t) � 0. Let U1 = sup

i,t,k

|(fi(t) −
f∗
c)k| ∈ R be the finite upper bound over all components k,

all nodes i and all iterations t, then

1

2
||f̂(t)− f̂∗||2G1(t)

− 1

2
||f̂(t)− f̂∗||2G1(t+1)

=
1

2
Tr((f̂(t)− f̂∗)T (G1(t)−G1(t+ 1))(f̂(t)− f̂∗))

≤ 1

2
U2
1 (||1N×d||2G1(t+1) − ||1N×d||2G1(t)

)

where 1N×d is the matrix of size N by d with 1 on all the

entries.
Therefore,

1

2
||f̂(t+ 1)− f̂∗||2G1(t+1) −

1

2
||f̂(t)− f̂∗||2G1(t+1)

≤ 1

2
||f̂(t+ 1)− f̂∗||2G1(t+1) −

1

2
||f̂(t)− f̂∗||2G1(t)

+
1

2
U2
1 (||1N×d||2G1(t+1) − ||1N×d||2G1(t)

)

14

〈
f̂(t+ 1)− f̂∗, − W (t+ 1)(D +A)D̃(t)−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))

+ (I +W (t+ 1)(D +A)D̃(t)−1)(2Λ∗ − 2Λ(t+ 1))

+ W (t+ 1)(D +A)D̃(t)−1(2Λ(t+ 1)− 2Λ(t))−W (t+ 1)(D +A)(f̂(t+ 1)− f̂(t))

− W (t+ 1)(D +A)D̃−1W (t)(D −A)f̂(t)
〉
F
≥ 0 . (33)

〈
f̂(t+ 1)− f̂∗,W (t+ 1)(D +A)D̃(t)−1(2Λ(t+ 1)− 2Λ(t))−W (t+ 1)(D +A)D̃(t)−1W (t)(D −A)f̂(t)

〉
F

=
〈
f̂(t+ 1)− f̂∗,W (t+ 1)(D +A)D̃(t)−1W (t)(D −A)(f̂(t+ 1)− f̂(t))

〉
F

+
〈
f̂(t+ 1)− f̂∗,W (t+ 1)(D +A)D̃(t)−1(W (t+ 1)−W (t))(D −A)(f̂(t+ 1)− f∗)

〉
F

=
1

2
||f̂(t+ 1)− f̂∗||2G1(t+1) +

1

2
||f̂(t+ 1)− f̂(t)||2G1(t+1) −

1

2
||f̂(t)− f̂∗||2G1(t+1)

+
〈
f̂(t+ 1)− f̂∗,W (t+ 1)(D +A)D̃(t)−1(W (t+ 1)−W (t))(D −A)(f̂(t+ 1)− f∗)

〉
F

; (34)
〈
f̂(t+ 1)− f̂∗, (I +W (t+ 1)(D +A)D̃(t)−1)(2Λ∗ − 2Λ(t+ 1))

〉
F

=
〈
(W (t+ 1)(D −A))+(2Λ(t+ 1)− 2Λ(t)), (I +W (t+ 1)(D + A)D̃(t)−1)(2Λ∗ − 2Λ(t+ 1))

〉
F

=
1

2
||2Λ∗ − 2Λ(t)||2G2(t+1) −

1

2
||2Λ∗ − 2Λ(t+ 1)||2G2(t+1) −

1

2
||2Λ(t+ 1)− 2Λ(t)||2G2(t+1) ; (35)

〈f̂(t+ 1)− f̂∗,−W (t+ 1)(D +A)(f̂(t+ 1)− f̂(t))〉F
=

1

2
||f̂(t)− f̂∗||2W (t+1)(D+A) −

1

2
||f̂(t+ 1)− f̂∗||2W (t+1)(D+A) −

1

2
||f̂(t)− f̂(t+ 1)||2W (t+1)(D+A) . (36)

〈f̂(t+ 1)− f̂∗,−W (t+ 1)(D +A)D̃(t)−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))〉F
= 〈f̂(t+ 1)− f̂(t) + f̂(t)− f̂∗,−W (t+ 1)(D +A)D̃(t)−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))〉F
≤ 〈f̂(t)− f̂(t+ 1),W (t+ 1)(D +A)D̃(t)−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))〉F
= 〈W (t+ 1)(D +A)

√
D̃(t)−1(f̂(t)− f̂(t+ 1)),

√
D̃(t)−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))〉F . (37)

(37) ≤ 1

L
||(f̂(t) − f̂(t+ 1))||2

W (t+1)(D+A)D̃(t)−1W (t+1)(D+A)

+
L

4σmin(D̃(t))
(µ||f̂∗ − f̂(t+ 1)||2DM

+
µ

µ− 1
||f̂(t+ 1)− f̂(t)||2DM

)

=
1

2
||(f̂(t)− f̂(t+ 1))||22

L
W (t+1)(D+A)D̃(t)−1W (t+1)(D+A)+ Lµ

2σmin(D̃(t))(µ−1)
DM

+
1

2
||2Λ(t+ 1)− 2Λ(t)||2 Lµ

2σmin(D̃(t))
((W (t+1)(D−A))+)2DM

(38)

1

2
||f̂(t)− f̂(t+ 1)||2W (t+1)(D+A)−G1(t+1) −

1

2
||(f̂(t)− f̂(t+ 1))||22

L
W (t+1)(D+A)D̃(t)−1W (t+1)(D+A)+ Lµ

2σmin(D̃(t))(µ−1)
DM

+
1

2
||2Λ(t+ 1)− 2Λ(t)||2G2(t+1) −

1

2
||2Λ(t+ 1)− 2Λ(t)||2 Lµ

2σmin(D̃(t))
((W (t+1)(D−A))+)2DM

≤ 1

2
||f̂(t+ 1)− f̂∗||2G1(t+1) −

1

2
||f̂(t)− f̂∗||2G1(t+1) +

1

2
||2Λ∗ − 2Λ(t)||2G2(t+1)

− 1

2
||2Λ∗ − 2Λ(t+ 1)||2G2(t+1) +

1

2
||f̂(t)− f̂∗||2W (t+1)(D+A) −

1

2
||f̂(t+ 1)− f̂∗||2W (t+1)(D+A)

+
〈
f̂(t+ 1)− f̂∗,W (t+ 1)(D +A)D̃(t)−1(W (t+ 1)−W (t))(D −A)(f̂ (t+ 1)− f∗)

〉
F

(39)

1

2
||f̂(t)− f̂(t+ 1)||2R1(t+1) +

1

2
||2Λ(t+ 1)− 2Λ(t)||2R2(t+1) ≤

1

2
||f̂(t+ 1)− f̂∗||2G1(t+1) −

1

2
||f̂(t)− f̂∗||2G1(t+1)

+
1

2
||2Λ∗ − 2Λ(t)||2G2(t+1) −

1

2
||2Λ∗ − 2Λ(t+ 1)||2G2(t+1) +

1

2
||f̂(t)− f̂∗||2W (t+1)(D+A) −

1

2
||f̂(t+ 1)− f̂∗||2W (t+1)(D+A)

+
〈
f̂(t+ 1)− f̂∗,W (t+ 1)(D +A)D̃(t)−1(W (t+ 1)−W (t))(D −A)(f̂ (t+ 1)− f∗)

〉
F

(40)

15

Similarly, (W (t+1)−W (t))(D+A) � 0 holds if ηi(t+1) ≥
ηi(t), ∀t, i, and the following holds.

1

2
||f̂(t)− f̂∗||2W (t+1)(D+A) −

1

2
||f̂(t+ 1)− f̂∗||2W (t+1)(D+A)

≤ 1

2
||f̂(t)− f̂∗||2W (t)(D+A) −

1

2
||f̂(t+ 1)− f̂∗||2W (t+1)(D+A)

+
1

2
U2
1 (||1N×d||2W (t+1)(D+A) − ||1N×d||2W (t)(D+A))

Similarly, if ηi(t+1) ≥ ηi(t), ∀t, i, G2(t)−G2(t+1) � 0.

Let U2 = sup
i,t,k

|(λi(t) − λ∗
i)k| ∈ R be the finite upper bound

over all components k, all nodes i and all iterations t, there

is:

1

2
||2Λ∗ − 2Λ(t)||2G2(t+1) −

1

2
||2Λ∗ − 2Λ(t+ 1)||2G2(t+1)

≤ 1

2
||2Λ∗ − 2Λ(t)||2G2(t)

− 1

2
||2Λ∗ − 2Λ(t+ 1)||2G2(t+1)

+
1

2
U2
2 (||1N×d||2G2(t)

− ||1N×d||2G2(t+1))

If ηi(t + 1) ≥ ηi(t), ∀t, i, let σmax = max
t

σmax(W (t +

1)(D +A)D̃(t)−1(D −A)), then there is:
〈
f̂(t+ 1)− f̂∗,W (t+ 1)(D +A)D̃(t)−1

·(W (t+ 1)−W (t))(D −A)(f̂ (t+ 1)− f∗)
〉
F

≤ σmaxU
2
1 (||1N×d||2W (t+1) − ||1N×d||2W (t))

Sum up (40) over t from 0 to +∞ leads to:

∞∑

t=0

{||f̂(t)− f̂(t+ 1)||2R1(t+1)

+||2Λ(t+ 1)− 2Λ(t)||2R2(t+1)}
≤ ||f̂(0)− f̂∗||2W (0)(D+A) − ||f̂(+∞)− f̂∗||2W (+∞)(D+A)

+ ||f̂(+∞)− f̂∗||2G1(+∞) − ||f̂(0)− f̂∗||2G1(0)

+ ||2Λ∗ − 2Λ(0)||2G2(0)
− ||2Λ∗ − 2Λ(+∞)||2G2(+∞)

+ U2
1 (||1N×d||2G1(+∞) − ||1N×d||2G1(0)

)

+ U2
1 (||1N×d||2W (+∞)(D+A) − ||1N×d||2W (0)(D+A))

+ U2
2 (||1N×d||2G2(0)

− ||1N×d||2G2(+∞))

+ 2σmaxU
2
1 (||1N×d||2W (+∞) − ||1N×d||2W (0)) (44)

The RHS of (44) is finite, implies that limt→∞{||f̂(t) −
f̂(t+ 1)||2R1(t+1) + ||2Λ(t+ 1)− 2Λ(t)||2R2(t+1)} = 0. Since

R1(t + 1), R2(t + 1) are not unique, by (42)(43), it requires

limt→∞ ||f̂(t) − f̂(t + 1)||2R1(t+1) = 0 and limt→∞ ||2Λ(t +
1)−2Λ(t)||2R2(t+1) = 0 should hold for all possible R1(t+1),

R2(t+ 1). Therefore, limt→∞(f̂(t) − f̂(t+ 1)) = 0N×d and

limt→∞(2Λ(t+1)−2Λ(t)) = 0N×d should hold. (f̂(t),Λ(t))
converges to the stationary point (f̂ s,Λs). Now show that the

stationary point (f̂ s,Λs) is the optimal point (f̂∗,Λ∗).
Take the limit of both sides of (26)(27) yield:

(I +W (t+ 1)(D +A)D̃(t)−1)

·(∇Ô(f̂ s, Dall) + 2Λs) = 0N×d ; (45)

(D −A)f̂ s = 0N×d . (46)

Since I +W (t+ 1)(D+A)D̃(t)−1 ≻ 0N×N , to satisfy (45),

∇Ô(f̂ s, Dall) + 2Λs = 0N×d must hold.

Compare with (30)(31) in Lemma V.1 and observe that

(f̂ s,Λs) satisfies the optimality condition and is thus the

optimal point. Therefore, (f̂(t),Λ(t)) converges to (f̂∗,Λ∗).

APPENDIX B

PROOF OF LEMMA V.1

Consider the private MR-ADMM up to 2k-th iteration. In

(2k − 1)-th iteration, the primal variable is updated via (18),

By KKT condition:

∇O(fi(2k − 1), Di) + ǫi(2k − 1) = −2λi(2k − 2)

−ηi(2k − 1)
∑

j∈Vi

(2fi(2k − 1)− fi(2k − 2)− fj(2k − 2)) (47)

Given {fi(t)}Ni=1 for t ≤ 2k − 2, {λi(2k − 2)}Ni=1 are

also given. RHS of (47) can be calculated completely after

releasing {fi(k− 1)}Ni=1, i.e., the information of ∇O(fi(2k−
1), Di) + ǫi(2k − 1) is completely released during (2k − 1)-
th iteration. Suppose the private MR-ADMM satisfies β2k−1-

differential privacy during (2k− 1) iterations, then in (2k)-th
iterations, by (19):

fi(2k) = fi(2k − 1)− 1

2ηVi + γ
{∇O(fi(2k − 1), Di)

+ǫi(2k − 1) + 2λi(2k − 1)

+ηi(2k − 1)
∑

j∈Vi

(fi(2k − 1)− fj(2k − 1))}

which is a deterministic mapping taking the outputs from

(2k−1)-th iteration as input. Because the differential privacy is

immune to post-processing [25], releasing {fi(2k)}Ni=1 doesn’t

increase the privacy loss, i.e., the total privacy loss up to (2k)-
th iteration can still be bounded by β2k−1.

APPENDIX C

PROOF OF THEOREM V.1

Use the uppercase letters X and lowercase letters x to

denote random variables and the corresponding realizations,

and use FX(·) to denote its probability distribution.

For two neighboring datasets Dall and D̂all of the network,

by Lemma V.1, the total privacy loss is only contributed by

odd iterations. Thus, the ratio of joint probabilities (privacy

loss) is given by:

FF (0:2K)({f(r)}2r=0K|Dall)

FF (0:2K)({f(r)}2r=0K|D̂all)
=

FF (0)(f(0)|Dall)

FF (0)(f(0)|D̂all)

·
K∏

k=1

FF (2k−1)(f(2k − 1)|{f(r)}2k−2
r=0 , Dall)

FF (2k−1)(f(2k − 1)|{f(r)}2t−2
r=0 , D̂all)

(48)

Since fi(0) is randomly selected for all i, which is independent

of dataset, there is FF (0)(f(0)|Dall) = FF (0)(f(0)|D̂all).
First only consider (2k − 1)-th iteration, since the primal

variable is updated according to (18), by KKT optimality

condition:

ǫi(2k − 1) = −∇O(fi(2k − 1), Di)− 2λi(2k − 2)

−ηi(2k − 1)
∑

j∈Vi

(2fi(2k − 1)− fi(2k − 2)− fj(2k − 2)) (49)

16

Given {f(r)}2k−2
r=0 , Fi(2k−1) and Ei(2k−1) will be bijective

∀i, there is:

FF (2k−1)(f(2k − 1)|{f(r)}2k−2
r=0 , Dall)

FF (2k−1)(f(2k − 1)|{f(r)}2k−2
r=0 , D̂all)

=

N∏

v=1

FFv(2k−1)(fv(2k − 1)|{fv(r)}2k−2
r=0 , Dv)

FFv(2k−1)(fv(2k − 1)|{fv(r)}2k−2
r=0 , D̂v)

=
FFi(2k−1)(fi(2k − 1)|{fi(r)}2k−2

r=0 , Di)

FFi(2k−1)(fi(2k − 1)|{fi(r)}2k−2
r=0 , D̂i)

(50)

Since two neighboring datasets Dall and D̂all only have at

most one data point that is different, the second equality holds

is because of the fact that this different data point could only

be possessed by one node, say node i. Then there is Dj = D̂j

for j 6= i.
Given {f(r)}2k−2

r=0 , let gk(·, Di) : R
d → R

d denote

the one-to-one mapping from Ei(2k − 1) to Fi(2k −
1) using dataset Di. By Jacobian transformation, there is

FFi(2k−1)(fi(2k−1)|Di) = FEi(2k−1)(g
−1
k (fi(2k−1), Di))·

| det(J(g−1
k (fi(2k− 1), Di)))| , where g−1

k (fi(2k− 1), Di) is

the mapping from Fi(2k − 1) to Ei(2k − 1) using data Di

as shown in (49) and J(g−1
k (fi(2k − 1), Di)) is the Jacobian

matrix of it. Then (48) yields:

FF (0:2K)({f(r)}2Kr=0|Dall)

FF (0:2K)({f(r)}2Kr=0|D̂all)

=

K∏

k=1

FEi(2k−1)(g
−1
k (fi(2k − 1), Di))

FEi(2k−1)(g
−1
k (fi(2k − 1), D̂i))

·
K∏

k=1

| det(J(g−1
k (fi(2k − 1), Di)))|

| det(J(g−1
k (fi(2k − 1), D̂i)))|

(51)

Consider the first part, Ei(2k − 1) ∼ exp{−αi(k)||ǫ||}, let

ǫ̂i(2k−1) = g−1
k (fi(2k−1), D̂i) and ǫi(2k−1) = g−1

k (fi(2k−
1), Di)

K∏

k=1

FEi(2k−1)(g
−1
k (fi(2k − 1), Di))

FEi(2k−1)(g
−1
k (fi(2k − 1), D̂i))

=

K∏

k=1

exp(αi(k)(||ǫ̂i(2k − 1)|| − ||ǫi(2k − 1)||))

≤ exp(
K∑

k=1

αi(k)||ǫ̂i(2k − 1)− ǫi(2k − 1)||) (52)

Without loss of generality, let Di and D̂i be only different

in the first data point, say (x1
i , y

1
i) and (x̂1

i , ŷ
1
i) respectively.

By (49), Assumptions 4 and the facts that ||xn
i ||2 ≤ 1 (pre-

normalization), yni ∈ {+1,−1}.

||ǫ̂i(2k − 1)− ǫi(2k − 1)||
= ||∇O(fi(2k − 1), D̂i)−∇O(fi(2k − 1), Di)||

≤ 2C

Bi
(53)

(52) can be bounded:

K∏

k=1

FEi(2k−1)(g
−1
k (fi(2k − 1), Di))

FEi(2k−1)(g
−1
k (fi(2k − 1), D̂i))

≤ exp(

K∑

k=1

2Cαi(k)

Bi
)

(54)

Consider the second part, the Jacobian matrix

J(g−1
k (fi(2k − 1), Di)) is:

J(g−1
k (fi(2k − 1), Di))

= − C

Bi

Bi∑

n=1

L
′′(yni fi(2k − 1)Txn

i)x
n
i (x

n
i)

T

− ρ

N
∇2R(fi(2k − 1))− 2ηi(2k − 1)ViId

Define

G(k) =
C

Bi
(L ′′(ŷ1i fi(2k − 1)T x̂1

i)x̂
1
i (x̂

1
i)

T

−L
′′(y1i fi(2k − 1)Tx1

i)x
1
i (x

1
i)

T) ;

H(k) = −J(g−1
k (fi(2k − 1), Di)) .

There is:

| det(J(g−1
k (fi(2k − 1), Di)))|

| det(J(g−1
k (fi(2k − 1), D̂i)))|

=
| det(H(k))|

| det(H(k) +G(k))| =
1

| det(I +H(k)−1G(k))|
=

1

|∏r
j=1(1 + λj(H(k)−1G(k)))| (55)

where λj(H(k)−1G(k)) denotes the j-th largest eigenvalue

of H(k)−1G(k). Since G(k) has rank at most 2, H(k)−1G(k)
also has rank at most 2. By Assumptions 4 and 5, the

eigenvalue of H(k) and G(k) satisfy

λj(H(k)) ≥ ρ

N
+ 2ηi(2k − 1)Vi > 0 ;

−Cc1
Bi

≤ λj(G(k)) ≤ Cc1
Bi

.

Implies

− c1
Bi

C (ρ
N + 2ηi(2k − 1)Vi)

≤ λj(H(k)−1G(k))

≤ c1
Bi

C (ρ
N + 2ηi(2k − 1)Vi)

.

Since 2c1 <
Bi

C (ρ
N +2ηi(1)Vi) and ηi(2k−1) ≤ ηi(2k+1)

for all k, 2c1 < Bi

C (ρ
N + 2ηi(2k − 1)Vi) holds. It implies the

following,

−1

2
≤ λj(H(k)−1G(k)) ≤ 1

2
.

Since λmin(H(k)−1G(k)) > −1, there is

1

|1 + λmax(H(k)−1G(k))|2 ≤ 1

|det(I +H(k)−1G(k))|
≤ 1

|1 + λmin(H(k)−1G(k))|2 .

Therefore,

K∏

k=1

| det(J(g−1
k (fi(2k − 1), Di)))|

| det(J(g−1
k (fi(2k − 1), D̂i)))|

≤
K∏

k=1

1

|1− c1
Bi
C

(ρ
N

+2ηi(2k−1)Vi)
|2

= exp(−
K∑

k=1

2 ln(1 − c1
Bi

C (ρ
N + 2ηi(2k − 1)Vi)

)) .(56)

17

Since for any real number x ∈ [0, 0.5], − ln(1−x) < 1.4x.

(56) can be bounded with a simper expression:

K∏

k=1

| det(J(g−1
k (fi(2k − 1), Di)))|

| det(J(g−1
k (fi(2k − 1), D̂i)))|

≤ exp(

K∑

k=1

2.8c1
Bi

C (ρ
N + 2ηi(2k − 1)Vi)

) . (57)

Combine (54)(57), (51) can be bounded:

FF (0:2K)({f(r)}2Kr=0|Dall)

FF (0:2K)({f(r)}2Kr=0|D̂all)

≤ exp(

K∑

k=1

2C

Bi
(

1.4c1
(ρ
N + 2ηi(2k − 1)Vi)

+ αi(k))) .(58)

Therefore, the total privacy loss during T iterations can be

bounded by any β:

β ≥ max
i∈N

{
K∑

k=1

2C

Bi
(

1.4c1
(ρ
N + 2ηi(2k − 1)Vi)

+ αi(k))} .

APPENDIX D

PROOF OF THEOREM VI.1

Let Õ(f) = CL(f)+ ρ
2N ||f ||2 and f̃i = argminf Õ(f). Let

fopt
i = argminfO(f,Di) be node i’s classifier trained with its

own data.

L(f∗
c) = L(fref) + (

Õ(f∗
c)

C
− Õ(f̃i)

C
)

+ (
ρ

2NC
||fref ||2 −

ρ

2NC
||f∗

c ||2)

+ (
Õ(f̃i)

C
− Õ(fref)

C
)

By [34], Õ(f∗
c)−Õ(f̃i) ≤ (1+a)(O(f∗

c , Di)−O(fopt
i , Di))+

O(C
2N log(1/δ)

ρBi
) holds ∀a > 0 with probability 1 − δ, where

O is big-O notation.

Since f∗
c is the centralized classifier trained with samples

from all nodes, we assume the difference of empirical loss

under two classifiers f∗
c and fopt

i is bounded by ν > 0, i.e.,

O(f∗
c , Di) − O(fopt

i , Di) ≤ ρ
2N (||f∗

c ||2 − ||fopt
i ||2) + Cν.

Moreover, Õ(f̃i) ≤ Õ(fref).

L(f∗
c) ≤ L(fref) +O(

CN log(1/δ)

ρBi
)

+ (1 + a)(
ρ

2NC
||f∗

c ||2 −
ρ

2NC
||fopt

i ||2 + ν)

+ (
ρ

2NC
||fref ||2 −

ρ

2NC
||f∗

c ||2)

We assume ν is relatively small as compared to other terms.

If choosing a > 0 to be a sufficient small number such that

a||f∗
c ||2 − (1 + a)||fopt

i ||2 ≤ 0 and choosing ρ such that
ρ

2NC ||fref ||2 ≤ τ−∆i(k)
2 , e.g., ρ ≤ NC(τ−∆i(k))

||fref ||2 , and if Bi

also satisfies O(CN log(1/δ)
ρBi

) ≤ τ−∆i(k)
2 , i.e.,

Bi ≥ wmax
k

{CN log(1/δ)

ρ(τ −∆i(k))
} ≥ wmax

k
{ ||fref ||

2 log(1/δ)

(τ −∆i(k))2
}

for some constant w, then the following holds with probability

1− δ.

L(f∗
c) ≤ L(fref) + τ −∆i(k)

Since L(fnon
i (2k − 1)) ≤ L(f∗

c) + ∆i(k), it implies that

L(fnon
i (2k− 1)) ≤ L(fref) + τ holds with probability 1− δ.

APPENDIX E

PROOF OF THEOREM VI.2

Let Õ(f) = CL(f) + ρ
2N ||f ||2 and f̃i = argminf Õ(f).

Let fopt
i = argminfO(f,Di) be node i’s classifier trained

with its own data. Let fprivOpt
i = argminfO

priv(f,Di; ǫ) =

O(f,Di) + ǫT f and Õpriv(f ; ǫ) = Õ(f) + ǫT f .

L(f∗
new) = L(fref) + (

Õ(f∗
new)

C
− Õ(fprivOpt

i)

C
)

+ (
Õ(fprivOpt

i)

C
− Õ(f̃i)

C
)

+ (
ρ

2NC
||fref ||2 −

ρ

2NC
||f∗

new||2)

+ (
Õ(f̃i)

C
− Õ(fref)

C
)

For the new optimization problem, f∗
new is centralized

classifier trained with samples from all nodes while fprivOpt
i

is the classifier trained with samples from node i. We assume

the difference of empirical loss under two classifiers f∗
new

and fprivOpt
i can be bounded by ν > 0, i.e., Õ(f∗

new) −
Õ(fprivOpt

i) ≤ ρ
2N (||f∗

new ||2 − ||fprivOpt
i ||2) + Cν.

By [34], Õ(fprivOpt
i)− Õ(f̃i) ≤ (1+a)(O(fprivOpt

i , Di)−
O(fopt

i , Di))+O(C
2N log(1/δ)

ρBi
) holds ∀a > 0 with probability

1 − δ. By Lemma E.1, O(fprivOpt
i , Di) − O(fopt

i , Di) ≤
Nd2

ρ(αi(k))2
(log(d/δ))2 holds with probability 1 − δ. Therefore,

Õ(fprivOpt
i) − Õ(f̃i) ≤ (1 + a)(Nd2

ρ(αi(k))2
(log(d/δ))2) +

O(C
2N log(1/δ)

ρBi
) holds ∀a > 0 with probability 1− 2δ.

Since f̃i = argminf Õ(f), implying Õ(f̃i) ≤ Õ(fref). The

following holds ∀a > 0 with probability 1− 2δ,

L(f∗
new) ≤ L(fref) + ν +O(

CN log(1/δ)

ρBi
)

+ (1 + a)
Nd2

Cρ(αi(k))2
(log(d/δ))2

+ (
ρ

2NC
||fref ||2 −

ρ

2NC
||fprivOpt

i ||2)

We assume ν is relatively small as compared to other terms.

If choosing ρ such that ρ
2NC ||fref ||2 ≤ 1

2 (τ − ∆new
i (k)),

i.e., ρ ≤ NC(τ−∆new
i (k))

||fref ||2 , and if Bi also satisfies ((1 +

a) Nd2

C(αi(k))2
(log(d/δ))2 + O(CN log(1/δ)

Bi
)) ≤ ρ(τ−∆new

i (k))
2 ,

i.e., Bi ≥ w CN log(1/δ)
ρ(τ−∆new

i
(k))

2 −(1+a) Nd2

C(αi(k))2
(log(d/δ))2

for some

a > 0 and constant w. Then L(f∗
new) ≤ L(fref)+τ−∆new

i (k)

holds with probability 1−2δ. Plug in ρ =
NC(τ−∆new

i (k))
||fref ||2 and

re-organize gives:

Bi ≥ wmax
k

{ CN log(1/δ)
NC(τ−∆new

i (k))2

2||fref ||2 − (1 + a) Nd2

C(αi(k))2
(log(d/δ))2

}

18

Since L(fnew
i (2k−1)) ≤ L(f∗

new)+∆new
i (k), it implies that

L(fnew
i (2k−1)) ≤ L(fref)+τ holds with probability 1−2δ.

Lemma E.1. Let fprivOpt
i = argminfO(f,Di) + ǫT f and

fopt
i = argminfO(f,Di) be outputs at iteration 2k − 1, then

O(fprivOpt
i , Di) − O(fopt

i , Di) ≤ Nd2

ρ(αi(k))2
(log(d/δ))2 holds

with probability 1− δ.

Proof. There is O(fprivOpt
i , Di) ≤ O(fopt

i , Di) + ǫT (fopt
i −

fprivOpt
i). By Lemma E.2, since O(f,Di) and O(f,Di)+ǫT f

are ρ
N -strongly convex, ||fopt

i − fprivOpt
i || ≤ N

ρ ||ǫ|| holds. By

Lemma E.3, with probability 1 − δ, ||ǫ|| ≤ d
αi(k)

log(d/δ).

Therefore, O(fprivOpt
i , Di) − O(fopt

i , Di) ≤ ||ǫ||||fopt
i −

fprivOpt
i || ≤ Nd2

ρ(αi(k))2
(log(d/δ))2 holds with probability

1− δ.

Lemma E.2. [24] Let G(f), g(f) be two vector-valued

functions, which are continuous and differentiable at all points.

Moreover, let G(f) and G(f) + g(f) be λ-strongly convex.

If f1 = argminfG(f) and f2 = argminfG(f) + g(f), then

||f1 − f2|| ≤ 1
λ maxf ||∇g(f)||.

Lemma E.3. [24] Let X be a random variable drawn from

distribution Γ(k, θ), where k is an integer, then Pr(X <
kθ log(k/δ)) ≥ 1− δ.

	I Introduction
	II Preliminaries
	II-A Problem Formulation
	II-B Differential Privacy Dwork2006
	II-C Conventional ADMM
	II-D Private ADMM zhang2017 & Private M-ADMM xueru

	III Algorithms
	III-A Recycled ADMM (R-ADMM)
	III-A1 Main idea
	III-A2 Making information recyclable

	III-B Modified R-ADMM (MR-ADMM)
	III-B1 Making a node's private information
	III-B2 Relationship between R-ADMM and MR-ADMM
	III-B3 Role of i(2k-1) in stabilizing the algorithm

	III-C Private MR-ADMM

	IV Convergence of non-private MR-ADMM
	V Privacy Analysis
	VI Sample complexity analysis
	VI-A Non-private MR-ADMM
	VI-B private MR-ADMM

	VII Discussion
	VII-A Improving privacy-accuracy tradeoff
	VII-B Other perturbation methods and privacy analysis tools
	VII-C Privacy analysis for a broader class of optimizations

	VIII Numerical Experiments
	VIII-A Convergence of non-private R-ADMM & MR-ADMM
	VIII-B Private R-ADMM & MR-ADMM
	VIII-B1 The effect of , , i(2k-1)
	VIII-B2 Performance comparison among different algorithms

	IX Conclusion
	References
	Appendix A: Proof of Theorem ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Theorem ??
	Appendix D: Proof of Theorem ??
	Appendix E: proof of Theorem ??

