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ABSTRACT

Machine learning (ML) techniques have seen significant advances over the last decade and are
playing an increasingly critical role in people’s lives. While their potential societal benefits are
enormous, they can also inflict great harm if not developed or used with care. In this thesis, we
focus on two critical ethical issues in ML systems, the violation of privacy and fairness, and explore
mitigating approaches in various scenarios.

On the privacy front, when ML systems are developed with private data from individuals, it
is critical to prevent privacy violation. Differential privacy (DP), a widely used notion of privacy,
ensures that no one by observing the computational outcome can infer a particular individual’s data
with high confidence. However, DP is typically achieved by randomizing algorithms (e.g., adding
noise), which inevitably leads to a trade-off between individual privacy and outcome accuracy.
This trade-off can be difficult to balance, especially in settings where the same or correlated data
is repeatedly used/exposed during the computation. In the first part of the thesis, we illustrate two
key ideas that can be used to balance an algorithm’s privacy-accuracy tradeoff: (1) the reuse of
intermediate computational results to reduce information leakage; and (2) improving algorithmic
robustness to accommodate more randomness. We introduce a number of randomized, privacy-
preserving algorithms that leverage these ideas in various contexts such as distributed optimization
and sequential computation. It is shown that our algorithms can significantly improve the privacy-
accuracy tradeoff over existing solutions.

On the fairness front, ML systems trained with real-world data can inherit biases and exhibit
discrimination against already-disadvantaged or marginalized social groups. Recent works have
proposed many fairness notions to measure and remedy such biases. However, their effectiveness
is mostly studied in a static framework without accounting for the interactions between individuals
and ML systems. Since individuals inevitably react to the algorithmic decisions they are subjected
to, understanding the downstream impacts of ML decisions is critical to ensure that these decisions

xiii



are socially responsible. In the second part of the thesis, we present our research on evaluating
the long-term impacts of (fair) ML decisions. Specifically, we establish a number of theoretically
rigorous frameworks to model the interactions and feedback between ML systems and individu-
als, and conduct equilibrium analysis to evaluate the impact they each have on the other. We will
illustrate how ML decisions and individual behavior evolve in such a system, and how impos-
ing common fairness criteria intended to promote fairness may nevertheless lead to undesirable
pernicious effects. Aided with such understanding, mitigation approaches are also discussed.
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CHAPTER 1

Introduction

The development of Machine learning (ML) techniques has revolutionized people’s daily lives
and enabled breakthroughs in various scientific fields such as robotics, computer vision, natural
language processing, etc. Despite the enormous societal benefits, ML techniques have also caused
ethical concerns when used to make consequential decisions about humans. It has become evident
that in many such domains (e.g., lending, hiring, criminal justice, healthcare, etc.), ML techniques
can behave in unintended and potentially harmful ways: (1) they may expose individuals who have
contributed their data to risks; (2) they may result in adverse outcomes for people who are affected
by decisions made by ML algorithms. In this thesis, we will focus on two critical issues that arise
from these two types of issues: (i) privacy violation; and (ii) discrimination.

Data
ML Decision

ML Model

Privacy issues

Unfairness issues

Figure 1.1: Misuse of ML techniques
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Privacy violation. When ML algorithms are developed using individuals’ data such as medical
records, financial data, online activities, etc., their privacy is at high risk of being compromised,
resulting in potentially significant harm and monetary losses to both data collectors and data owners.
For example, the Federal Trade Commission (FTC) in the U.S. has levied a $5 billion penalty against
Facebook and $170 million penalty against Google for violating consumer privacy in 2019 [2].
During 2019, FTC’s Consumer Sentinel Network has received nearly $1.7 million fraud reports
and consumers have lost more than $1.9 billion to frauds in total [3]. In addition to losses, privacy
concerns have become a major source of distrust and a major obstacle to people sharing their
personal data with data analysts, resulting in a lack of sufficient data to develop robust and accurate
computational models. Therefore, understanding how privacy violations happen and developing
solutions to address this issue are very important.

There are many reasons for privacy violations. One of the most direct causes is excessive
data collection and sharing. In this era of big data, user/consumer data has been over-collected
by many online platforms, mobile apps, and third-party trackers. A recent study [15] shows that
among 959,000 Android apps, nearly 90% of them were set up to transfer collected personal
information back to Google. There is a lack of transparency in data collection, usage, and sharing.
The emergence of data regulation such as the European Union’s General Data Protection Regulation
(GDPR) and California Consumer Privacy Act (CCPA) aims to impose constraints on data collection
and transfer, but they are likely insufficient. Even without access to data, personal information may
be inferred from outputs of ML models. A prime example is the model inversion attacks studied
in [46], where a facial recognition API is trained based on a set of face images. An attacker has
no access to the model parameters of the API but can send images to the API. For each image
the attacker sends, it receives a vector of confidence scores along with the name of the face as
recognized from the input image. [46] shows that the attacker, using the outputs from sending a
set of randomly generated face images, can reconstruct the facial appearance of a person who has
contributed to the training dataset.

Some studies address privacy and security issues from game theoretical perspectives [84–87,89–
94]. Another effective approach to preventing privacy violation is to process sensitive data with
privacy-preserving algorithms. The first step is defining individual privacy and understanding what
it means to protect individual privacy in data analysis. One class of privacy notions, including
k-anonymity [128], l-diversity [107], t-closeness [98], is based on anonymization, where the idea is
to de-identify the dataset by removing personal identifiable information (e.g., name, SSN, gender)
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and release the anonymous version of the dataset. However, these anonymization-based approaches
are not resilient to “linkage” attacks. One notable example is the Netflix prize competition, where
the company published its user-movie rating dataset with all users’ names removed. From this
anonymous dataset, researchers can design new movie recommendation systems. However, this
anonymous dataset turned out to be far from private: most of the users in the dataset can be de-
anonymized by cross-linking the film ratings on the public Internet Movie Database (IMDb) [115].
This example also shows the need for a mathematically rigorous notion of privacy that is suitable
for complex data analysis and resilient to any attackers regardless of their background knowledge.
Differential privacy (DP) [35], as a widely used notion of privacy satisfying these requirements,
ensures that no one by observing the computational outcome can infer with substantial higher
confidence than random guessing whether a particular individual’s data was included in the data
analysis or not. However, DP guarantee is typically achieved by randomizing algorithms (e.g.,
adding noise), which inevitably leads to the tradeoff between individual privacy and the accuracy
of outcomes. This tradeoff can be difficult to balance, especially for settings where the same or
correlated data is used multiple times over the computational process. Because individual privacy
leakage accumulates substantially (as more information about the same data is revealed), controlling
total privacy leakage with sufficient accuracy becomes particularly challenging and important when
designing the private algorithms.

Discrimination. Over the last decade, an increasing number of ML algorithms have been devel-
oped to help make high-stakes decisions about real people; these include domains such as hiring
(e.g., HireVue, Gild, Entelo), lending (e.g., Wonga), criminal justice (e.g., COMPAS, PredPol) to
name a few. On the one hand, these ML models can find hidden patterns and intrinsic structures
in the input data with high accuracy. On the other hand, these models can inherit pre-existing
bias in the dataset and exhibit discrimination against protected population groups. It has been
well-documented that ML algorithms can exhibit or even exacerbate such discrimination in many
real-world applications. For example, a study shows that speech recognition products such as Ama-
zon’s Alexa and Google Home can have accent bias, with Chinese-accented and Spanish-accented
English hardest to understand [58]. The COMPAS recidivism prediction tool, used by courts in the
US in parole decisions, has been shown to have a substantially higher false positive rate for African
Americans compared to the general population [28]. Amazon had been using automated software
since 2014 to assess applicants’ resumes, which were found to be biased against women [30].
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There are various potential causes for such discrimination. It may have been introduced when
data is collected. For instance, if data sampled from a minority group is much smaller in size than
that from a majority group, then the model could be more in favor of the majority group due to this
representation disparity (e.g., more than a third of data in ImageNet and Open Images, two datasets
widely used in machine learning research communities, is US-based [123]). Another example is
when the data collection decision itself reflects bias, which then impacts the collected data (e.g., if
more police officers are dispatched to places believed to have higher crime rate to begin with, then
crimes are more likely to be recorded in these places [38]). Even when the data collection process is
unbiased, bias may already exist in the data. Historical prejudice and stereotypes can be preserved
in data (e.g., the relationship between “man” and “computer programmers” were found to be similar
to that between “woman” and “homemaker” [17]).

One commonly used approach to alleviating the discrimination issue is to enforce certain fairness
constraints upon the training process. Depending on the applications, a variety of fairness constraints
have been proposed and can be roughly classified into two families: (1) group fairness aims to
achieve a certain balance in group-level: the whole population is partitioned into a small number of
protected groups distinguished based on some sensitive attributes (e.g., race, gender), and it requires
certain statistical measure (e.g., positive rates, true positive rates, etc.) to be approximately equalized
across different protected groups; (2) individual fairness is in pursuit of equity in individual level: it
requires that similar individuals be treated similarly.

While the effectiveness of these fairness constraints has been shown in various domains, most
of the studies are done under a static framework where only the immediate impact of the constraints
is assessed but not its long-term consequences. Because ML models are deployed in a dynamic
environment, people may change their behaviors in response to the perceived decisions, and
such change can further be captured in future models [144, 152]. Under this complex interplay
between algorithmic decisions and individuals’ reactions, the fairness criteria that intend to protect
disadvantaged groups may lead to unintended, pernicious long-term effects [103]. Consider an
example in lending where a lender decides whether or not to issue a loan based on the applicant’s
credit score. Decisions satisfying an identical true positive rate across different racial groups can
make the outcome seem fairer [57]. However, this can potentially result in more loans issued to less
qualified applicants in the group whose score distribution skews toward higher default risk. The
lower repayment among these individuals causes their future credit scores to drop, which moves the
group’s score distribution further toward higher default risk [103]. Therefore, understanding how
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algorithmic decisions and people interact over time and examining the long-term impact of fairness
criteria is essential when developing fair ML systems, which can be challenging due to the lack of
dynamic datasets and models that characterize the human behaviors.

1.1 Background

Before discussing the contributions of this thesis in more depth, we present notions of privacy and
fairness that we used and studied.

1.1.1 Differential Privacy

Differential privacy, first proposed by Dwork, McSherry, Nissim, and Smith [35], centers around
the idea that the output of a certain mechanism or computational procedure should be statistically
similar given singular changes to the input, thereby preventing meaningful inference from observing
the output.

To illustrate the guarantee of differential privacy, consider an attacker aiming at inferring private
information of a target individual, whose data may or may not be contributed to the dataset in a
computation. The attacker is able to observe the computational outcome, and may have access
to any arbitrary side information (e.g., the private data of every other individual in the dataset,
some knowledge about the target individual, etc.). Differential privacy guarantees that regardless of
what side information the attacker has, the attacker can learn almost nothing new about the target
individual from the computational outcome.

Formally, a randomized algorithm A(·) taking dataset D ∈D as input satisfies (ε,δ)-differential
privacy if for any datasets D, D̂ that are different in at most one individual’s data and for any set of
possible outputs S ∈ range(A), we have

Pr(A(D) ∈ S) ≤ Pr(A(D̂) ∈ S) +δ,

where ε ≥ 0 bounds the privacy loss, and δ ∈ [0,1] loosely corresponds to the probability that the
algorithm fails to bound the privacy loss by ε. In particular, when δ = 0 we omit it and say algorithm
A preserves ε-differential privacy.

Differential privacy is a worst case measure, that is, the bound is over all possible random
outputs and all possible inputs. It is a strong guarantee, as it can protect against attackers with any
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side information. Moreover, it admits a powerful algorithmic framework. There are two important
properties that make differential privacy easily be used for complex data analysis. The first is
immunity to post-processing: a differentially private output followed by any data-independent com-
putation remains satisfying differential privacy. The second is composability: when a differentially
private algorithm is queried independently over the same data multiple times, the total privacy loss
accumulates (i.e., privacy guarantee degrades).

1.1.2 Fairness in Supervised Learning

In supervised learning, the goal is to predict a true outcome Y from features X based on labeled
training data. To ensure the prediction Ŷ is non-discriminatory, certain fairness criterion should
be satisfied. As mentioned in introduction, a variety of fairness criteria have been formulated to
measure and remedy biases in machine learning systems. In this thesis, we focus on group fairness
where the population is partitioned into a small number of groups distinguished by some sensitive
attributes S ∈ S, and certain statistics are equalized across different groups. In particular, we are
interested in studying two criteria called demographic parity and equal opportunity.

1. Demographic Parity (DP) [11]: prediction Ŷ is independent of group sensitive attribute S .

2. Equal Opportunity (EqOpt) [57]: prediction Ŷ is conditional independent of group sensitive
attribute S given true outcome Y .

For binary classification where Y ∈ {0,1}, Ŷ ∈ {0,1}, DP requires the positive classification rates to be
equalized across different groups, i.e., Pr(Ŷ = 1|S = s) = Pr(Ŷ = 1),∀s ∈ S, while EqOpt requires
true positive rates to be equalized across different groups, i.e., Pr(Ŷ = 1|Y = 1,S = s) = Pr(Ŷ = 1|Y =

1),∀s ∈ S. To interpret these two criteria, consider settings such as hiring, lending, and college
admissions, where a decision maker (e.g., company, bank, college) aims to select (Ŷ = 1) individuals
from the applicant pool that are qualified (Y = 1) for certain tasks based on a given set of features X.
DP fairness ensures that all applicants from different groups are selected at the same rate, while
EqOpt fairness is only concerned with the equity among the qualified individuals and it ensures
that the qualified applicants from different groups are selected at the same rate.

A variety of methods has been proposed for learning fair supervised learning models, and they
can be roughly classified into three families,

1. Pre-processing: remove pre-existing biases by modifying the datasets before training process
[78, 143].
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2. In-processing: impose fairness constraint during the training process, typically by adding a
constraint to optimization problem or changing objective function [5, 141, 142].

3. Post-processing: adjust the output of an algorithm based on group sensitive attributes after
training process [57, 120].

1.2 Overview of Thesis Contributions and Structure

Part I: Designing Differentially Private Algorithms

One approach to leveraging individuals’ data while preventing privacy violation, is to process
sensitive data with privacy-preserving algorithms. In the first part of this dissertation, we present a
number of differentially private algorithms for multiple computational tasks including distributed

learning (Chapter 2) and sequential computations (Chapter 3).
During these computations, the same or correlated data is repeatedly used/exposed during these

computations. Specifically, in distributed learning, multiple entities collaboratively work through an
interactive process of local computation (over local, private data) and message passing; during this
interactive process the same local data is repeatedly used. In sequential computations, individual’s
temporal data is generated/acquired sequentially for online analysis, and there is the strong temporal
correlation within the data sequence. Because the same or correlated data is repeatedly used, the
total privacy leakage of each individual accumulates substantially over time during the computation.
As such, balancing the trade-off between individual privacy and the outcome accuracy can be
challenging.

To improve the privacy-accuracy trade-off, we have explored two ideas:

(a) Reuse intermediate computational results to reduce the total information leakage.

(b) Improve algorithmic robustness to accommodate more randomness.

Intuitively, when less information is revealed, less randomization is required to achieve the same
privacy guarantee, so that the accuracy can be increased; when an algorithm is more robust, it can
accommodate more randomization to enhance privacy without jeopardizing too much accuracy.
Based on these ideas, we designed multiple novel algorithms whose privacy-accuracy trade-off is
improved significantly over the existing algorithms.
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Chapter 2: Private ADMM-Based Distributed Algorithms. In this chapter, we consider a
consensus problem in a fully distributed setting where multiple entities collaboratively work toward
a common optimization objective through an interactive process of local computation (over local,
private data) and message passing. We focused on the Alternating Direction Method of Multiplier
(ADMM)-based algorithms to solve the distributed optimization. Because local computations are
exchanged among different entities, privacy concerns arise. A differentially private ADMM was
proposed in prior work [147] where only the privacy loss of a single node during one iteration
was bounded, a method that makes it difficult to balance the tradeoff between the utility attained
through distributed computation and privacy guarantees when considering the total privacy loss
of all nodes over the entire iterative process. To improve privacy-accuracy trade-off, we leverage
idea (a),(b) and propose a number of algorithms by modifying the original ADMM algorithms.
Specifically, R-ADMM [150] utilizes (a) and ensures the privacy leakage only happens in half of the
updates; M-ADMM [149] utilizes (b) which improves the algorithmic robustness; MR-ADMM [151]
incorporates both ideas to improve the trade-off further.

Chapter 3: Real-Time Release of Sequential Data with Differential Privacy. Many data
analytics applications rely on temporal data, generated (and possibly acquired) sequentially for
online analysis. In this chapter, we propose an algorithm to release the sequential data in real-
time with differential privacy guarantee. Because of the (potentially strong) temporal correlation
within the data sequence, the overall privacy loss can accumulate significantly over time; an
attacker with statistical knowledge of the correlation can be particularly hard to defend against. An
idea that has been explored in the literature to alleviate this problem is to factor this correlation
into the perturbation/noise mechanism. Existing work, however, either focuses on the offline
setting (where perturbation is designed and introduced after the entire sequence has become
available) [44, 80, 121, 133, 138], or requires a priori information on the correlation in generating
perturbation [41]. In contrast, the algorithm we propose can learn the correlation as the sequence
is generated, and the learned correlation is used for estimating future data in the sequence. This
estimate then drives the generation of the noisy released data. This method allows us to design
better perturbation and is suitable for real-time operations. We show theoretically and empirically
that this approach achieves high accuracy with lower privacy loss compared to existing methods.
Furthermore, this method has been used to enable private vehicle-to-vehicle communication in
intelligent transportation systems [67, 148].
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Part II: Fair Machine Learning with Human in Loops

Data ML Decision
ML Model

Abandonment

Improvement on 

[Qualification Dynamics]

[Participation Dynamics]

Manipulation on 

[Strategic Dynamics]

Figure 1.2: ML with human in feedback loops: three types of interactions

Algorithmic fairness in machine learning has been studied extensively in static settings where
one-shot (fair) ML decisions are made on tasks such as classification. However, in practice ML
models are deployed in a dynamic environment where ML models and individuals feed and affect
each other. Without accounting for individuals’ behaviors and the interactions, ML decisions and
fairness interventions may result in unintended consequences. In the second part of this dissertation,
we study the impacts of (fair) ML on the well-being of different social groups. Specifically, We
establish multiple theoretically rigorous frameworks to model the interactions between ML systems
and individuals, and conduct equilibrium analysis to evaluate the impacts they each have on each
other. Depending on how individuals respond to the perceived decisions, we consider the following
three types of interactions,

1. Participation Dynamics (Chapter 4)
ML decisions made in the past may affect individuals’ participation/retention in the future ML
systems. Consider an example of speech recognition, individuals are more likely to leave the
system if they experience the lower accuracy; this in turn can affect the group representation in
future datasets used for building future models. To characterize the interactions between group
representations and ML models, we construct a participation dynamics model in Chapter 4,
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where individuals respond to perceived decisions by leaving ML system uniformly at random:
individuals who perceive mistreatment from the decisions are more likely to leave. We aim to
understand how group representation disparity evolves in a sequential framework and how
enforcing fairness constraints plays a role in this process [153].

2. Qualification Dynamics (Chapter 5)
ML decisions made in the past may affect individuals’ true labels in the future ML systems.
Consider an example in recruitment where a company aims to select individuals from appli-
cants that are qualified for job positions. Individuals after receiving hiring decisions may
take certain actions (e.g., exerting efforts, imitating others, etc.), which results in changes in
their future qualifications/labels. As such, the qualification rate–the fraction of the qualified
individuals–of each group changes accordingly. To characterize the interactions between
qualification rates and ML models, we construct a qualification dynamics model in Chapter 5,
where individuals respond to perceived decisions by changing their future qualifications. We
aim to understand how group qualification disparity evolves in a sequential framework and
how it is affected when various fairness constraints are imposed [155].

3. Strategic Interplay (Chapter 6)
When ML algorithms are used to make high-stake decisions about people, the need for
transparency increases in terms of how decisions are reached given input. Given (partial)
information about the ML algorithm, individuals may adapt their behavior by strategically
manipulating their data to receive favorable decisions. For instance, a hiring or admissions
practice that heavily depends on GPA might motivate students to cheat on exams; not
accounting for such manipulation may result in disproportionate hiring of under-qualified
individuals. A strategic decision maker who anticipates such behavior aims to make its ML
models robust to such strategic manipulation. In Chapter 6, we adopt a typical two-stage
(Stackelberg) game setting to characterize the interactions between ML models and strategic
individuals, where the decision maker commits to its policies, following which individuals
best-respond. We aim to examine the impact of the anticipation of strategic behavior and
understand whether fairness interventions can serve as incentives/disincentives for strategic
manipulation.

Chapter 4: Long-Term Impact of (Fair) ML on Group Representation. Machine Learning
(ML) models trained on data from multiple demographic groups can inherit representation disparity
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that may exist in the data: the model may be less favorable to groups contributing less to the training
process; this in turn can degrade population retention in these groups over time, and exacerbate
representation disparity in the long run. In this chapter, we seek to understand the interplay between
ML decisions and the underlying group representation, how they evolve in a sequential framework,
and how the use of fairness criteria plays a role in this process. To this end, we first construct
a participation dynamics model to characterize the interplay between ML decisions and group
representations, where individual’s retention/participation is driven by the mistreatment perceived
from the decision, i.e., individuals who perceive mistreatment from the decisions are more likely to
leave the system. Under such dynamics, we conduct equilibrium analysis and study the long-term
impact of fairness interventions by comparing the equilibria under different (fair) ML decisions. Our
results show that the representation disparity can easily worsen over time when decisions are made
based on a commonly used objective and fairness criteria, resulting in some groups diminishing
entirely from the sample pool in the long run. It highlights the fact that fairness criteria have to be
defined while taking into consideration the impact of decisions on user dynamics. Furthermore, we
introduce an approach to selecting a proper fairness criterion based on a general dynamics model,
which can balance the group representations in the long run.

Chapter 5: Long-Term Impact of (Fair) ML on Group Qualification. In this chapter, we
examine the interplay between ML models and underlying group qualifications, and we aim to
understand how the group qualification disparity evolves in a sequential framework and how it is
affected under various fairness interventions. To this end, we use a Partially Observed Markov
Decision Process (POMDP) framework to formulate the qualification dynamics model, where the
unqualified/qualified individuals in the past can become qualified/unqualified with some decision-
dependent probabilities. The model indicates how individuals’ qualifications transition over two
consecutive time steps and characterizes the interplay between ML decisions and group qualifica-
tions. Under such dynamics, we conduct the equilibrium analysis and identify conditions for the
existence of an unique equilibrium. Furthermore, we examine the long-term impact of fairness
interventions on the group qualification disparity by comparing the equilibria under different (fair)
ML decisions. Our results show that fairness interventions can either promote equality or exacerbate
disparity depending on the qualification transitions and the effect of group sensitive attributes on
feature distributions. We also consider possible interventions that can effectively improve group
qualification or promote equality of group qualification. Our theoretical results and experiments on
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static real-world datasets with simulated dynamics show that our framework can be used to facilitate
social science studies.

Chapter 6: Impact of (Fair) ML on Strategic Manipulation. In this chapter, we study fairness
issues in the presence of individual’s strategic behavior. We suppose individuals can observe
ML models used by a decision maker in advance and they can manipulate their data strategically
to receive favorable decisions. We aim to design (fair) algorithms that are robust to strategic
manipulation, and to understand the impact of fairness interventions on individual’s strategic
manipulative behavior. To this end, we use a two-stage (Stackelberg) game to characterize the
interactions between decision makers and individuals, where the the former first publishes the ML
models and the latter may manipulate their features in order to receive more favorable decisions.
Depending on whether the decision-maker can anticipate such strategic manipulation or not, the
models can be strategic or non-strategic. Moreover, the models may or may not satisfy a fairness
constraint. We analytically characterize the equilibrium strategies of both decision maker and
individuals, and examine how the algorithms and their resulting fairness properties are affected
when the decision maker is strategic (anticipates manipulation), as well as the impact of fairness
interventions on equilibrium strategies. In particular, we identify conditions under which anticipation
of strategic behavior may mitigate/exacerbate unfairness, and conditions under which fairness
interventions can serve as incentives/disincentives for strategic manipulation.
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Designing Differentially Private Algorithms
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CHAPTER 2

Private ADMM-Based Distributed Algorithms

2.1 Introduction

In this chapter, we design differentiially private algorithms for distributed optimization. Distributed
optimization and learning are crucial for many settings where where the data is possessed by
multiple parties or when the quantity of data prohibits processing at a central location. It helps
to reduce the computational complexity, improve both the robustness and the scalability of data
processing. Many problems can be formulated as a convex optimization of the following form:

min
x

N∑
i=1

fi(x).

In a distributed setting, each entity/node i has its own local objective fi, N entities/nodes collabora-
tively work to solve this objective through an interactive process of local computation and message
passing, which ideally should result in all nodes converging to a global optimum.

Existing approaches to decentralizing the above problem primarily consist of subgradient-based
algorithms [48,106,116], ADMM-based algorithms [100,101,124,134,139,140,146], and composite
of subgradient and ADMM [14]. It has been shown that ADMM-based algorithms can converge at
the rate of O(1

k ) while subgradient-based algorithms typically converge at the rate of O( 1√
k
), where

k is the number of iterations [134]. In this study, we will solely focus on ADMM-based algorithms.
The information exchanged over the iterative process gives rise to privacy concerns if the local

training data is proprietary to each node, especially when it contains sensitive information such as
medical or financial records, web search history, and so on [89, 130]. It is therefore highly desirable
to ensure such iterative processes are privacy-preserving.
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A widely used notion of privacy is the ε-differential privacy; it is generally achieved by per-
turbing the algorithm such that the probability distribution of its output is relatively insensitive to
any change to a single record in the input [35]. Several differentially private distributed algorithms
have been proposed, including [13, 54, 55, 68, 147]. While a number of such studies have been
done for (sub)gradient-based algorithms [13, 54, 55, 68], the same is much harder for ADMM-based
algorithms due to its computational complexity stemming from the fact that each node is required
to solve an optimization problem in each iteration. To the best of our knowledge, only [147]
applies differential privacy to ADMM, where the noise is either added to the dual variable (dual

variable perturbation) or the primal variable (primal variable perturbation) in ADMM updates.
However, [147] could only bound the privacy loss of a single iteration. Since an attacker can
potentially use all intermediate results to perform inference, the privacy loss accumulates over time
through the iterative process. It turns out that the tradeoff between the accuracy of the algorithm
and its privacy preservation over the entire computational process becomes hard using the existing
method.

In this chapter, we address those issues by inspecting the total privacy loss over the entire process
and the entire network. We further propose a number of privacy-preserving algorithms that could
simultaneously improve the accuracy and privacy for ADMM. In particular, We have explored two
ideas when designing algorithms:

(a) Improve algorithmic robustness to accommodate more randomness.

(b) Reuse intermediate computational results to reduce the total information leakage.

Our main contributions are as follows.

1. We employ idea (a) and propose modified ADMM (M-ADMM) whereby each node indepen-
dently decides its own penalty parameter in each iteration; it may also differ from the dual
updating step size (Section 2.3.1).

2. We employ idea (b) and propose recycled ADMM (R-ADMM) whereby the computational
outcomes during even updates are repeatedly used for odd updates; it ensures that the odd
updates incur no privacy loss and require much less computation (Section 2.3.2).

3. We employ both ideas and propose modified recycled ADMM (MR-ADMM), where we
generalize R-ADMM by accommodating time-varied, node-dependent penalty parameters
(Section 2.3.3).
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4. We establish sufficient conditions for convergence of M-ADMM, R-ADMM, and MR-ADMM,
and quantify the lower bound of the convergence rate for M-ADMM (Section 2.4).

5. We present perturbation mechanisms to provide differential privacy for M-ADMM, R-ADMM,
and MR-ADMM (Section 2.5), and characterize the total privacy loss for these private
algorithms (Section 2.6). We quantify the generalization performance of (private) MR-
ADMM by conducting sample complexity analysis (Section 2.7).

6. We conduct experiments on real-world data (Section 2.9), the empirical results show that
our proposed algorithms can achieve stronger privacy guarantee as well as better algorithmic
performance, i.e., more stable convergence and higher accuracy.

The remainder of the chapter is organized as follows. We present problem formulation and the
definition of differential privacy and ADMM in Section 2.2. Three algorithms are introduced in
Section 2.3 including M-ADMM, R-ADMM and MR-ADMM. The convergence analysis of three
algorithms are presented in Section 2.4. The private versions of these algorithms, privacy analysis,
and sample complexity analysis are presented in Sections 2.5, 2.6, and 2.7, respectively. Discussion
is given in Section 2.8. Numerical results are illustrated in Section 2.9. All proofs can be found in
Appendix A.

2.2 Preliminaries

2.2.1 Problem Formulation

Consider a connected network1 given by an undirected graph G(N ,E ), which consists of a set of
nodes N = {1,2, · · · ,N} and a set of edges E = {1,2, · · · ,E}. Two nodes can exchange information
if and only if they are connected by an edge. Let Vi denote node i’s set of neighbors, excluding
itself. Let Di be node i’s dataset.

Consider an optimization problem over this network of N nodes, where the overall objective
function can be decomposed into N sub-objective functions and each depends on a node’s local
dataset, i.e.,

min
fc

Obj( fc,Dall) =

N∑
i=1

O( fc,Di) (2.1)

1A connected network is one in which every node is reachable (via a path) from every other node.
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The goal is to find a (centralized) optimal solution fc ∈ Rd over the union of all local datasets
Dall = ∪i∈N Di in a distributed manner using ADMM, while providing privacy guarantee for each
data sample.

2.2.2 Differential Privacy in Optimization

The definition of (ε,δ)-differential privacy is formally introduced in Chapter 1.1.1. In this chapter,
we adopt pure ε-differential privacy when δ = 0, although a weaker notion (ε,δ)-differential privacy
can also be adopted. This is discussed in Section 2.8.

For an optimization problem over a dataset, there are many approaches to randomizing the
output to preserve differential privacy and some of the most commonly used are as follows.

1. Output perturbation: solve the optimization problem first and then add zero-mean noise (e.g.,
Laplace, Gaussian) to the optimal solution.

2. Objective perturbation: add a noisy term to the objective function first and then solve the
perturbed optimization problem.

Because of this randomness, the accuracy of the output also decreases accordingly. The more
perturbation, the output will be less accurate but it also provides the stronger privacy for individuals.
Therefore, there is a privacy-accuracy trade-off, and an important issue is how to improve this
trade-off so that the output can be more accurate under the same privacy guarantee.

2.2.3 Conventional ADMM

To decentralize (2.1), let fi be the local classifier of each node i. To achieve consensus, i.e.,
f1 = f2 = · · · = fN , a set of auxiliary variables {wi j|i ∈N , j ∈ Vi} are introduced for every pair of
connected nodes. As a result, (2.1) is reformulated equivalently as:

min
{ fi},{wi j}

Õbj({ fi}Ni=1,Dall) =

N∑
i=1

O( fi,Di)

s.t. fi = wi j,wi j = f j, i ∈N , j ∈ Vi

(2.2)

Let { fi} and {wi j} be the shorthand for { fi}i∈N and {wi j}i∈N , j∈Vi , respectively. Let {wi j,λ
k
i j} be

the shorthand for {wi j,λ
k
i j}i∈N , j∈Vi,k∈{a,b}, where λa

i j, λ
b
i j are dual variables corresponding to equality
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constraints fi = wi j and wi j = f j respectively. The objective in (2.2) can be solved using ADMM
with the augmented Lagrangian:

Lη({ fi}, {wi j,λ
k
i j}) =

N∑
i=1

O( fi,Di) +

N∑
i=1

∑
j∈Vi

(λa
i j)

T ( fi−wi j) +

N∑
i=1

∑
j∈Vi

(λb
i j)

T (wi j− f j)

+

N∑
i=1

∑
j∈Vi

η

2
(|| fi−wi j||

2
2 + ||wi j− f j||

2
2) . (2.3)

where η is called the penalty parameter. In the (t + 1)-th iteration, the ADMM updates consist of the
following:

fi(t + 1) = argmin
fi

Lη({ fi}, {wi j(t),λk
i j(t)}); (2.4)

wi j(t + 1) = argmin
wi j

Lη({ fi(t + 1)}, {wi j,λ
k
i j(t)}); (2.5)

λa
i j(t + 1) = λa

i j(t) +η( fi(t + 1)−wi j(t + 1)); (2.6)

λb
i j(t + 1) = λb

i j(t) +η(wi j(t + 1)− f j(t + 1)). (2.7)

Using Lemma 3 in [45], if dual variables λa
i j(t) and λb

i j(t) are initialized to zero for all node pairs
(i, j), then λa

i j(t) = λb
i j(t) and λk

i j(t) = −λk
ji(t) will hold for all iterations with k ∈ {a,b}, i ∈N , j ∈ Vi.

Let λi(t) =
∑

j∈Vi λ
a
i j(t) =

∑
j∈Vi λ

b
i j(t), then the ADMM iterations (2.4)-(2.7) can be simplified as:

fi(t + 1) = argmin
fi
{O( fi,Di) + 2λi(t)T fi +η

∑
j∈Vi

||
1
2

( fi(t) + f j(t))− fi||22 } ; (2.8)

λi(t + 1) = λi(t) +
η

2

∑
j∈Vi

( fi(t + 1)− f j(t + 1)) . (2.9)

2.2.4 Private ADMM Proposed in [147]

Two randomizations were proposed in [147]:

1. Dual variable perturbation: each node i adds a random noise to its dual variable λi(t) before
updating its primal variable fi(t) using (2.8) in each iteration.

2. Primal variable perturbation: after updating primal variable fi(t), each node adds a random
noise to it before broadcasting to its neighbors.
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In both methods, the privacy property is only evaluated for a single node and a single iteration.
Neither can effectively balance the privacy-accuracy tradeoff if the total privacy loss is considered.
In contrast, we consider the total privacy loss of the whole network over the entire iterative process
and propose multiple algorithms under which the trade-off between total privacy loss and accuracy
can be improved significantly.

2.3 Proposed Algorithms

In this section, we introduce three variants of ADMM algorithm.

2.3.1 Modified ADMM (M-ADMM): Making η a Node’s Private Informa-
tion

Conventional ADMM [18] requires that the penalty parameter η be fixed and equal to the dual
updating step size for all nodes in all iterations. Varying the penalty parameter to accelerate
convergence in ADMM has been proposed in the literature. For instance, [9, 61, 108, 139] vary this
penalty parameter in every iteration but keep it the same for different equality constraints in (2.2).
In [125, 145] this parameter varies in each iteration and is allowed to differ for different equality
constraints. However, all of these modifications are based on the original ADMM (Eqn. (2.4)-(2.7))
and not on the simplified version (Eqn. (2.8)-(2.9)); the significance of this difference is discussed
below in the context of privacy requirement. Moreover, we will decouple ηi(t + 1) from the dual
updating step size, denoted as θ below. For simplicity, θ is fixed for all nodes in our analysis, but
can also be private information as we show in numerical experiments.

First consider replacing η with ηi j(t + 1) in Eqn. (2.4)-(2.5) of the original ADMM (as is done
in [125, 145]) and replacing η with θ in Eqn. (2.6)-(2.7); we obtain the following:

fi(t + 1) = argmin
fi
{O( fi,Di) + 2λi(t)T fi +

∑
j∈Vi

ηi j(t + 1) +η ji(t + 1)
2

||
1
2

( fi(t) + f j(t))− fi||22} ;

λi(t + 1) = λi(t) +
θ

2

∑
j∈Vi

( fi(t + 1)− f j(t + 1)) .

This however violates our requirement that η ji(t) be node j’s private information since this is needed
by node i to perform the above computation. To resolve this, we instead start from the simplified
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ADMM, modifying Eqn. (2.8)-(2.9):

fi(t + 1) = argmin
fi
{O( fi,Di) + 2λi(t)T fi +ηi(t + 1)

∑
j∈Vi

|| fi−
1
2

( fi(t) + f j(t))||22 } ; (2.10)

λi(t + 1) = λi(t) +
θ

2

∑
j∈Vi

( fi(t + 1)− f j(t + 1)) , (2.11)

where ηi(t + 1) is now node i’s private information. Indeed ηi(t + 1) is no longer purely a penalty
parameter related to any equality constraint in the original sense. We will however refer to it as the
private penalty parameter for simplicity. The above constitutes the M-ADMM algorithm.

The penalty parameter ηi(t + 1) directly controls the step size of the algorithm. Since the goal is
to minimize the objective in (2.10), if ηi(t + 1) is larger, the solution fi(t + 1) will be closer to the

primal variable in the previous iteration so that the penalty term
∑

j∈Vi ||
1
2

( fi(t) + f j(t))− fi||22 will
be small. In other words, larger ηi(t + 1) results in smaller update of the primal variable fi(t + 1).
Therefore, increasing ηi(t + 1) decreases the step sizes.

Without perturbation, decreasing step size might slow down the convergence. However, when
the algorithm is perturbed with added noise, a smaller step size could prevent the variable from
deviating too much from the optimal solution in each update, which in turn stabilizes the algorithm.

2.3.2 Recycled ADMM (R-ADMM): Making Information Recyclable

ADMM can outperform gradient-based methods in terms of requiring fewer number of iterations
for convergence; this however comes at the price of high computational cost in every iteration.
In particular, the primal variable is updated by performing an optimization in each iteration.
In [101, 102, 112], either a linear or quadratic approximation of the objective function is used to
obtain an inexact solution in each iteration in lieu of solving the original optimization problem.
While this clearly lowers the computational cost, the approximate computation is performed using
the local, individual data in every iteration, which means that privacy loss inevitably accumulates
over the iterations.

We modify ADMM in such a way that in every even iteration, without using individual’s data
Dall, the primal variable is updated solely based on the existing computational results from the
previous, odd iteration. Compared with conventional ADMM, these updates incur no privacy loss
and less computation. Since the computational results are repeatedly used, this method is referred
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to as Recycled ADMM (R-ADMM).
Specifically, in the 2k-th (even) iteration, O( fi,Di) (Eqn. (2.8), primal update optimization) is

approximated by

O( fi,Di) ≈ O( fi(2k−1),Di) +∇O( fi(2k−1),Di)T ( fi− fi(2k−1)) +
γ

2
|| fi− fi(2k−1)||22

where γ ≥ 0. Moreover, only the primal variables are updated in the 2k-th (even) iteration. Using
the first-order condition, the updates in the 2k-th iteration become:

fi(2k) = fi(2k−1)−
1

2ηVi +γ
{∇O( fi(2k−1),Di) + 2λi(2k−1)

+η
∑
j∈Vi

( fi(2k−1)− f j(2k−1))} ; (2.12)

λi(2k) = λi(2k−1) . (2.13)

In the (2k−1)-th (odd) iteration, the updates are kept the same as (2.8)(2.9):

fi(2k−1) = argmin
fi
{O( fi,Di) + 2λi(2k−2)T fi

+η
∑
j∈Vi

||
1
2

( fi(2k−2) + f j(2k−2))− fi||22 } ; (2.14)

λi(2k−1) = λi(2k−2) +
η

2

∑
j∈Vi

( fi(2k−1)− f j(2k−1)) . (2.15)

Note that in the (2k)-th (even) iteration, we need the gradient ∇O( fi(2k−1),Di) and primal difference
η

2
∑

j∈Vi( fi(2k−1)− f j(2k−1)) for the updates; these are available directly from the previous, (2k−1)-
th (odd) iteration, i.e., this information can be recycled. In this sense, R-ADMM may be viewed as
alternating between conventional ADMM (odd iterations) and a variant of gradient descent (even
iterations), where 1

2ηVi+γ
is the step-size with a slightly modified gradient term.

2.3.3 Modified R-ADMM (MR-ADMM): M-ADMM + R-ADMM

R-ADMM requires that the penalty parameter η be fixed for all nodes in all iterations. We can further
implement idea in M-ADMM by modifying R-ADMM such that each node can independently
determine its penalty parameter in each iteration. Specifically, replace η in (2.12), (2.14) and (2.15)
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with ηi(2k−1). The updating formula is then given in (2.16)-(2.19).

fi(2k−1) = argmin
fi
{O( fi,Di) + 2λi(2k−2)T fi

+ηi(2k−1)
∑
j∈Vi

||
1
2

( fi(2k−2) + f j(2k−2))− fi||22 } ; (2.16)

λi(2k−1) = λi(2k−2) +
ηi(2k−1)

2

∑
j∈Vi

( fi(2k−1)− f j(2k−1)) . (2.17)

fi(2k) = fi(2k−1)−
1

2ηi(2k−1)Vi +γ
{∇O( fi(2k−1),Di) + 2λi(2k−1)

+ηi(2k−1)
∑
j∈Vi

( fi(2k−1)− f j(2k−1))} ; (2.18)

λi(2k) = λi(2k−1) . (2.19)

Note that MR-ADMM is a generalized version of R-ADMM. If fix ηi(2k−1) = η, ∀k, then MR-
ADMM will be reduced to R-ADMM.

2.4 Convergence Analysis

In this section, we show that M-ADMM (Eqn. (2.10)-(2.11)), R-ADMM (Eqn. (2.12)-(2.15)),
and MR-ADMM (Eqn. (2.16)-(2.19)) all converge to the optimal solution under a set of common
technical assumptions.

Assumption 1. Function O( fi,Di) is convex and continuously differentiable in fi, ∀i.

Assumption 2. The solution set to the original ERM problem (2.1) is nonempty and there exists at

least one bounded element.

Define the adjacency matrix of the network A ∈ RN×N as

ai j =

1, if node i and node j are connected

0, otherwise .
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Stack the variables fi(t), λi(t) and ∇O( fi(t),Di) for i ∈N into matrices, i.e.,

f̂ (t) =


f1(t)T

f2(t)T

...
fN(t)T


∈ RN×d, Λ(t) =


λ1(t)T

λ2(t)T

...
λN(t)T


∈ RN×d, ∇Ô( f̂ (t),Dall) =


∇O( f1(t),D1)T

∇O( f2(t),D2)T

...
∇O( fN(t),DN)T


∈ RN×d

Let Vi = |Vi| be the number of neighbors of node i, and define the degree matrix D =

diag([V1;V2; · · · ;VN]) ∈ RN×N . Note that D− A is the Laplacian matrix and D + A is the sign-
less Laplacian matrix of the network, with the following properties if the network is connected: (i)
D±A � 0 is positive semi-definite; (ii) Null(D−A) = c1, i.e., every member in the null space of
D−A is a scalar multiple of 1 with 1 being the vector of all 1’s [82].

Lemma 1. [First-order Optimality Condition [100]] Under Assumptions 1 and 2, the following

three statements are equivalent:

• f̂ ∗ = [( f ∗1 )T ; ( f ∗2 )T ; · · · ; ( f ∗N)T ] ∈ RN×d is consensual, i.e., f ∗1 = f ∗2 = · · · = f ∗N = f ∗c where f ∗c is

the optimal solution to (2.1).

• There exists a pair ( f̂ ∗,Y∗) with Y∗ =
√

D−AX for some X ∈ RN×d such that

∇Ô( f̂ ∗,Dall) +
√

D−AY∗ = 0N×d ; (2.20)
√

D−A f̂ ∗ = 0N×d . (2.21)

• There exists a pair ( f̂ ∗,Λ∗) with 2Λ∗ = (D−A)X for some X ∈ RN×d such that

∇Ô( f̂ ∗,Dall) + 2Λ∗ = 0N×d ; (2.22)

(D−A) f̂ ∗ = 0N×d . (2.23)

2.4.1 M-ADMM

The KKT optimality condition of the primal update (2.10) is:

0 = ∇O( fi(t + 1),Di) + 2λi(t) +ηi(t + 1)
∑
j∈Vi

(2 fi(t + 1)− ( fi(t) + f j(t))) . (2.24)
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Define penalty-weighted matrix W(t) = diag([η1(t);η2(t); · · · ;ηN(t)]) ∈RN×N for t-th iteration. Then
the matrix form of (2.11), (2.24) are:

0N×d = ∇Ô( f̂ (t + 1),Dall) + 2Λ(t) + 2W(t + 1)D f̂ (t + 1)−W(t + 1)(D + A) f̂ (t) (2.25)

2Λ(t + 1) = 2Λ(t) + θ(D−A) f̂ (t + 1) (2.26)

Let
√

X denote the square root of a symmetric positive semi-definite (PSD) matrix X that is
also symmetric PSD, i.e.,

√
X
√

X = X. Define matrix Y(t) such that 2Λ(t) =
√

D−AY(t). Since
Λ(0) = zeros(N,d), which is in the column space of D−A, this together with (2.26) imply that Λ(t)
is in the column space of D−A and

√
D−A. This guarantees the existence of Y(t). This allows us

to rewrite (2.25)-(2.26) as:

0N×d = ∇Ô( f̂ (t + 1),Dall) +
√

D−AY(t + 1) + (W(t + 1)− θI)(D−A) f̂ (t + 1)

+W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t)) ; (2.27)

Y(t + 1) = Y(t) + θ
√

D−A f̂ (t + 1) . (2.28)

Lemma 1 shows that a pair (Y∗, f̂ ∗) satisfying (2.20)(2.21) is equivalent to the optimal solution of
our problem, hence the convergence of M-ADMM is proved by showing that (Y(t), f̂ (t)) converges
to a pair (Y∗, f̂ ∗) satisfying (2.20)(2.21).

Theorem 1. Consider the modified ADMM defined by (2.10)-(2.11). Let {Y(t), f̂ (t)} be outputs in

each iteration and (Y∗, f̂ ∗) a pair satisfying (2.20)-(2.21). Denote

Z(t) =

Y(t)
f̂ (t)

 ∈ R2N×d, Z∗ =

Y∗f̂ ∗
 ∈ R2N×d, J(t) =

 IN×N
θ 0
0 W(t)(D + A)

 ∈ R2N×2N

Let 〈·, ·〉F be the Frobenius inner product of two matrices. We have

〈Z(t + 1)−Z∗, J(t + 1)(Z(t + 1)−Z(t))〉F ≤ 0 . (2.29)

If ηi(t + 1) ≥ ηi(t) ≥ θ > 0 and ηi(t) < +∞, ∀t, i, then (Y(t), f̂ (t)) converges to (Y∗, f̂ ∗).

Convergence Rate Analysis. To further establish the convergence rate of modified ADMM, an
additional assumption is used:
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Assumption 3. For all i ∈N , O( fi,Di) is strongly convex in fi and has Lipschitz continues gradients,

i.e., for any f 1
i and f 2

i , we have:

( f 1
i − f 2

i )T (∇O( f 1
i ,Di)−∇O( f 2

i ,Di)) ≥ mi|| f 1
i − f 2

i ||
2
2

||∇O( f 1
i ,Di)−∇O( f 2

i ,Di)||2 ≤ Mi|| f 1
i − f 2

i ||2 (2.30)

where mi > 0 is the strong convexity constant and 0 < Mi < +∞ is the Lipschitz constant.

Theorem 2. Define Dm = diag([m1;m2; · · · ;mN]) ∈ RN×N and DM = diag([M2
1; M2

2; · · · ; M2
N]) ∈

RN×N with mi > 0 and 0 < Mi < +∞ as given in Assumption 3. Denote by ||X||2J = 〈X, JX〉F the

Frobenius inner product of any matrix X and JX; denote by σmin(·) and σmax(·) the smallest nonzero,

and the largest, singular values of a matrix, respectively.

Let σ̃max(t) = σmax(W(t)(D + A)), σ̄max/min(t) = σmax/min((W(t)− θI)(D−A)) and µ > 1 be an

arbitrary constant. Consider any δ(t) that satisfies (2.31)(2.32):

δ(t)µ2σ̃max(t)
θσmin(D−A)

≤ 1 (2.31)

and

δ(t)(
µσ̄max(t)2IN +µ2DM

θσmin(D−A)(µ−1)
+ W(t)(D + A)) � 2(W(t)− θI)(D−A) + 2Dm . (2.32)

If ηi(t +1) ≥ ηi(t) ≥ θ > 0 and ηi(t) < +∞, ∀t, i, then (Y(t), f̂ (t)) converges to (Y∗, f̂ ∗) in the following

sense:

(1 +δ(t))||Z(t)−Z∗||2J(t) ≤ ||Z(t−1)−Z∗||2J(t) .

Furthermore, a lower bound on δ(t) is:

min{
θσmin(D−A)
µ2σ̃max(t)

,
2mo + 2σ̄min(t)

µ2M2
O+µσ̄max(t)2

θσmin(D−A)(µ−1) + σ̃max(t)
} (2.33)

where mo = mini∈N {mi} and MO = maxi∈N {Mi}.

Although Theorem 2 only gives a lower bound on the convergence rate (1 + δ(t)) of the
M-ADMM, it reflects the impact of penalty {ηi(t)}Ni=1 on the convergence. Since σ̄max(t) =

σmax((W(t)− θI)(D−A)) and σ̃max(t) = σmax(W(t)(D + A)), larger penalty results in larger σ̄max(t)
and σ̃max(t). By (2.33), the first term, θσmin(D−A)

µ2σ̃max(t) is smaller when σ̃max(t) is larger. The second term
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is bounded by θσmin(D−A)(µ−1)(2mo+2σ̄min(t))
µσ̄max(t)2 , which is smaller when σ̄max(t) is larger. Therefore, the

convergence rate 1 +δ(t) decreases as {ηi(t)}Ni=1 increase.

2.4.2 R-ADMM & MR-ADMM

Since MR-ADMM is a generalized version of R-ADMM, we focus on the convergence analysis of
MR-ADMM in this section while the results immediately apply to R-ADMM by fixing ηi(2k−1) = η,
∀k. To prove the convergence of MR-ADMM (Eqn. (2.16)-(2.19)), we introduce an additional
assumption below.

Assumption 4. For all i ∈N , O( fi,Di) has Lipschitz continuous gradients, i.e., for any f 1
i and f 2

i ,

we have:

||∇O( f 1
i ,Di)−∇O( f 2

i ,Di)||2 ≤ Mi|| f 1
i − f 2

i ||2 (2.34)

The KKT condition of the primal update (2.16) is given as:

0 = ∇O( fi(2k−1),Di) + 2λi(2k−2) +ηi(2k−1)
∑
j∈Vi

(2 fi(2k−1)− ( fi(2k−2) + f j(2k−2))). (2.35)

Define the diagonal matrix D̃(2k−1) with D̃(2k−1)ii = 2ηi(2k−1)Vi +γ, and the weight matrix
W(2k−1) = diag([η1(2k−1);η2(2k−1); · · · ;ηN(2k−1)]) ∈ RN×N . Then for each k, the matrix form
of (2.18)(2.19)(2.35)(2.17) are given in (2.36)-(2.39):

f̂ (2k) = f̂ (2k−1)− D̃(2k−1)−1{∇Ô( f̂ (2k−1),Dall) + 2Λ(2k−1)

+W(2k−1)(D−A) f̂ (2k−1)} ; (2.36)

2Λ(2k) = 2Λ(2k−1) ; (2.37)

0N×d = ∇Ô( f̂ (2k−1),Dall) + 2Λ(2k−2)

+W(2k−1)(2D f̂ (2k−1)− (D + A) f̂ (2k−2)) ; (2.38)

2Λ(2k−1) = 2Λ(2k−2) + W(2k−1)(D−A) f̂ (2k−1) . (2.39)

Writing f̂ (2k − 2) and Λ(2k − 2) in (2.38)(2.39) as functions of f̂ (2k − 3), Λ(2k − 3) using
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(2.36)(2.37), we obtain Eqn. (2.40)(2.41).

0N×d = ∇Ô( f̂ (2k−1),Dall) + W(2k−1)(D + A)D̃(2k−3)−1∇Ô( f̂ (2k−3),Dall)

+ W(2k−1)(D + A)( f̂ (2k−1)− f̂ (2k−3))

+ W(2k−1)(D + A)D̃(2k−3)−1W(2k−3)(D−A) f̂ (2k−3)

+ 2Λ(2k−1) + W(2k−1)(D + A)D̃(2k−3)−12Λ(2k−3) ; (2.40)

2Λ(2k−1) = 2Λ(2k−3) + W(2k−1)(D−A) f̂ (2k−1) . (2.41)

The convergence of MR-ADMM is proved by showing that the pair ( f̂ (2k−1), Λ(2k−1)) from odd
iterations converges to the optimal solution. To simplify the notation, we will re-index every two
consecutive odd iterations 2k−3 and 2k−1 using t and t + 1, it results in Eqn. (2.42)(2.43).

0N×d = ∇Ô( f̂ (t + 1),Dall) + W(t + 1)(D + A)D̃(t)−1∇Ô( f̂ (t),Dall)

+W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t)) + W(t + 1)(D + A)D̃(t)−12Λ(t)

+ W(t + 1)(D + A)D̃(t)−1W(t)(D−A) f̂ (t) + 2Λ(t + 1) ; (2.42)

2Λ(t + 1) = 2Λ(t) + W(t + 1)(D−A) f̂ (t + 1) . (2.43)

Lemma 1 shows that a pair ( f̂ ∗,Λ∗) satisfying (2.22)(2.23) is equivalent to the optimal solution
of our problem, hence the convergence of the MR-ADMM is proved by showing that ( f̂ (t),Λ(t)) in
(2.42)(2.43) converges to a pair ( f̂ ∗,Λ∗) satisfying (2.22)(2.23).

Theorem 3. [Sufficient Condition] Consider the modified ADMM defined by (2.42)(2.43). Let

{ f̂ (t),Λ(t)} be outputs in each iteration and { f̂ ∗,Λ∗} a pair satisfying (2.22)(2.23). Denote DM =

diag([M2
1; M2

2; · · · ; M2
N]) ∈RN×N with 0 < Mi < +∞ as given in Assumption 4. If ηi(t + 1) ≥ ηi(t) > 0

and ηi(t) < +∞ hold and the following two conditions can also be satisfied for some constants L > 0
and µ > 1:

(i) I + W(t + 1)(D + A)D̃(t)−1 �
Lµ

2σmin(D̃(t))
(W(t + 1)(D−A))+DM ;

(ii) W(t + 1)(D + A) � W(t + 1)(D + A)D̃(t)−1
(
W(t)(D−A)

+
2
L

W(t + 1)(D + A)
)
+

Lµ
2σmin(D̃(t))(µ−1)

DM .
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where σmin(D̃(t)) = min
i
{2ηi(t)Vi +γ} is the smallest singular value of D̃(t), then ( f̂ (t),Λ(t)) con-

verges to ( f̂ ∗,Λ∗).

By controlling γ to be sufficiently large, D̃(t)ii = 2ηi(t)Vi +γ will be large and conditions (i)(ii)

can always be satisfied under some constants L > 0 and µ > 1. Note that the conditions (i)(ii) are
sufficient but not necessary, so in practice convergence may be attained under weaker settings.

For R-ADMM, take L = 2 and µ = 2, then condition (i)(ii) are reduced to:

(iii) I +η(D + A)D̃−1 �
2

ησmin(D̃)
((D−A))+DM ;

(iv) η(D + A) � 2η(D + A)D̃−1ηD +
2

σmin(D̃)
DM .

Again for a sufficiently large γ ≥ 0, (iii)(iv) can be easily satisfied.

2.5 Private Algorithms

In this section we present privacy preserving versions of M-ADMM and MR-ADMM. Since MR-
ADMM is a generalized version of R-ADMM, the private version of R-ADMM can be built in a
similar way.

2.5.1 Private M-ADMM

A random noise εi(t + 1) with probability density proportional to exp{−αi(t + 1)||εi(t + 1)||2} is added
to penalty term in the objective function of (2.10):

Lpriv
i (t + 1) = O( fi,Di) + 2λi(t)T fi +ηi(t + 1)

∑
j∈Vi

|| fi + εi(t + 1)−
1
2

( fi(t) + f j(t))||22 (2.44)

To generate this noisy vector, choose the norm from the gamma distribution with shape d and scale
1

αi(t+1) and the direction uniformly, where d is the dimension of the feature space. Then node i’s
local result is obtained by finding the optimal solution to the private objective function:

fi(t + 1) = argmin
fi

Lpriv
i (t + 1), i ∈N . (2.45)
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It is equivalent to (2.48) below when noise ηi(t + 1)Viεi(t + 1) is added to the dual variable λi(t):

argmin
fi

L̃priv
i (t + 1) = O( fi,Di) + 2(λi(t) +ηi(t + 1)Viεi(t + 1))T fi (2.46)

+ηi(t + 1)
∑
j∈Vi

|| fi−
1
2

( fi(t) + f j(t))||22 .

Further, if ηi(t +1) = η = θ,∀i, t, then the above is reduced to the dual variable perturbation in [147]2.
The complete procedure is shown in Algorithm 1, where the condition used to generate θ helps

bound the worst-case privacy loss but is not necessary in guaranteeing convergence.

Algorithm 1: Private M-ADMM
Input: {Di}

N
i=1, {αi(1), · · · ,αi(K)}Ni=1

Initialize: Generate fi(0) randomly and λi(0) = 0d×1 for every node i ∈N , t = 0
Parameter: Determine θ such that 2c1 <

Bi
C ( ρN + 2θVi) holds for all i.

for t = 1 to T do
for i = 1 to N do

Generate noise εi(t + 1) ∼ exp(−αi(t + 1)||ε||2);
Perturb the penalty term according to (2.47);
Update primal variable via (2.47);

for i = 1 to N do
Broadcast fi(t + 1) to all neighbors j ∈ Vi;

for i = 1 to N do
Update dual variable according to (2.11);

Output: Upper bound of the total privacy loss β; primal { fi(T )}Ni=1, dual {λi(T )}Ni=1

2.5.2 MR-ADMM

In odd iterations, we adopt the objective perturbation [24] directly where a random linear term
εi(2k−1)T fi is added to the objective function in (2.14) 3, where εi(2k−1) follows the probability
density proportional to exp{−αi(k)||εi(2k−1)||2}. Consequently the objective function for updating

2Only a single iteration is considered in [147] while imposing a privacy constraint. Since we consider the entire
iterative process, we don’t impose per-iteration privacy constraint but calculate the total privacy loss.

3Pure differential privacy was adopted in this work, but the weaker (ε,δ)-differential privacy can be applied as well.
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the primal variable fi(2k−1) becomes Lpriv
i (2k−1) given as follows:

Lpriv
i (2k−1) = O( fi,Di) + (2λi(2k−2) + εi(2k−1))T fi

+ηi(2k−1)
∑
j∈Vi

||
1
2

( fi(2k−2) + f j(2k−2))− fi||22.

To generate this noisy vector εi(2k−1), choose the norm from the gamma distribution with shape d

and scale 1
αi(k) and the direction uniformly, where d is the dimension of the feature space. Node

i’s local result (primal variable) is obtained by finding the optimal solution to the private objective
function:

fi(2k−1) = argmin
fi

Lpriv
i (2k−1), i ∈N . (2.47)

In the 2k-th iteration, use the stored results εi(2k−1)+∇O( fi(2k−1),Di) and ηi(2k−1)
∑

j∈Vi( fi(2k−

1)− f j(2k−1)) to update primal variables, where the latter can be obtained from the dual update
in the (2k−1)-th update, and the former can be obtained directly from the KKT condition in the
(2k−1)-th iteration:

εi(2k−1) +∇O( fi(2k−1),Di) = −2λi(2k−2)−ηi(2k−1)
∑
j∈Vi

(2 fi(2k−1))− fi(2k−2)− f j(2k−2)) .

Then the even update is given by:

fi(2k) = fi(2k−1)−
1

2ηi(2k−1)Vi +γ
{2λi(2k−1) + εi(2k−1) +∇O( fi(2k−1),Di)︸ ︷︷ ︸

the existing result by KKT

+ηi(2k−1)
∑
j∈Vi

( fi(2k−1)− f j(2k−1))︸ ︷︷ ︸
the existing result by the previous dual update

} . (2.48)

Algorithm 2 shows the complete procedure, where the condition used to generate ηi(1) helps to
bound the worst-case privacy loss but is not necessary in guaranteeing convergence.
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Algorithm 2: Private MR-ADMM
Input: {Di}

N
i=1, {αi(1), · · · ,αi(K)}Ni=1

Initialize: ∀i, generate fi(0) randomly, λi(0) = 0d×1
Parameter: ∀i, select {ηi(2k−1)}Kk=1 s.t. 0 < ηi(2k−1) ≤ ηi(2k + 1) < +∞, ∀k and ηi(1)
satisfies 2c1 < mini{

Bi
C ( ρN + 2ηi(1)Vi)}

for k = 1 to K do
for i = 1 to N do

Generate noise εi(2k−1) ∼ exp(−αi(k)||ε ||2);
Update primal variable fi(2k−1) via (2.47);
Broadcast fi(2k−1) to all neighbors j ∈ Vi.

for i = 1 to N do
Calculate ηi(2k−1)

∑
j∈Vi( fi(2k−1)− f j(2k−1));

Update dual variable λi(2k−1) via (2.17).
for i = 1 to N do

Use the stored information εi(2k−1) +∇O( fi(2k−1),Di) and
ηi(2k−1)

∑
j∈Vi( fi(2k−1)− f j(2k−1)) to update primal variable fi(2k) via (2.48);

Keep the dual variable λi(2k) = λi(2k−1);
Broadcast fi(2k) to all neighbors j ∈ Vi.

Output: Upper bound of the total privacy loss β; primal { fi(2K)}Ni=1, dual {λi(2K)}Ni=1

2.6 Privacy Analysis

In this section, we characterize the total privacy loss of private M-ADMM and private MR-ADMM
as presented in Algorithms 1 and 2. Similar to the previous section, the results also apply to private
R-ADMM by fixing ηi(2k−1) = η, ∀k.

As mentioned earlier, Zhang and Zhu [147] only quantifies the privacy loss of a single node in a
single iteration, i.e., Pr( fi(t)∈S i|Di)

Pr( fi(t)∈S i|D̂i)
≤ exp(αi(t)) holds ∀t, i, where αi(t) is the bound on the privacy loss

of node i at iteration t. However, in a distributed and iterative setting, the “output” of the algorithm
is not merely the end result, but includes all intermediate results generated and exchanged during
the iterative process; an attacker can use all such intermediate results to perform inference. For this
reason, we adopt the differential privacy definition proposed in [149] as follows, which bounds the
total privacy loss during the entire iterative process.

Definition 1. Consider a connected network G(N ,E ) with a set of nodes N = {1,2, · · · ,N}. Let

f (t) = { fi(t)}Ni=1 denote the information exchange of all nodes in the t-th iteration. A distributed

algorithm is said to satisfy β-differential privacy during T iterations if for any two datasets Dall =
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∪iDi and D̂all = ∪iD̂i, differing in at most one data point, and for any set of possible outputs S

during T iterations, the following holds:

Pr({ f (t)}Tt=0 ∈ S |Dall)

Pr({ f (t)}Tt=0 ∈ S |D̂all)
≤ exp(β)

The analysis is focused on the regularized empirical risk minimization (ERM) problem for
binary classification, while its generalization is discussed in Section 2.8. Let node i’s dataset be
Di = {(xn

i ,y
n
i )|n = 1,2, · · · ,Bi}, where xn

i ∈ R
d is the feature vector representing the n-th sample

belonging to i, yn
i ∈ {−1,1} the corresponding label, and Bi the size of Di. Then the sub-objective

function for each node i is defined as follows:

O( fi,Di) =
C
Bi

Bi∑
n=1

L (yn
i f T

i xn
i ) +

ρ

N
R( fi) ,

where C ≤ Bi and ρ > 0 are constant parameters of the algorithm, the loss function L (·) measures
the accuracy of the classifier, and the regularizer R(·) helps prevent overfitting.

For this binary classification problem, we now state results on the privacy property of the private
M-ADMM (Algorithm 1) and private MR-ADMM (Algorithm 2) using Definition 1 above and
additional assumptions on L (·) and R(·) as follows.

Assumption 5. The loss function L is strictly convex and twice differentiable. |∇L | ≤ 1 and

0 <L ′′ ≤ c1 with c1 being a constant.

Assumption 6. The regularizer R is 1-strongly convex and twice continuously differentiable.

2.6.1 Private M-ADMM

Theorem 4. Normalize feature vectors in the training set such that ||xn
i ||2 ≤ 1 for all i ∈N and n.

Then the private M-ADMM algorithm (Algorithm 1) satisfies the β-differential privacy with

β ≥max
i∈N
{

T∑
t=1

C(1.4c1 +αi(t))
ηi(t)ViBi

} . (2.49)

32



2.6.2 Private MR-ADMM

Lemma 2. Consider the private MR-ADMM (Algorithm 2), ∀k = 1, · · ·K, assume the total privacy

loss up to the (2k−1)-th iteration can be bounded by β2k−1, then the total privacy loss up to the

2k-th iteration can also be bounded by β2k−1. In other words, given the private results in odd

iterations, outputting private results in the even iterations does not release more information about

the input data.

Theorem 5. Normalize feature vectors in the training set such that ||xn
i ||2 ≤ 1 for all i ∈N and n.

Then the private MR-ADMM algorithm (Algorithm 2) satisfies the β-differential privacy with

β ≥max
i∈N
{

K∑
k=1

2C
Bi

(
1.4c1

( ρN + 2ηi(2k−1)Vi)
+αi(k))} . (2.50)

2.7 Sample Complexity Analysis.

We next quantify the generalization performance of (non)-private MR-ADMM, the same technique
can be applied to M-ADMM. The analysis is focused on the ERM problem defined above and we
assume samples from each node i are drawn i.i.d. from a fixed distribution P. The expected loss
of node i using classifier fi(t) at time t is given as L( fi(t)) = E(X,Y)∼P(L (Y fi(t)T X)). Similar to the
analysis in [24,147], we introduce a reference classifier fre f with expected loss L( fre f ) and evaluate
the generalization performance using the number of samples (Bi) required at each node to achieve
L( fi(t)) ≤ L( fre f ) +τ with high probability.

2.7.1 Non-Private MR-ADMM

As shown in Section 2.3.3, the sequence of outputs { f non
i (2k−1)} from odd iterations in non-private

MR-ADMM converges to f ∗i = f ∗c as k→∞. Therefore, there exists a constant ∆i(k) for each
node i at the (2k−1)-th iteration such that L( f non

i (2k−1)) ≤ L( f ∗c ) + ∆i(k). Using the same method
as [24, 147], we have the following result.

Theorem 6. Consider a regularized ERM problem with regularizer R( f ) = 1
2 || f ||

2 and let fre f be

a reference classifier for all nodes and { f non
i (2k − 1)} be a sequence of outputs of non-private
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MR-ADMM in odd iterations (Eqn. (2.16)). If the number of samples at node i satisfies

Bi ≥ wmax
k

{ || fre f ||
2 log(1/δ)

(τ−∆i(k))2

}
for some constant w, then f non

i (2k−1) satisfies

Pr(L( f non
i (2k−1)) ≤ L( fre f ) +τ) ≥ 1−δ

where τ > ∆i(k), ∀i,k ∈ Z+.

As expected, the number of required samples depends on the choice of the reference classifier via
its l2 norm || fre f ||

2, by imposing an upper bound bre f on || fre f ||
2. The result shows that if Bi satisfies

Bi ≥ wmaxk{
bre f log(1/δ)
(τ−∆i(k))2 }, then the non-private intermediate classifier of each node at odd iterations

will have an additional error no more than τ as compared to any classifier with || fre f ||
2 ≤ bre f .

2.7.2 Private MR-ADMM

We next present the result on the sample complexity of the private MR-ADMM algorithm. Similar
to the analysis of non-private MR-ADMM, we bound the error of the intermediate classifier of each
node at odd iterations. Since the algorithm is perturbed with different random noise in different
iterations, to better analyze the effect of noise in a single iteration, we adopt a strategy similar
to that used in [147], by intentionally fixing the noise in iterations after the targeted iteration.
Specifically, ∀i, to compare the private f priv

i (2k − 1) at the (2k − 1)-th iteration with reference
classifier fre f , we slightly modify Algorithm 2 such that ∀k′ > k, the added noise is fixed at
εi(2k′−1) = εi(2k−1), which allows us to solely study the effect of εi(2k−1). This problem can
be formulated as a new MR-ADMM optimization problem where node i’s sub-objective function
becomes Onew( fi,Di) = O( fi,Di) + εi(2k− 1)T fi and the initialization given by fi(0) = fi(2k− 1),
λi(0) = λi(2k− 1). Let { f new

i (2k− 1)} be a sequence of outputs from odd iterations of this new
algorithm; it converges to a fixed point f ∗new as k→∞. Therefore, there exists a constant ∆new

i (k) for
each node i at the (2k−1)-th iteration such that L( f new

i (2k−1)) ≤ L( f ∗new) + ∆new
i (k). Using this, we

have the following result.

Theorem 7. Consider a regularized ERM problem with regularizer R( f ) = 1
2 || f ||

2, let fre f be a

reference classifier for all nodes and { f priv
i (2k−1)} be a sequence of outputs of private MR-ADMM
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in odd iterations. If the number of samples at node i satisfies

Bi ≥ wmax
k

{ CN log(1/δ)
NC(τ−∆new

i (k))2

2|| fre f ||2
− (1 + a) Nd2

C(αi(k))2 (log(d/δ))2

}

for some constants w and a > 0, then f priv
i (2k−1) satisfies

Pr(L( f priv
i (2k−1)) ≤ L( fre f ) +τ) ≥ 1−2δ

where τ > ∆new
i (k), ∀i,k ∈ Z+.

Compared to Theorem 6, we see an additional term imposed by the privacy constraints, i.e.,
(1 + a) Nd2

C(αi(k))2 (log(d/δ))2. If αi(k)→∞, the result reduces to Bi ≥ wmaxk{
2|| fre f ||

2 log(1/δ)
(τ−∆new

i (k))2 }, the same
as given in Theorem 6. The additional term shows that the higher dimension of features, the more
injected noise, which would require more samples to achieve the same accuracy.

2.8 Discussion

Improving privacy-accuracy trade-off. We now provide some intuitive explanation as to why
the ideas presented in this chapter work. We explored two key ideas to improve the privacy-accuracy
tradeoff of a differentially private algorithm. The first is to accomplish the computational task by
repeatedly using the already released differentially private outputs. Utilizing differential privacy’s
immunity to post-processing, this information recycling incurs no additional privacy loss. Since less
information is revealed during computation, less perturbation is required to obtain the same privacy
guarantee, which then improves the privacy-accuracy tradeoff. The second idea is to improve the the
stability/robustness of the algorithm by directly controlling the penalty parameter. This allows the
algorithm to accommodate more noise to improve privacy without sacrificing too much accuracy,
which improves the privacy-accuracy tradeoff.

Other perturbation methods and privacy analysis tools. While we have primarily used ob-
jective perturbation to make an algorithm differentially private and to calculate the privacy loss,
it should be noted that this is done as an example to illustrate how MR-ADMM can outperform
both R-ADMM and ADMM in the privacy-accuracy tradeoff. Other perturbation methods such as
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output perturbation to achieve differential privacy (each node perturbs its primal variable before
broadcasting to its neighbors) can be used as well; our conclusion would still hold. This is because
our key ideas (revealing less information and making the algorithm more robust/stable to noise via
the penalty parameter) are orthogonal to the choice of the perturbation method.

Similarly, in our privacy analysis we have adopted the notion of pure ε-differential privacy
to measure privacy. As a result, the bound on the total privacy loss can be fairly large. It is also
possible to adopt a weaker notion, the (ε,δ)-differential privacy, to find a tighter bound on privacy
loss by allowing the algorithm to violate ε-differential privacy with a small probability δ. In this
case, the total privacy loss can be calculated using more advanced composition theorems such as
moments accountant [4] and zero-concentrated differential privacy [22]. However, our key ideas
(revealing less information and making the algorithm more robust/stable to noise via the penalty
parameter) are orthogonal to the choice of the privacy definition and analysis tools used; thus the
algorithmic properties will not be affected by such choices and the conclusion remains valid.

Privacy analysis for a broader class of optimizations In Section 2.6, the privacy property of
the private algorithms is analyzed for the ERM binary classification problem. This privacy analysis
can be extended to more general forms of O( fi,Di), such as multi-class settings. There have been
extensive studies on the differentially private ERM with convex loss function [132], which can also
be adopted for our framework.

2.9 Numerical Experiments

We use the same dataset as [147], i.e., the Adult dataset from the UCI Machine Learning Repository
[99]. It consists of personal information of around 48,842 individuals, including age, sex, race,
education, occupation, income, etc. The goal is to predict whether the annual income of an individual
is above $50,000.

To preprocess the data, we (1) remove all individuals with missing values; (2) convert each
categorical attribute (with m categories) to a binary vector of length m; (3) normalize columns
(features) such that the maximum value of each column is 1; (4) normalize rows (individuals)
such that its l2 norm is at most 1; and (5) convert labels {≥ 50k,≤ 50k} to {+1,−1}. After this
preprocessing, the final data includes 45,223 individuals, each represented as a 105-dimensional
vector of norm at most 1. We then randomly partition this sample set into a training set (40,000
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samples) and a testing set (5,223 samples). The training samples are then evenly distributed across
nodes in a network.

We use as loss function the logistic loss L (z) = log(1+exp(−z)), with |L ′| ≤ 1 and L ′′ ≤ c1 = 1
4 .

The regularizer is R( fi) = 1
2 || fi||

2
2. We measure the accuracy of the algorithm by the average loss over

the training set:

L(t) :=
1
N

N∑
i=1

1
Bi

Bi∑
n=1

L (yn
i fi(t)T xn

i ),

and the classification error rate over the testing set Stest:

E =

∑
(x j,y j)∈Stest 1(y j 6= ŷ j)∑

(x j,y j)∈Stest 1
,

where ŷ j is the prediction of sample (x j,y j) by using the averaged classifier f̄ (t) = 1
N
∑N

i=1 fi(t), and
each fi(t) is the local classifier(primal variable) of node i after t iterations.

We measure the privacy of an algorithm by the upper bound P(t) given in Theorems 4 and 5.
The smaller L(t) and P(t), the higher accuracy and stronger privacy guarantee.

2.9.1 Convergence of Non-Private M-ADMM, R-ADMM & MR-ADMM

We consider a five-node network and assign each node the following private penalty parameters:
ηi(t) = ηi(1)qt−1

i for node i, where [η1(1), · · · ,η5(1)] = [0.55,0.65,0.6,0.55,0.6] and [q1, · · · ,q5] =

[1.01,1.03,1.1,1.2,1.02].
Figure 2.1a shows the convergence of M-ADMM under these parameters while using a fixed

dual updating step size θ = 0.5 across all nodes (blue curve). This is consistent with Theorem 1.
As mentioned earlier, this step size can also be non-fixed (black) and different (red) for different
nodes. In Figure 2.1b we let each node use the same penalty ηi(t) = η(t) = 0.5qt−1

1 and compare the
results by increasing q1 ≥ 1. We see that increasing penalty slows down the convergence, and larger
increase in q1 slows it down more, which is consistent with Theorem 2.

Figure 2.2a shows the convergence of R-ADMM with different γ and fixed η = 0.5 for a small
network (N = 5) and a large network (N = 20), both are randomly generated. Due to the linear
approximation in even iterations, it’s possible to cause an increased average loss as shown in the
plot. However, the odd iterations will always compensate this increase; if we only look at the odd
iterations, R-ADMM achieves a similar convergence rate as conventional ADMM. γ can also be

37



0 10 20 30 40 50

t

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

A
v
e
ra

g
e
 L

o
s
s

[
1
(t), ... ,

5
(t)] = [0.5,0.4,0.3,0.5,0.35]

i
(t) = 0.5

i
(t) = 

i
(t)

(a) Different ηi(t)

0 10 20 30 40 50

t

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

A
v
e
ra

g
e
 L

o
s
s

(t) = 0.5 , q
1
 = 1

(t) = 0.5 , q
1
 = 1.01

(t) = 0.5 , q
1
 = 1.03

(t) = 0.5 , q
1
 = 1.05

(b) Increasing penalty

Figure 2.1: Convergence properties of M-ADMM.

thought of as an extra penalty parameter for each node in even iterations to punish its update, i.e.,
the difference between fi(2k) and fi(2k−1). Larger γ can result in smaller oscillation between even
and odd iterations but will also lower the convergence rate.

Figures 2.2b and 2.2c show the convergence of MR-ADMM with penalty parameters ηi(2k−1)
increasing at different speed. We see that increasing penalty slows down the convergence, and
larger increase in q1(i) slows it down more. In 2.2b, each node adopts different penalty parameter
ηi(2k−1) in each iteration while in 2.2c, the same penalty parameter is shared among all the nodes.
The convergence is attained in both cases.

2.9.2 Private M-ADMM, R-ADMM & MR-ADMM
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Figure 2.3: The effect of ρ,
fixing C = 1750.

The effect of ρ, γ, ηi(2k−1) in (M)R-ADMM. We next inspect
the accuracy and privacy of the private M-ADMM, R-ADMM and
MR-ADMM, and compare it with the private (conventional) ADMM
using dual variable perturbation (DVP) [147].

To begin, we first examine the effect of ρ in controlling overfit-
ting. Figure 2.3 shows the classification error rate over the testing
set under different ρ, where the classifiers are trained with original
ADMM and the algorithm runs for 50 iterations. Since the classi-
fication error rate is minimized at ρ ≈ 0.22, we will use ρ = 0.22 in
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Figure 2.2: Convergence properties of R-ADMM and MR-ADMM: Figure 2.2a illustrates the
average loss over iterations of R-ADMM for the network of different sizes under fixed η = 0.5 and
different γ. Dashed (resp. solid) curves represent the performance over a randomly generated small
(resp. large) network with N = 5 (resp. N = 20) nodes. Figures 2.2b and 2.2c illustrate the average
loss over iterations of MR-ADMM for a randomly generated network with N = 5 nodes. Black
curve represents the R-ADMM where ηi(t) = η = 1 is fixed for all nodes and all iterations. Each
colored curve represents MR-ADMM with ηi(2k−1) increasing over iterations at different speed.
In Figure 2.2b, each node i adopts ηi(2k−1) = ηiq1(i)k as penalty parameter in 2k−1-th iteration,
where [η1, · · · ,η5] = [1,1.03,1.02,0.8,1.01], q1 = [q1(1), · · · ,q1(5)] = 1 + kq2 (each k ∈ {1, · · · ,5}
corresponds to one curve in plot) and q2 = [q2(1), · · · ,q2(5)] = [0.01,0.005,0.003,0.015,0.01]. In
Figure 2.2c, each node adopts the same penalty parameter ηi(2k−1) = qk

1 in odd iterations.
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the following experiments.
For simplicity of presentation, in the next set of experiments the penalty ηi(t) = η(t) in both

M-ADMM and MR-ADMM and noise αi(k) = α,∀i,k. We observe similar results when αi(t), ηi(t)
vary from node to node.

For each parameter setting, we perform 10 independent runs of the algorithm, and record both
the mean and the range of their accuracy. Specifically, Ll(t) denotes the average loss over the
training dataset in the t-th iteration of the l-th experiment (1 ≤ l ≤ 10). The mean of average loss
is given by Lmean(t) = 1

10
∑10

l=1 Ll(t) and the range Lrange(t) = max
1≤l≤10

Ll(t)− min
1≤l≤10

Ll(t). The larger the

range Lrange(t) the less stable the algorithm, i.e., under the same parameter setting, the difference
in performances (convergence curves) of two experiments is larger. In the next few plots, Lrange(t)
is shown as the size of a vertical bar centered at Lmean(t). Similarly, let El be the classification
error rate over the testing set in the l-th experiment, with an average error rate Emean = 1

10
∑10

l=1 El

and range Erange = max
1≤l≤10

El− min
1≤l≤10

El shown as the size of a vertical bar centered at Emean. Each

parameter setting also has a corresponding upper bound on the privacy loss denoted by P(t).
In the non-private case, γ controls the oscillation between even and odd iterations, as well as the

convergence rate. We now examine its effect when MR-ADMM is perturbed. Figure 2.5 shows
the average loss over the training set (Figure 2.5a2.5b) and the classification error rate over the
testing set (Figure 2.5c) under different γ > 0, noting that the corresponding privacy loss of these
cases are the same under the same α. It shows that varying γ (within a certain range) does not effect
performance significantly. For the next set of experiments, we fix γ = 0.5.

The effect of ηi(2k − 1) on the performance of private MR-ADMM is illustrated in Figure
2.6, where the pair Figure 2.6a, 2.6c is for the case when noise parameter is α = 2 (low privacy
requirement) and the pair Figure 2.6b, 2.6d is for the case when α = 1 (high privacy requirement).
Although increasing ηi(2k− 1) over time can decrease the convergence rate of non-private MR-
ADMM (Figures 2.2b and 2.2c), it helps to stabilize the algorithm when MR-ADMM is perturbed
and can improve the accuracy while maintain the privacy guarantee. Moreover, the improvement is
more significant when algorithm is under higher perturbation (high privacy requirement) and when
ηi(2k−1) increases faster (within a range).

Performance comparison among different algorithms. Our last set of experiments is conducted
to compare the performance of different algorithms with results illustrated in Figures 2.7 and 2.4.
The noise parameters of both MR-ADMM and R-ADMM are set as α shown in the plots, and the
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noise parameters of conventional ADMM and M-ADMM are chosen respectively such that they
have approximately the same total privacy loss bounds. We set ηi(2k−1) = 1.04k in MR-ADMM.
We see that both private R-ADMM (red) and private MR-ADMM (magenta) outperform private
ADMM (black) and M-ADMM (blue) with higher accuracy and lower privacy loss. In particular,
the private MR-ADMM (magenta) has the highest accuracy with the lowest privacy loss among all
algorithms; the improvement is more significant with smaller total privacy loss. This improvement
is also illustrated by the classification error rate over the testing set in Figure 2.4d.
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Figure 2.4: Performance comparison: Figures 2.4a, 2.4b and 2.4c illustrate the upper bound of their
privacy loss and the corresponding classification error rates are shown in Figure 2.4d.
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(b) Accuracy comparison for different γ (α = 2)
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Figure 2.5: The effect of γ on the performance of MR-ADMM, fixing ηi(2k−1) = 1.01k: in Figures
2.5a and 2.5b, green curves represent the non-private conventional ADMM while other curves
represent the private MR-ADMM with different γ and each of them illustrates the overall result
summarized from 10 independent runs of experiments under the same parameter. The corresponding
classification error rates are shown in Figure 2.5c. It shows that varying γ within a certain range
doesn’t effect the performance significantly.
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Figure 2.6: The effect of ηi(2k−1) on the performance of MR-ADMM, fixing γ = 0.5: in Figures
2.6a and 2.6b, green curves represent the non-private conventional ADMM while other curves
represent the private MR-ADMM with different ηi(2k−1) = qk

1 (q1 = 1.01,1.02,1.03,1.04,1.05)
and each of them illustrates the overall result summarized from 10 independent runs of experiments
under the same parameter. Figures 2.6c and 2.6d illustrate the upper bound of their privacy loss and
the corresponding classification error rates are shown in Figure 2.6e.
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(b) Accuracy comparison (α = 1)
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Figure 2.7: Performance comparison: in Figures 2.7a, 2.7b and 2.7c, green curves represent the
non-private conventional ADMM while other curves represent different private algorithms and each
of them illustrates the overall result summarized from 10 independent runs of experiments under the
same parameter. M-ADMM (blue) and MR-ADMM (magenta) adopt the varied penalty parameter
while ADMM (black) and R-ADMM (red) adopt the fixed ηi(t) = η = 1.
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CHAPTER 3

Real-Time Release of Sequential Data with
Differential Privacy

3.1 Introduction

In Chapter 2, we explored two ideas that can be leveraged to improve an algorithm’s privacy-
accuracy tradeoff: (1) reuse intermediate computations to reduce information leakage; (2) improve
the robustness to accommodate more noise. These two ideas are not limited to distributed learning
but are applicable to many other applications. In this chapter, we consider sequential computation
and illustrate how can we leverage idea (1) when designing an algorithm for privately releasing the
sequential data in real-time.

The collection and analysis of sequential data are crucial for many applications, such as moni-
toring web browsing behavior, analyzing daily physical activities recorded by wearable sensors, and
so on. Privacy concerns arise when data is shared with third parties, a common occurrence. Toward
this end, differential privacy [35] has been widely used to provide a strong privacy guarantee; it is
generally achieved by disclosing a noisy version of the underlying data so that changes in the data
can be effectively obscured.

To achieve differential privacy in sharing sequential data, a simple approach is to add inde-
pendent noise to the data at each time instant (Figure 3.1a). This is problematic because of the
temporal correlation in the data (see Section 3.3). A number of studies have attempted to address
this issue. For example, [121] applies Discrete Fourier Transform (DFT) of the sequence and
release a private version generated using inverse DFT with the perturbed DFT coefficients; [133]
proposes a correlated perturbation mechanism where the correlated noise is generated based on
the autocorrelation of the original sequence; [80] decomposes the sequence into disjoint groups of
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similar data, and uses the noisy averages of these groups to reconstruct the original sequence; [138]
constructs a Hidden Markov Model (HMM) from the independent-noise-added data sequence,
and releases the sequence inferred from the HMM; method proposed in [44] first reconstructs the
non-sampled data from perturbed sampled points and then solves a convex optimization to improve
accuracy. However, all of the above studies rely on the availability of the entire sequence, so can
only be applied offline as post-processing methods. [41] are the closest to our work, where the
sequence is adaptively sampled first; Kalman/particle filters are then used to estimate non-sampled
data based on the perturbed sampled data. However, it requires a priori knowledge of the correlation
of the sequence.

In this chapter we start from sequential data that can be modeled by first-order autoregressive
(AR(1)) processes. We consider Gaussian AR(1) process and Binomial AR(1) process as examples
but the idea can be generalized to all (weakly) stationary processes. Leveraging time-invariant
statistical properties of stationary process, proposed approach in each time step estimates the
unreleased, future data from that already released, using correlation learned over time and not
required a priori. This estimate is then used, in conjunction with the actual data observed in the
next time step, to drive the generation of the noisy, released version of the data (Figure 3.1b). Both
theoretical analysis and empirical results show that our approach can release a sequence of high
accuracy with less privacy loss.

Our main findings and contributions are as follows.

1. We develop a method for releasing data sequence in real time with differential privacy
guarantee (Sections 3.4).

2. We conduct privacy and accuracy analyses to theoretically quantify the total privacy loss
(Section 3.5) and error (Section 3.6).

3. For sequences following Gaussian AR(1) processes, we show erotically that the proposed
method can strictly outperform the baseline method (Section 3.6).

4. We conduct experiments on real-world data to show the effectiveness of our method.

The rest of the chapter is organized as follows. Section 3.2 presents background and prelimi-
naries. Section 3.3 introduces the baseline approach and its issues. Our approach is presented and
analyzed in Sections 3.4, 3.5 and 3.6. Section 3.7 presents Discussion. Experiments are presented
in Section 3.8. All proofs are presented in Appendix B.
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3.2 Preliminaries

Consider a time-varying sequence {Zt}
T
t=1, where Zt ∈R corresponds to a query over a private dataset

Dt at time t ∈ N, i.e., Zt = Q(Dt). Dataset Dt = {di
t}

N
i=1 consists of data from N individuals (N ≥ 1)

where di
t is the data of ith individual at time step t. Then di

1:T = {di
t}

T
t=1 is the data of ith individual

over T time steps and D = {di
1:T }

N
i=1 includes sequences of N individuals over T time steps.

We assume {Zt}
T
t=1 can be modeled as a first-order autoregressive (AR(1)) process [135], where

the value at each time depends linearly on the value at immediate preceding time step, but we will see
the approach can be generalized to any (weakly) stationary process. The goal is to disclose/release
this data in real time with privacy guarantees for each individual at all times. We denote by {Xt}

T
t=1

the released sequence. Notationally, we will use X to denote a random variable with probability
distribution FX(·), x its realization and X̂(y) the estimate of X given observation Y = y; finally,
X1:t := {Xi}

t
i=1.

3.2.1 First-Order Autoregressive Process

AR(1) processes are commonly used for modeling a time-series, among which Gaussian AR(1)
process is one type that is widely used in various domains.

Definition 2 ((Gaussian AR(1) process)). Z1:T is a Gaussian AR(1) process [135] if:

Zt = α+ρZt−1 + Ut, t ≥ 1 (3.1)

where Ut
i.i.d
∼ N (0,σ2

u), Z0 ∼ N (µ,σ2
z ) and σ2

u,α,ρ are constants. If |ρ| < 1, then {Zt}
T
t=1 is a

stationary Markov process with the following properties: (1) Zt ∼ N (µ,σ2
z ) with µ = α

1−ρ and

σ2
z =

σ2
u

1−ρ2 ; (2) its autocorrelation function is given by Corr(ZtZt−τ) = Corr(τ) = ρ|τ|.

In addition to Gaussian AR(1) process, we also consider Binomial AR(1) process defined as
follows.

Definition 3 (Binomial AR(1) process). Let π ∈ (0,1) and ρ ∈ [max(− π
1−π ,−

1−π
π ),1]. Define β =

π(1−ρ), α = β+ρ, and fix n ∈ N. Then Z1:T is a binomial AR(1) process [109] if:

Zt = α◦Zt−1 +β◦ (n−Zt−1), t ≥ 1 (3.2)
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where Z0 ∼ Binomial(n,π) and “◦” is called the thinning operator defined as a◦Zt−1 =
∑Zt−1

i=1 Yi,t−1,

where Yi,t−1, i = 1, · · · ,Zt−1 are i.i.d Bernoulli random variables with Pr(Yi,t−1 = 1) = a, and all

thinnings are independent of each other. Binomial AR(1) is also a stationary Markov process with the

following properties: (1) Zt ∼ Binomial(n,π); (2) its autocorrelation is Corr(ZtZt−τ) = Corr(τ) = ρ|τ|.

Binomial AR(1) is typically used for modeling integer-valued counts sequences. Consider n

independent entities, each of which can be either in state “1” or state “0”. Then Zt can be interpreted
as the number of entities in state “1” at time t. Eqn. (3.2) implies that this “1”-entity count (Zt) can
be given by the number of “1”-entities in the previous time instant that didn’t change state (α◦Zt−1)
plus the number of “0”-entities in the previous time instant that changed to state “1” (β◦ (n−Zt−1));
here α, β can be interpreted as the respective transition probabilities. Binomial AR(1) has been used
to model many real-world scenarios such as counts of computer log-ins and log-outs [136], daily
counts of occupied rooms in a hotel, etc.

3.2.2 Differential Privacy

In this chapter, we adopt notion of (ε,δ)- differential privacy. We consider the setting where each
individual’s data is of a sequential nature and a query Q over N individuals is released over T

time steps as it is generated. Within this context, x1:T = A(z1:T ) = A({Q(Dt)}Tt=1) and a randomized
algorithm A(·) is (ε,δ)-differentially private if FX1:T |Z1:T (x1:T |z1:T ) ≤ exp(ε) ·FX1:T |Z1:T (x1:T |̂z1:T )+δ

holds for any possible x1:T and any pairs of z1:T , ẑ1:T generated from D, D̂, where D, D̂ are datasets
differing in at most one individual’s sequence.1 It suggests that the released sequence x1:T should
be relatively insensitive to the change of one individual’s sequential data, thereby preventing the
meaningful inference about each individual from observing x1:T .

Definition 4 (Sensitivity of query Q at time t). Consider a query Q : D→ R taking a dataset as

input, the sensitivity of Q at t is defined as: ∆Qt = sup
∀Dt∼D̂t

|Q(Dt)−Q(D̂t)|, where Dt, D̂t ∈D are

two datasets at t different in at most one individual’s data.

Since Zt = Q(Dt), ∆Qt quantifies the maximum impact of an individual on Zt. In the rest of
chapter, unless explicitly stated, we consider scenarios where ∆Qt does not change over time and
simplify notation ∆Qt = ∆. If di

t ∈ {0,1}, ∀t and Q(Dt) =
∑N

i=1 di
t is count query (e.g., daily count of

patients), then ∆ = 1.

1If we express D in matrix form, i.e., D ∈ RN×T with Dit = di
t , then D and D̂ are different in at most one row.
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3.2.3 Minimum Mean Squared Error Estimate

The minimum mean squared error (MMSE) estimate of a random variable X given observation
Y = y is X̂(y) = argminh EX((X−h(Y))2|Y = y) = E(X|Y = y). If h(·) is constrained to be linear, i.e.,
h(Y) = k1Y +k2, then the corresponding minimization leads to the linear MMSE (LMMSE) estimate
and is given by X̂(y) = ρXY

σX
σY

(y−E(Y)) +E(X) with the mean squared error (MSE) = (1−ρ2
XY )σ2

X ,
where ρXY is the correlation coefficient of X and Y , σ2

X , σ2
Y the variance of X, Y respectively. Using

these properties, we have the following result.

Proposition 1. Consider a Gaussian AR(1) process Z1:T defined by (3.1), the MMSE estimate

of Zt+1 given Zt = zt is Ẑt+1(zt) = µ(1− ρ) + ρzt, with MSE σ2
z (1− ρ2). If we use a perturbed

Xi = Zi + Ni, i ∈ {1, · · · , t} to estimate Zt+1, where Ni ∼N (0,σ2
n) is the added noise, then the MMSE

estimate of Zt+1 given Xi = xi is

Ẑt+1(xi) = µ(1−ρt+1−i σ2
z

σ2
z +σ2

n
) +ρt+1−i σ2

z

σ2
z +σ2

n
xi

Proposition 2. Consider a Binomial AR(1) process Z1:T defined by (3.2), the MMSE estimate of

Zt+1 given Zt = zt is Ẑt+1(zt) = ρzt + nπ(1−ρ).If we use a perturbed Xi = Zi + Ni, i ∈ {1, · · · , t} with

Var(Nt) = m
2 to estimate Zt+1, then the LMMSE estimate of Zt+1 given Xi = xi is

Ẑt+1(xi) = nπ(1−ρt+1−i nπ(1−π)
nπ(1−π) + m

2
) +ρt+1−i nπ(1−π)

nπ(1−π) + m
2

xi

Note that for Gaussian AR(1) processes, both MMSE estimates Ẑt+1(zt), Ẑt+1(xi) are linear. For
Binomial AR(1), the MMSE estimate Ẑt+1(zt) is also linear, which may not hold for other AR(1)
processes. However, due to the simple form of linear MMSE estimate and its applicability to more
general random processes, we will solely focus on LMMSE estimates in this study.

3.3 Baseline Approach

The baseline approach (Figure 3.1a) provides differential privacy for a sequence z1:T by perturbing
each zt directly: xt = zt + perturbation. However, with this approach it is difficult to obtain a good
privacy-accuracy tradeoff for sequences spanning a long time horizon T .
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(a) Baseline approach
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n3 n4 nT−1 nT

(b) Proposed approach

Figure 3.1: Comparison of two data release methods:{zt}
T
t=1 is the true sequence, {xt}

T
t=1 the released

private sequence, Ẑt the estimate of zt learned from xt−1, and {nt}
T
t=1 the added noise.

The upper bound of the total privacy loss, εT , can be characterized as a log-likelihood ratio of
the released output under two sequences, which can be decomposed as follows:

log
FX1:T |Z1:T (x1:T |z1:T )
FX1:T |Z1:T (x1:T |ẑ1:T )

=

T∑
t=1

log
FXt |Zt(xt|zt)
FXt |Zt(xt|ẑt)

,

where the term log FXt |Zt (xt |zt)
FXt |Zt (xt |ẑt)

bounds the privacy loss at time t. As the total privacy loss is accumu-
lated over T time steps, balancing the privacy-accuracy tradeoff becomes more and more difficult as
T increases. As long as the variance of perturbation is finite, as T →∞, εT inevitably approaches
infinity.

We therefore proposal a method that can (i) improve the privacy-accuracy tradeoff significantly,
and (ii) bound the total privacy loss over an infinite horizon when the variance of perturbation is
finite.

3.4 The Proposed Approach

In our proposed method, data point xt at time step t is released based on the previous released data
xt−1 and its true value zt (shown in Figure 3.1b).

The idea behind our approach is based on two observations: (1) Since xt−1 is correlated with zt

through zt−1, we can use xt−1 to obtain an estimate2 of zt, denoted by Ẑt(xt−1), and release (perturbed

2This estimate can be obtained with or without the knowledge of the statistics of the AR(1) process; in the absence
of such knowledge one can employ a separate procedure to first estimate the statistics as detailed later in this section.
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version of) Ẑt(xt−1) instead of zt. (2) Since differential privacy is immune to post-processing [37],
using xt−1 to estimate zt does not introduce additional privacy loss. Thus, technically we can release
an initial x1 (perturbed version of z1), followed by the sequence xt = Ẑt(xt−1), t > 1. However, doing
so will lead to a fairly inaccurate released sequence compared to the original, for while the privacy
loss does not accumulate over time, the estimation error does. To balance the competing needs of
accuracy (having the released sequence resemble the true sequence) and privacy, one must calibrate
the released version using the true values.

ztzt−1

xt−1 Zˆt
xt

wt ntnt−1

1 − wt

Figure 3.2: A two-step illustration of the proposed
method: adding noise nt to the convex combina-
tion of estimate Ẑt(xt−1) and true value zt gives the
released xt.

There are different ways to calibrate the
released sequence. In this study, we shall
examine the use of the convex combination
(1−wt)Ẑt(xt−1)+wtzt, and the perturbed version
of this as the released xt. Examples of other ap-
proaches to calibrating released sequences are
discussed in Section 3.7. The weight parameter
wt serves four purposes:

(1) In addition to the perturbation σ2
n, wt can also be tuned to better balance the privacy-accuracy

tradeoff: larger wt results in a more accurate but less private sequence. In contrast, σ2
n is the only

means of controlling this tradeoff in the baseline method.
(2) If MSE is the measure of accuracy, then wt can also be used to balance the bias-variance

tradeoff. For a deterministic sequence z1:T with estimator Xt at t, Bias(Xt) = E(Xt) − zt and
MS E(Xt) = E((Xt − zt)2). The bias and variance can be controlled jointly by adjusting wt and
σ2

n, which can result in smaller MS E as MS E = Variance + Bias2. In contrast, x1:T is always
unbiased in the baseline method and MS E = Variance always holds.

(3) If we keep wt private, then the method can prevent certain attackers from knowing the detail
of the perturbation mechanism, resulting in stronger protection (Section 3.7).

(4) By adjusting wt, it is possible to release the sequence spanning an infinite horizon with
bounded total privacy loss (Section 3.5).

3.4.1 Estimate of Zt with Learned Correlation

We can estimate the true value Zt from xt−1 using the LMMSE estimate Ẑt(xt−1) given in Section 3.2.
However, it requires the knowledge of mean µ, variance σ2 and autocorrelation ρ of Z1:T , which
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Algorithm 3: Est
Input : x1:t−1, Var(Nt)
µ̂ = 1

t−1
∑t−1

i=1 xi

σ̂2 = max{ 1
t−2

∑t−1
i=1(xi− µ̂)2−Var(Nt),0}

ρ̂ =

∑t−2
i=1(xi−µ̂)(xi+1−µ̂)∑t−2

i=1(xi−µ̂)2 + 1
t−11{ρtrue > 0}3

Output : ρ̂, µ̂, σ̂2

may be unknown in reality and should be estimated. To avoid revealing more information about
z1:T , this estimate is obtained using only the released x1:T , as shown in Algorithm 3, where both µ̂
and σ̂2 are unbiased, and ρ̂ is adopted from [69]4.

Release xt with Estimate Ẑt(xt−1) and True Value zt. Given the estimated parameters µ̂, σ̂2 and
ρ̂, using results presented in Section 3.2, the LMMSE estimate Ẑt(xt−1) can be approximated as

Ẑt(xt−1) = µ̂t−1(1− ρ̂t−1
σ̂2

t−1

σ̂2
t−1 + Var(Nt)

) + ρ̂t−1
σ̂2

t−1

σ̂2
t−1 + Var(Nt)

xt−1 .

Take the convex combination of estimate Ẑt(xt−1) and true value zt with private weight wt, and
release:

xt = (1−wt)Ẑt(xt−1) + wtzt + perturbation .

3.4.2 Privacy Mechanism

The perturbation term in the released data adds privacy protection. Existing literature provides
methods on how to generate them. We shall adopt Gaussian mechanism [37] and bound the privacy
loss in terms of perturbation.

Lemma 3 (Gaussian Mechanism). Consider query Q :D→R with sensitivity ∆Q, and the Gaussian

mechanism G(d) =Q(d)+ N which adds zero-mean Gaussian noise N with variance σ2 to the output.

If σ ≥
∆Q
√

2log(1.25/δ)
ε for ε,δ ∈ (0,1), then it satisfies (ε,δ)-differential privacy.

Definition 5 (Binomial noise). We call random variable N the binomial noise if it is zero mean and

follows the shifted binomial distribution, i.e., N + m ∼ Binomial (2m, 1
2), whose probability mass

4Extra term 1
t−1 is used to correct the negative bias if there is prior knowledge of positive autocorrelation ρtrue > 0.
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Algorithm 4: Sequential Data Release Algorithm
Input :Sensitivity of query ∆, {Var(Nt)}t
for t = 1,2, · · · ,T do

Input : true state zt, weight wt
if t ≤ 2 then

wt = 1 ;
Release : xt = zt + nt.

else
ρ̂t−1, µ̂t−1, σ̂

2
t−1 = Est(x1:t−1,Var(Nt));

rt = ρ̂t−1
σ̂2

t−1
σ̂2

t−1+Var(Nt)
;

Release : xt = (1−wt)(µ̂t−1(1− rt) + rtxt−1) + wtzt + nt
Output : privacy parameter (εT , δT )

function (PMF) is

Pr(N = k) =

(
2m

k + m

)
1

22m , k ∈ {−m, · · · ,m−1,m},

with a variance m
2 .

Lemma 4 (Binomial Mechanism). Consider a query Q : D→ Z that takes data d ∈D as input and

outputs an integer. The Binomial mechanism B(d) = Q(d) + N adds binomial noise N with variance
m
2 to the output. If 1 ≤ ∆Q+ 2m+1

exp( ε
∆Q )+1 ≤ m + 1 for ε > 0, then the following holds:

(i) ∀ ε > 0, it satisfies (ε,δ)-differential privacy with:

δ = exp(−
1
m

(m−∆Q+ 1−
2m + 1

exp( ε
∆Q ) + 1

)2).

(ii) ∀ δ ∈ (0,1), it satisfies (ε,δ)-differential privacy with:

ε = ∆Q log(
2m + 1

m−∆Q+ 1−
√

m log 1
δ

−1).

Note that Binomial mechanism above is a generalization (for arbitrary sensitivity ∆Q) to the
version (for the case ∆Q = 1) first proposed in [36]. This is an approximation of the Gaussian
mechanism; it has a much looser bound compared to the latter and more noise is needed to ensure
a same level of privacy, which is consistent with the conclusion in [36]. However, the Gaussian
mechanism only works when ε < 1, while our Binomial mechanism does not have this restriction
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Figure 3.3: flowchart of the complete procedure

and is more suitable for a discrete setting.
The complete procedure of our method is illustrated in Figure 3.3 and given in Algorithm 4,

where nt is a realization of Gaussian noise Nt (or Binomial noise) when adopting the Gaussian (or
Binomial) mechanism. DH in Figure 3.3 represents the history data that can be used for estimating
parameters but won’t be revealed during this time horizon.

Note that the Gaussian/Binomial mechanism only specifies privacy parameters over one time
step. In the next section we specify (εT , δT ) over T steps.

3.5 Privacy Analysis

Next, we bound the total privacy loss when X1:T is released using Algorithm 4. Since the total
privacy loss is accumulated during T steps, various composition methods can be applied to calculate
(εT , δT ). We use the moments accountant method from [4] when Nt is Gaussian; the corresponding
result is given in Theorem 8. We use the composition theorem from [76] when Nt is Binomial with
the corresponding result given in Theorem 9.

Theorem 8. Let Zt = Q(Dt) and ∆ be the sensitivity of Q, ∀t. Consider Algorithm 4 using zero-

mean Gaussian noise with Var(Nt) = σ2
n, ∀t, that takes sequence z1:T as input and outputs x1:T . The

following holds.
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(i) Given any εT ≥
∆2

2σ2
n

∑T
t=1 w2

t , the algorithm satisfies (εT , δT )-differential privacy for

δT = exp
(( ∆2

σ2
n

∑T
t=1 w2

t

4
−
εT

2

)( εT
∆2

σ2
n

∑T
t=1 w2

t

−
1
2

))
.

(ii) Given any δT ∈ (0,1), the algorithm satisfies (εT , δT )-differential privacy for

εT = 2

√√√
∆2

2σ2
n

T∑
t=1

w2
t log(

1
δT

) +
∆2

2σ2
n

T∑
t=1

w2
t .

Theorem 8 says that if a sequence of noisy data is released following Algorithm 4 and the noise
has variance σ2

n, then with probability 1− δT , the total amount of privacy loss incurred to each
individual during T time steps is bounded by εT . Here σn

∆
represents the degree of perturbation and

wt is the weight on the true value. Smaller perturbation and larger weight result in higher privacy
loss. Because of the mapping between σ2

n and (εT , δT ), we have the following result.

Corollary 1. Let {wt}
T
t=1 be the weights used in generating x1:T in Algorithm 4. To satisfy (εT , δT )-

differential privacy, the variance of Gaussian noise should be:

σ2
n ≥

∆2 ∑T
t=1 w2

t

2εT + 4ln 1
δT
−4

√
(ln 1

δT
)2 + εT ln 1

δT

.

To guarantee (εT , δT )-differential privacy, the noise magnitude will depend on both wt and ∆.
Larger sensitivity means larger impact of each individual on the released information and thus
requires more perturbation for privacy protection; larger weights mean higher reliance on the true
value in the released information, thus more perturbation is needed.

Theorem 9. Let Zt = Q(Dt) and ∆ be the sensitivity of Q ∀t. Consider Algorithm 4 using Binomial

noise with Var(Nt) = m
2 , ∀t that takes sequence z1:T as input and outputs x1:T , ∀ δ̃ ∈ [0,1], if

1 ≤ wt∆ + 2m+1
exp( ε

wt∆
)+1 ≤ m + 1, ∀t, then the algorithm is (ε̃δ̃,1− (1− δ̃)

∏T
t=1(1− δt))-differentially

private for:

ε̃δ̃ = min
{∑T

t=1 εt,
∑T

t=1
(eεt−1)εt

eεt +1 +

√∑T
t=1 2ε2

t log(e +

√∑T
t=1 ε

2
t

δ̃
),
∑T

t=1
(eεt−1)εt

eεt +1 +

√∑T
t=1 2ε2

t log(1
δ̃
)
}
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with any εt > 0 and corresponding

δt = exp(−
1
m

(m−wt∆+ 1−
2m + 1

exp( εt
wt∆

) + 1
)2),

or with any δt ∈ (0,1) and corresponding

εt = wt∆ log(
2m + 1

m−wt∆+ 1−
√

m log 1
δt

−1).

Note that Algorithm 4 reduces to the baseline approach when wt = 1, ∀t. Theorems 8, 9 and
Corollary 1 also hold for the baseline method if we set wt = 1, ∀t. When the noise variance is finite,
using the baseline method we have ∀δT , εT →∞ as T →∞. However, under the proposed method,
it is possible that limT→∞ εT <∞ by controlling wt, e.g., by taking wt as a decreasing geometric
sequence.

3.6 Accuracy Analysis

In this section, we compare the accuracy of our method and the baseline method using the Mean
Squared Error (MSE) measure, defined as EX1:T (||x1:T − z1:T ||

2).
For simplicity of exposition, the analysis in this section is based on the assumption that the true

values of parameters (ρ,µ,σ2) of the underlying process are known. Additional error introduced by
estimating parameters in Algorithm 3 is examined numerically in Section 3.8. In addition, we will
only present the case of Gaussian AR(1) process and Var(Nt) = σ2

n,∀t.

Theorem 10. Let the sequence z1:T be generated by the Gaussian AR(1) process Z1:T with Zt ∼

N (µ,σ2
z ) and Corr(ZtZt−τ) = ρ|τ|, ∀t. Let x1:T be the sequence released by Algorithm 4. Then

EX1:T (||x1:T − z1:T ||
2) is given by

σ2
z (1−ρ2 σ2

z

σ2
z +σ2

n
)

T∑
t=1

(1−wt)2

︸ ︷︷ ︸
estimation error

+ Tσ2
n︸︷︷︸

perturbation error

.

Theorem 10 suggests that the total error consists of two parts: (i) estimation error and (ii)
perturbation error. For the former, a sequence with stronger autocorrelation (larger ρ) enables more
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accurate estimate, resulting in lower estimation error. Further, higher weight on the true value zt

(larger wt), or less perturbation (smaller σ2
n), also lowers the estimation error.

Theorem 11 below further compares the privacy-accuracy tradeoff of the two methods, where
MSE is compared under the same privacy parameters (εT , δT ).

Theorem 11. Let sequential data z1:T be generated by the Gaussian AR(1) process Z1:T with

Zt ∼N (µ,σ2
z ) and Corr(ZtZt−τ) = ρ|τ|, ∀t. Let xA

1:T , xB
1:T be the sequences released by Algorithm

4 and the baseline method, respectively. Let (σ2
n)A, (σ2

n)B be the corresponding noise variance.

Suppose both outputs satisfy (εT , δT )-differential privacy, then

T
(σ2

n)B
=

∑T
t=1 w2

t

(σ2
n)A

=
2εT + 4ln 1

δT
−4

√
(ln 1

δT
)2 + εT ln 1

δT

∆2 .

Furthermore, ∃ {wt}
T
t=1,wt ∈ (0,1) and (σ2

n)A, that satisfy Eqn. (3.3) and with which xA
1:T is more

accurate than xB
1:T .

Moreover, if a constant weight wt = w,∀t is used, then xA
1:T is more accurate than xB

1:T if:

w >
1− (σ2

n)B/σ2
z

1 + (σ2
n)B/σ2

z
. (3.3)

As mentioned earlier, when wt = 1,∀t, Algorithm 4 reduces to the baseline method, and xA
1:T

and xB
1:T become equivalent. Theorem 11 shows that our method can strictly improve the privacy-

accuracy tradeoff by controlling wt ∈ (0,1). It also provides the guidance on how to select a constant
weight wt = w,∀t, to guarantee this improvement from Eqn. (A.51): (i) If (σ2

n)B > σ2
z , i.e., the

privacy requirement is high and large perturbation is needed, then our method can always outperform
the baseline regardless of the choice of w ∈ (0,1). In particular, if choosing w→ 0, our method will
have large estimation error, but privacy can be provided with insignificant perturbation; the overall
error is dominated by the estimation error, which is still smaller than the perturbation error in the
baseline. (ii) If (σ2

n)B < σ2
z , then w should be sufficiently large to maintain accuracy.
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3.7 Discussion

Generalization: The proposed method is not limited to AR(1) processes; it can be applied to
any (weakly) stationary random process. This is because the LMMSE estimate only depends on
the mean, variance and correlation of the random process. The methodologies used in Sections
3.5 and 3.6 are also not limited to AR(1) processes. In Section 3.8, the real-world datasets used
in the experiments do not necessarily follow AR(1), but our method is shown to achieve better
performance.

Robustness against certain attacks: Differential privacy is a strong privacy guarantee and
a worst-case measure, as it bounds privacy loss over all possible outputs and inputs. In practice,
how much information about z1:T can really be inferred by an attacker depends on how strong it is
assumed to be. An attacker is able to infer more information with higher confidence if it knows
the exact perturbation mechanism used in generating x1:T , i.e., Pr(Xt|Zt). If an attacker knows the
noise distribution N (0,σ2

n), then it will know Pr(Xt|Zt) automatically with the baseline method, i.e.,
Xt|Zt ∼N (Zt,σ

2
n). However, with our method, Xt|Zt ∼N (wtZt + (1−wt)Ẑt(xt−1),σ2

n). If wt is private,
thus unknown to the attacker, then Pr(Xt|Zt) is not readily inferable. Therefore, in practice our
method can prevent this class of attackers from knowing the details of the perturbation mechanism,
thus can be stronger.

Impact of estimating parameters from noisy sequence: The analysis in Section 3.6 shows
that when the true parameters of the underlying process are known, our algorithm can always
outperform the baseline method. However, these may be unknown in reality and need to be
estimated from the released sequence using Algorithm 3, which leads to additional estimation
error. Nevertheless, this can still outperform the baseline method. Consider the extreme case
where (σ2

n)A → +∞. The LMMSE estimate from the noisy data Ẑt(xt−1)→ E(Zt) ≈ µ̂t−1. Since
the added noise is zero-mean, with enough released data µ̂t−1 can attain sufficient accuracy. Then
xt determined by both µ̂t−1 and true zt before adding noise becomes a filtered version of the true
sequence, and its accuracy after adding noise will still be higher than the baseline method under the
same privacy measure; this point is further validated by experiments in Section 3.8.

Other approaches to calibrating released sequence: We have used the convex combination
of estimate Ẑt(xt−1) and true data zt to calibrate the released data. This method is effective and easy
to use and analyze. In particular, the weight in the convex combination provides an additional degree
of freedom and serves four purposes (Section 3.4). There are also other approaches to calibrating
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the released sequence. For example, we can leverage all released points to estimate new data, and
use a sequence of estimates to calibrate, i.e.,

∑t−1
i=1 wiẐt(xi) + wtzt. One could also use a non-linear

combination to calibrate, e.g., wtzt + (1−wt)
√

ztẐt(xt−1).

3.8 Experiments

In this section, we compare the privacy-accuracy tradeoff of our method with other methods using
real-world datasets. Fixed weights, wt = w, ∀t, are used in the proposed method.

Methods: For comparison, in addition to the baseline method, we also consider the following.

• Baseline-Laplace: Laplace noise nt ∼ Lap(0, T∆
εT

) is added to zt independently at each time
step.

• FAST without sampling [41] 5: Laplace noise nt ∼ Lap(0, T∆
εT

) is first added to zt, then a
posterior estimate of each zt using the Kalman filter is released. Since it assumes the time
series follows a random process Zt+1 = Zt + Ut with Ut ∼N (0,σ2

u), to use the Kalman filter
it requires σ2

u to be known in advance. Moreover, it also needs to use a Gaussian noise
ñt ∼ N (0,σ2

app) to approximate the added Laplace noise nt. In our experiments, σ2
app is

chosen based on the guidelines provided in [41] and σ2
u that gives the best performance is

selected using exhaustive search.

• DFT [121]: Discrete Fourier Transform is applied to the entire sequence first, then among
T Fourier coefficients DFT (z1:T ) j =

∑T
i=1 exp(2π

√
−1

T ji)xi, j ∈ [T ], it selects the top d and
perturbs each of them using Laplace noise

√
dT∆
εT

. Lastly, it pads T −d 0’s to this perturbed
coefficients vector and applies Inverse Discrete Fourier Transform. In our experiments, d that
gives the best performance is selected from {1, · · · ,T } using exhaustive search.

• BA and BD [81]: Two privacy budget allocation mechanisms, Budget Distribution (BD) &
Budget Absorption (BA), are used to dynamically allocate privacy budget over time based on
the dissimilarity between the previously released data and the new data. The new private data
is released at each time step only when the data is sufficiently different from the previously

5FAST samples k < T points and allocates privacy budget εT to the sampled points. It adds Laplace noise Lap(0, K∆
εT

)
to each sampled point and outputs the corresponding a posterior estimate, while for non-sampled points it outputs prior
estimates. A similar sampling procedure can be added to our proposed method where we set wt = 0 for non-sampled
points.
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released data; otherwise, the previous data is recycled and released again. The idea is to
improve accuracy by allocating more privacy budgets to the most important data points.

Real-World Dataset: We use the following datesets in our experiments.

• Ride-sharing counts [42]: this is generated using historical log from Capital Bikeshare system,
USA, in 2011. It includes the counts of rented bikes aggregated on both an hourly and daily
basis.

• NY traffic volume counts in 2011 [33]: this is collected by the Department of Transportation
(DOT). It contains the counts of traffic in various roadways from 12AM to 1PM on an hourly
basis each day. We aggregate the counts from all roadways and concatenate sequences from
different days in chronological order.

• Federal Test Procedure (FTP) drive cycle [40]: this dataset includes a speed profile for
vehicles, and it simulates urban driving patterns. It can be used for emission certification and
fuel economy testing of vehicles in the United States.

Accuracy Metric: We use relative error (RE) defined as the normalized MSE to measure the
accuracy of x1:T :

RE(z1:T , x1:T ) =
1
T
||z1:T − x1:T ||2

max1≤t≤T |zt|
.

The comparison results are shown in Figure 3.4, where we use δT = 10−7 in baseline-Normal
and the proposed method, and ∆ = 1 as each data point zt is a count over a dataset. The left plot
compares the relative error achieved by different methods under the same εT .

However, the baseline-Laplace, FAST and DFT methods satisfy (εT ,0)-differential privacy while
the baseline-Normal and proposed methods satisfy (εT ,10−7)-differential privacy. Even though
δT = 10−7 appears small, the total privacy loss εT under these methods are calculated using different
composition methods. Comparing different methods solely based on εT may not be appropriate as
the improvement in εT may come from the composition strategy but not the algorithm itself.

To address this issue, we add the right plot in Figure 3.4, where noises in baseline-Laplace and
baseline-Normal are chosen such that the error achieved by baseline-Normal is no less than baseline-
Laplace, i.e., the black curve is slightly over the green curve in the plot. This would guarantee
that baseline-Normal provide stronger privacy than baseline-Laplace. By further controlling the
proposed method to have the same privacy as baseline-Normal (noise variances in two methods
satisfy Eqn. (3.3)), and FAST and DFT to have the same privacy as baseline-Laplace, we can
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Figure 3.4: Comparison of different methods

guarantee the proposed method is at least as private as FAST and DFT. In the plot, the x-axis denotes
the variance of added noise in baseline-Laplace and the noise parameters of the other methods are
selected accordingly. It shows that the proposed method outperforms FAST; the improvement is
more significant when the privacy requirement is high. While generally DFT performs better than
the proposed method, it is an offline method which requires the entire sequence to be known a
priori. However, as perturbation increases (more private), the proposed method can achieve similar
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Figure 3.7: Sequences aggregated from 10 runs of experiments using different methods under the
same εT (left plot). In the right plot, noise variance is selected in each method such that the proposed
method and baseline-Normal are at least as private as FAST and baseline-Laplace.
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Figure 3.5: Comparison with Online DFT

The DFT method can also be
adapted online; one way to do this is
to perform DFT over a subsequence
of length Tdelay � T (data released
with delay Tdelay). We examine the
performance of such a method on the
Traffic dataset by comparing it with
DFT and baseline-Laplace. Figure 3.5 shows that when Tdelay = 0 (data released in real-time,
DFT applied to one data point each time and on one coefficient), the performance is similar to
baseline-Laplace; as Tdelay increases, its accuracy increases at the expense of increased delay.
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Figure 3.6: Comparison with BA and BD [81].

Figure 3.7 shows the private traf-
fic counts generated using various
methods. For each method, we re-
peat the experiment 10 times and ob-
tain 10 sample paths {x1:T }

10
k=1. The

curves in the plot show the average
1
10

∑10
k=1 xk

1:T while the shaded area in-
dicates their variance whose upper
and lower bound at each t are maxk xk

t

and mink xk
t , respectively. The similar results can be observed for other datasets.

We also compare our proposed method with BA and BD proposed in [81]. Unlike our model,
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where a single query is released at every time step, BA and BD are designed to release a vector of
length d each time. Moreover, BA and BD adopt (ε,0)-differential privacy. In order to compare
with our method, we set d = 1 and use baseline-Laplace and baseline-Normal as two baselines.
Specifically, we choose noises for different methods such that: (1) our proposed method and
baseline-Normal have the same privacy guarantee; (2) BA, BD, and baseline-Laplace have the same
privacy guarantee; and (3) baseline-Normal is at least as private as baseline-Laplace. The results are
shown in Figure 3.6, where the y-axis indicates the averaged relative error of 10 independent runs
of experiment and x-axis is the privacy loss per time step under baseline-Laplace. As illustrated,
our method outperforms others. It is worth noting that BA and BD may not even outperform
baseline-Laplace. This is because in both BA and BD, half of the privacy budget is assigned to
measure the dissimilarity between previously released data and new data; thus only half of the
privacy budget is left for releasing the sequence. Moreover, as mentioned, BA and BD are meant
for releasing a vector, especially when d is large; the error of the released sequence can be large
when d is small (Theorem 6 and 7 in [81]). It further suggests that in settings where only a single
query is released (d = 1), BA and BD may not be suitable.
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Figure 3.8: Impact of correlation on performance

As mentioned earlier, the baseline
is a special case (wt = 1, ∀t) of our
method, which can always outperform
the former with better tuned weights.
The achievable improvement depends
on the correlation of the sequence. We
show this in Figure 3.8, the error of
various synthetic sequences using dif-
ferent weights under the same privacy εT . Each sequence follows Gaussian AR(1) with Zt ∼N (0,1)
but the correlation ρ varies from 0.1 to 0.9. It shows that (i) in all cases, one can find weights for our
method to outperform the baseline; sequences with high ρ have the highest accuracy under the same
εT ; (ii) with weak (resp. strong) privacy as shown on the right (resp. left), the smallest weights that
can give improvement are close to 1 (resp. 0) and the achievable improvement is small (resp. large)
as compared to the baseline. As released data depends less (resp. more) on estimates when weights
are large (resp. small), the correlation within the sequence does not (resp. does) affect performance
significantly. In the right (resp. left) plot with weak (resp. strong) privacy, curves with lowest error
are similar under different ρ (resp. decreases in ρ).
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Figure 3.9: Impact of estimation from noisy sequence: Z1:T
satisfies Zt+1 = ρZt +Ut with Ut ∼N (0,10), Z0 = 0 and weak
(ρ = 0.1) or strong (ρ = 0.8) autocorrelation.

We also examine the impact of es-
timating parameters from a noisy se-
quence; the result is shown in Figure
3.9, where Gaussian AR(1) sequences
are generated. Red curves represent
the relative error achieved using the
proposed method where µ̂t, σ̂2

t and
ρ̂t at each time are estimated from
the previous released sequence; blue
curves represent the case where we
use true parameters µ, σ2, ρ to esti-
mate zt using xt−1. As expected, estimating parameters from a noisy sequence degrades the
performance. However, even with this impact the proposed method continues to outperform the
baseline significantly.
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Figure 3.10: Drive cycles under different levels of privacy: the privacy guarantee in the left plot is
stronger than that of the right plot.

The proposed method is not limited to count queries and is more broadly applicable. For example,
this method can be used in intelligent transportation systems to enable private vehicle-to-vehicle
communication. In our studies [67, 148], a predictive cruise controller is designed for a follower
vehicle using a private speed profile transmitted from its leader vehicle. Specifically, instead of
broadcasting the real speed profile (FTP drive cycle), the leader vehicle generates a differentially
private speed profile using the proposed method. A follower vehicle then designs an optimal speed
planner based on the received information. Within this application context, query Q(v) represents
the vehicle’s speed information, and sensitivity ∆ is the range of the vehicle’s speed. Figure 3.10
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shows the private speed profiles generated using the proposed method and baseline-Normal. A
private optimal speed planner is designed in [67, 148] using these private profiles. The results show
that the controller performance deteriorates significantly under the baseline method. In contrast, the
controller designed with the proposed method can attain an accuracy that is sufficient for predictive
control purposes. We refer an interested reader to [67, 148] for more details and the performance of
the private controller.

65



Part II

Fair Machine Learning with Human in
Feedback Loops
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CHAPTER 4

Long-Term Impact of Fairness Interventions on
Group Representation

4.1 Introduction

From this chapter, we set out to understand the long-term impact of (fair) machine learning
algorithms on the well-being of different social groups. We will begin with the dynamics where
individuals interact with ML decisions by leaving/staying ML systems. Specifically, we consider
a discrete-time sequential decision process applied to a population consists of individuals from
multiple demographic groups, where individuals’ responses (stay or leave) to the decisions made at
each time step are manifested in changes in the population in the next time step.

To motivate our problem, consider an example in speech recognition. It has been documented
that speech recognition products such as Amazon’s Alexa and Google Home have accent bias
against non-native speakers [59], with native speakers experience much higher quality than non-
native speakers. If this difference leads to more native speakers using such products while driving
away non-native speakers, then over time the data used to train the model may become even more
skewed toward native speakers, with fewer and fewer non-native samples. Without intervention,
the resulting model becomes even more accurate for the former and less for the latter, which then
reinforces their respective user experience [60].

In this chapter, we are particularly interested in understanding what happens to group representa-
tion (demographic sizes) over time when models with fairness guarantee (e.g., EqOpt, DP) are used,
and how it is affected when the groups’ underlying feature distributions are also affected/reshaped
by decisions.

Our main contributions and findings are as follows.

67



1. We introduce a user retention model to capture users’ reaction (stay or leave) to the decision
(Section 4.3).

2. We first consider the case where the decisions only affect individual’s participation and the
groups’ feature distributions are fixed over time.

• We identify conditions under which group representation disparity exacerbates over
time and eventually the disadvantaged groups may diminish entirely from the system
(Theorems 12 and 13).

• We show the conditions that lead to exacerbation of disparity unfortunately can be easily
satisfied when decisions are made based on a typical algorithm (e.g., taking objective
as minimizing the total loss) under commonly used fairness criteria (e.g., DP, EpOpt)
(Theorem 15).

3. We further consider the case where the decisions also affect groups’ feature distributions, and
examine its impact on group representations.

• We show that exacerbation of disparity continues to hold and can accelerate when
feature distributions are affected and change over time (Theorem 16).

4. Our results show that if the factors equalized by the fairness criterion do not match what drives
user retention, then the difference in (perceived) treatment will exacerbate representation
disparity over time. It suggests fairness has to be defined with a good understanding of how
users are affected by the decisions.

5. Given the knowledge of user dynamics, we propose a method for finding the proper fairness
criterion that mitigates representation disparity (Section 4.4.4).

The remainder of this chapter is organized as follows. Section 4.2 presents related work. Section
4.3 formulates the problem. The impact of various fairness criteria on group representation disparity
is analyzed and presented in Section 4.4, as well as potential mitigation. Experiments are presented
in Section 4.5. All proofs can be found in Appendix C.

4.2 Related Work

The impact of fairness interventions on both individuals and society, and the fairness in sequential
decision making have been studied extensively in the literature [60,63,65,79,103]. Specifically, [103]
constructs a one-step feedback model over two consecutive time steps and characterizes the impact
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of fairness criteria (statistical parity and equal of opportunity) on changing each individual’s feature
and reshaping the entire population. Similarly, [63] proposes an effort-based measure of unfairness
and constructs an individual-level model characterizing how an individual responds to the decisions
based on it. The impact on the entire group is then derived from it and the impacts of fairness
intervention are examined. While both highlight the importance of temporal modeling in evaluating
the fairness, their main focus is on the adverse impact on feature distribution, rather than on group
representation disparity. In contrast, our work focuses on the latter but also considers the impact of
reshaping feature distributions. Moreover, we formulate the long-term impact over infinite horizon
while [63, 103] only inspect the impact over two steps.

[60] also considers a sequential framework where the user departure is driven by model accuracy.
It adopts the objective of minimizing the loss of the group with the highest loss (instead of overall
or average loss), which can prevent the extinction of any group from the system. It requires multiple
demographic groups use the same model and does not adopt any fairness criterion. In contrast, we
are more interested in the impact of various fairness criteria on representation disparity and if it is
possible to sustain the group representation by imposing any fairness criterion. Other differences
include the fact we consider the case when feature distributions are reshaped by the decisions
(Section 4.4.3) and [60] does not.

[79] constructs a two-stage model in the context of college admission, it shows that increasing
admission rate of a group can increase the overall qualification for this group overtime. [65] describes
a model in the context of labor market. They show that imposing the demographic parity constraint
can incentivize under-represented groups to invest in education, which leads to a better long-term
equilibrium.

Another line of research is to study fairness problems in online learning [16,31,62,70,131,144].
Most of them focus on proposing appropriate fairness notions to improve the fairness-accuracy
trade-off. To the best of our knowledge, none of them considers the impact of fairness criteria on
group representation disparity.

4.3 Problem Formulation
Consider two demographic groups Ga, Gb distinguished based on some sensitive attribute S ∈ {a,b}

(e.g., gender, race). An individual from either group has feature Xt ∈Rd and label Yt ∈ {0,1} at time t,
both can be time varying. Denote by Gy

s ⊂ Gs the subgroup with label y, y ∈ {0,1}, s ∈ {a,b}, f y
s,t(x) :=
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PXt |Yt,S (x|y, s) its feature distribution and ns(t) the size of Gs as a fraction of the entire population at
time t. Then the difference between na(t) and nb(t) measures the representation disparity between
two groups at time step t. Denote by αs,t = PYt |S (1|s) the fraction of positive label in group s at time
t, then the distribution of X over Gs is given by fs,t(x) = PXt |S (x|s) = αs,t f 1

s,t(x) + (1−αs,t) f 0
s,t(x) and

fa,t 6= fb,t.
Consider a sequential setting where the decision maker at each time makes a decision Dt ∈ {0,1}

about each individual based on group-dependent policies. Let πs,t(x) = PDt |Xt,S (1|xt, s) be the
decision rule for Gs at time t, which is parameterized by θs(t) ∈ Rd, s ∈ {a,b}. The goal of the
decision maker at time t is to find the best parameters θa(t), θb(t) such that the corresponding
decisions about individuals from Ga, Gb maximize its utility (or minimize its loss) in the current
time. Within this context, the commonly studied fair machine learning problem is the one-shot
problem stated as follows, at time step t:

min
θa,θb

OOOt(θa, θb;na(t),nb(t)) = na(t)Oa,t(θa) + nb(t)Ob,t(θb)

s.t. ΓC,t(θa, θb) = 0 , (4.1)

where OOOt(θa, θb;na(t),nb(t)) is the overall objective of the decision maker at time t, which consists
of sub-objectives from two groups weighted by their group proportions.1 ΓC,t(θa, θb) = 0 charac-
terizes fairness constraint C, which requires the parity of certain statistical measure (e.g., positive
classification rate, false positive rate, etc.) across different demographic groups. Some commonly
used criteria will be elaborated in Section 4.4.1. Both Os,t(θs) and ΓC,t(θa, θb) = 0 depend on fs,t(x).
The resulting solution (θa(t), θb(t)) will be referred to as the one-shot fair decision under fairness C,
where the optimality only holds for a single time step t.

In this study, we seek to understand how the group representation evolves in a sequential setting
over the long run when different fairness criteria are imposed. To do so, the impact of the current
decision on the size of the underlying population is modeled by the following discrete-time retention
dynamics. Denote by Ns(t) ∈ R+ the expected number of users in group s at time t:

Ns(t + 1) = Ns(t) ·λs,t(θs(t)) +βs ,∀s ∈ {a,b}, (4.2)

1This is a typical formulation if the objective OOOt measures the average performance of decisions over all samples,
i.e., OOOt = 1

|Ga |+|Gb |
(
∑

i∈Ga Oi
t +

∑
i∈Gb Oi

t) = 1
|Ga |+|Gb |

(|Ga|Oa,t + |Gb|Ob,t), where Oi
t measures the performance of each sample

i and Ok,t = 1
|Gk |

∑
i∈Gk Oi

t is the average performance of Gk.
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where λs,t(θs(t)) is the retention rate, i.e., the probability of a user from Gs who was in the system
at time t remaining in the system at time t + 1. This is assumed to be a function of the user
experience, which could be the actual accuracy of the algorithm or their perceived (mis)treatment.
This experience is determined by the application and is different under different contexts. For
instance, in domains of speaker verification and medical diagnosis, it can be considered as the
average loss, i.e., a user stays if he/she can be classified correctly; in loan/job application scenarios,
it can be the rejection rates, i.e., user stays if he/she gets approval. βs is the expected number of
exogenous arrivals to Gs and is treated as a constant in our analysis, though our main conclusion
holds when this is modeled as a random variable. Accordingly, the relative group representation for
time step t + 1 is updated as

ns(t + 1) =
Ns(t + 1)

Na(t + 1) + Nb(t + 1)
,∀s ∈ {a,b}.

For the remainder of this chapter, na(t)
nb(t) is used to measure the group representation disparity at time

t. As ns(t) and fs,t(x) change over time, the one-shot problem (4.1) is also time varying. In the next
section, we examine what happens to na(t)

nb(t) when one-shot fair decisions are applied in each step.

4.4 Group Representation Disparity in the Sequential Setting

Below we present results on the monotonic change of na(t)
nb(t) when applying one-shot fair decisions in

each step. It shows that the group representation disparity can worsen over time and may lead to the
extinction of one group under a monotonicity condition stated as follows.

Monotonicity Condition. Consider two one-shot problems defined in (4.1) with objectives

ÔOO(θa, θb; n̂a, n̂b) and ÕOO(θa, θb; ña, ñb) over distributions f̂k(x), f̃k(x) respectively. Let (̂θa, θ̂b), (̃θa, θ̃b)
be the corresponding fair decisions. We say that two problems ÔOO and ÕOO satisfy the monotonicity

condition given a dynamic model if for any n̂a + n̂b = 1 and ña + ñb = 1 such that n̂a
n̂b
< ña

ñb
, the resulting

retention rates satisfy λ̂a(̂θa) < λ̃a(̃θa) and λ̂b(̂θb) > λ̃b(̃θb).

Note that this condition is defined over two one-shot problems and a given dynamic model.
It is not limited to specific families of objective or constraint functions; nor is it limited to one-
dimensional features. The only thing that matters is the group proportions within the system and the
retention rates determined by the decisions and the dynamics. It characterizes a situation where
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when one group’s representation increases, the decision becomes more in favor of this group and
less favorable to the other, so that the retention rate is higher for the favored group and lower for the
other.

Theorem 12. [Exacerbation of representation disparity] Consider a sequence of one-shot problems

(4.1) with objective OOOt(θa, θb;na(t),nb(t)) at each time t. Let (θa(t), θb(t)) be the corresponding

solution and λs,t(θs(t)) be the resulting retention rate of Gs, s ∈ {a,b} under a dynamic model (4.2).
If the initial states satisfy Na(1)

Nb(1) =
βa
βb

, Ns(2) > Ns(1),2 and one-shot problems in any two consecutive

time steps, i.e., OOOt, OOOt+1, satisfy monotonicity condition under the given dynamic model, then

the following holds. Let � denote either “ < ” or “ = ” or “ > ”, if λa,1(θa(1)) � λb,1(θb(1)), then
na(t+1)
nb(t+1) �

na(t)
nb(t) and λa,t+1(θa(t + 1))�λa,t(θa(t))�λb,t(θb(t))�λb,t+1(θb(t + 1)), ∀t.

Theorem 12 says that once a group’s proportion starts to change (increase or decrease), it will
continue to change in the same direction. This is because under the monotonicity condition, there
is a feedback loop between representation disparity and the one-shot decisions: the former drives
the latter which results in different user retention rates in the two groups, which then drives future
representation.

The monotonicity condition can be satisfied under some commonly used objectives, dynamics
and fairness criteria. This is characterized in the following theorem.

Theorem 13. [A case satisfying monotonicity condition] Consider two one-shot problems defined

in (4.1) with objectives Õ(θa, θb; n̂a, n̂b) = n̂aOa(θa) + n̂bOb(θb) and Ô(θa, θb; ña, ñb) = ñaOa(θa) +

ñbOb(θb) over the same distribution fs(x) with n̂a + n̂b = 1 and ña + ñb = 1. Let (̂θa, θ̂b), (̃θa, θ̃b) be

the corresponding solutions. Under the condition that Os(̂θs) 6= Os(̃θs) for all possible n̂s 6= ñs, if the

dynamics satisfy λs(θs) = hs(Os(θs)) for some decreasing function hs(·), then Õ and Ô satisfy the

monotonicity condition.

The above theorem identifies a class of cases satisfying the monotonicity condition; these are
cases where whenever the group proportion changes, the decision will cause the sub-objective
function value to change as well, and the sub-objective function value drives user departure.

For the rest of the chapter we will focus on the one-dimensional setting. Some of the cases we
consider are special cases of Theorem 13 (Section 4.4.2). Others such as the time-varying feature
distribution fs,t(x) considered in Section 4.4.3 also satisfy the monotonicity condition but are not
captured by Theorem 13.

2This condition will always be satisfied when the system starts from a near empty state.
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4.4.1 The One-Shot Problem

Consider a binary classification problem based on feature X ∈ R. Let decision rule πs(x) = 1(x ≥ θs)
be a threshold policy parameterized by θs ∈ R and L(y,πs(x)) = 1(y 6= πs(x)) the 0-1 loss incurred by
applying threshold θ on individuals with data (x,y).

The goal of the decision maker at each time is to find a pair (θa(t), θb(t)) subject to criterion C such
that the total expected loss is minimized, i.e., OOOt(θa, θb;na(t),nb(t)) = na(t)La,t(θa) + nb(t)Lb,t(θb),
where Ls,t(θs) = αs,t

∫ θs

−∞
f 1
s,t(x)dx + (1−αs,t)

∫ ∞
θs

f 0
s,t(x)dx is the expected loss Gs experiences at time

t. Some examples of ΓC,t(θa, θb) are as follows.
1. Simple fair (Simple): ΓSimple,t = θa− θb. Imposing this criterion simply means we ensure

the same decision parameter is used for both groups.
2. Equal opportunity (EqOpt): ΓEqOpt,t =

∫ ∞
θa

f 0
a,t(x)dx−

∫ ∞
θb

f 0
b,t(x)dx. This requires the false

positive rate (FPR) be the same for different groups,3 i.e., Pr(πa(X) = 1|Y = 0,S = a) =

Pr(πb(X) = 1|Y = 0,S = b).
3. Demographic parity (DP): ΓDP,t =

∫ ∞
θa

fa,t(x)dx−
∫ ∞
θb

fb,t(x)dx. This requires different groups
be given equal probability of being labelled 1, i.e., Pr(πa(X) = 1|S = a) = Pr(πb(X) = 1|S = b).

4. Equalized loss (EqLos): ΓEqLos,t = La,t(θa)− Lb,t(θb). This requires that the expected loss
across different groups be equal.

Notice that for Simple, EqOpt and DP criteria, the following holds: ∀t, (θa, θb), and (θ′a, θ
′
b) that

satisfy ΓC,t(θa, θb) = ΓC,t(θ′a, θ
′
b) = 0, we have θa ≥ θ

′
a if and only if θb ≥ θ

′
b.

Some technical assumptions on the feature distributions are in order.
1. For y ∈ {0,1}, f y

a,t(x), f y
b,t(x) have bounded support on [ay

t ,a
y
t ] and [by

t ,b
y
t ] respectively.

2. f 1
s,t(x) and f 0

s,t(x) overlap, i.e., a0
t < a1

t < a0
t < a1

t and b0
t < b1

t < b
0
t < b

1
t .

The main technical assumption is stated as follows.

Assumption 7. Let Ts,t = [s1
t , s

0
t ] be the overlapping interval between f 0

s,t(x) and f 1
s,t(x). Distribution

f 1
s,t(x) is strictly increasing and f 0

s,t(x) is strictly decreasing over Ts,t, ∀s ∈ {a,b}.

For bell-shaped feature distributions (e.g., Normal, Cauchy, etc.), Assumption 7 implies that
f 1
s,t(x) and f 0

s,t(x) are sufficiently separated. As we show later, this assumption helps us establish the
monotonic convergence of thresholds (θa(t), θb(t)) but is not necessary for the convergence of group

3Depending on the context, this criterion can also refer to equal false negative rate (FNR), true positive rate (TPR),
or true negative rate (TNR), but the analysis is essentially the same.
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representation. We next find the one-shot decision to this problem under Simple, EqOpt, and DP
fairness criteria.

Lemma 5. Under Assumption 7, ∀s ∈ {a,b}, the optimal threshold at time t for Gk without constraint

C is

θ∗s(t) = argmin
θs

Ls,t(θs) =


s1

t , if αs,t f 1
s,t(s1

t ) ≥ (1−αs,t) f 0
s,t(s1

t )

δs,t, if αs,t f 1
s,t(s1

t ) < (1−αs,t) f 0
s,t(s1

t ) & αs,t f 1
s,t(s0

t ) > (1−αs,t) f 0
s,t(s0

t )

s0
t , if αs,t f 1

s,t(s0
t ) ≤ (1−αs,t) f 0

s,t(s0
t )

where δs,t ∈ Ts,t is defined such that αs,t f 1
s,t(δs,t) = (1−αs,t) f 0

s,t(δs,t). Moreover, Ls,t(θk) is decreasing

in θs over [s0
t , θ
∗
s(t)] and increasing over [θ∗s(t), s1

t ].

Below we will focus on the case when θ∗a(t) = δa,t and θ∗b(t) = δb,t, while analysis for the other
cases are essentially the same. For Simple, DP and EqOpt fairness, ∃ a strictly increasing
function ηCt , such that ΓC,t(ηCt (θb), θb) = 0. Denote by (ηCt )−1 the inverse of ηCt . Without loss of
generality, we will assign group labels a and b such that ηCt (δb,t) < δa,t and (ηCt )−1(δa,t) > δb,t, ∀t. 4

Lemma 6. Under Simple, EqOpt, DP fairness criteria, one-shot fair decision at time t

satisfies (θ∗a(t), θ∗b(t)) = argminθa,θb na(t)La,t(θa) + nb(t)Lb,t(θb) ∈ {(θa, θb)|θa ∈ [ηCt (δb,t), δa,t], θb ∈

[δb,t, (ηCt )−1(δa,t)],ΓC,t(θa, θb) = 0} 6= ∅ regardless of group proportions na(t),nb(t).

Lemma 6 shows that given feature distributions fa,t(x), fb,t(x), although one-shot fair decisions
can be different under different group proportions na(t),nb(t), these solutions are all bounded by the
same compact intervals (Figure 4.1). Theorem 14 below describes the more specific relationship
between group representation na(t)

nb(t) and the corresponding one-shot decision (θa(t), θb(t)).

Theorem 14. [Impact of group representation disparity on the one-shot decision] Consider the one-

shot problem with group proportions na(t),nb(t) at time step t, let (θa(t), θb(t)) be the corresponding

one-shot decision under either Simple, EqOpt or DP criterion. Under Assumption 7, (θa(t), θb(t))
is unique and satisfies the following:

ΨC,t(θa(t), θb(t)) =
na(t)
nb(t)

, (4.3)

4If the change of fa,t(x) and fb,t(x) w.r.t. the decisions follows the same rule (e.g., examples given in Section 4.4.3),
then this relationship holds ∀t.

74



where ΨC,t is some function increasing in θa(t) and θb(t), with details illustrated in Table 4.1.

θa ∈ [a0
t ,a

1
t ], θb ∈ Tb,t θa ∈ Ta,t, θb ∈ Tb,t θa ∈ Ta,t, θb ∈ [b

0
t ,b

1
t ]

EqOpt
(
αb,t

1−αb,t

f 1
b,t(θb)

f 0
b,t(θb)

−1
)1−αb,t

1−αa,t

αb,t
1−αb,t

f 1
b,t(θb)

f 0
b,t(θb)

−1

1−
αa,t

1−αa,t

f 1
a,t(θa)

f 0
a,t(θa)

1−αb,t
1−αa,t

DP 1− 2
αb,t

1−αb,t

f 1
b,t(θb)

f 0
b,t(θb)

+1

(
1− 2

αb,t
1−αb,t

f 1
b,t(θb)

f 0
b,t(θb)

+1

)(
2

1−
αa,t

1−αa,t

f 1
a,t(θa)

f 0
a,t(θa)

−1
)

2

1−
αa,t

1−αa,t

f 1
a,t(θa)

f 0
a,t(θa)

−1

Simple
αb,t f 1

b,t(θb)−(1−αb,t) f 0
b,t(θb)

(1−αa,t) f 0
a,t(θa)−αa,t f 1

a,t(θa)

Table 4.1: The form of ΨC,t(θa, θb) for C = EqOpt,DP,Simple.5

Note that under Assumption 7, both
αs,t f 1

s,t(θs)

(1−αs,t) f 0
s,t(θs)

and αs,t f 1
s,t(θs)− (1−αs,t) f 0

s,t(θs) are strictly

increasing in θs ∈ Ts,t, s ∈ {a,b}, and θa(t) = ηCt (θb(t)) for some strictly increasing function. According

to ΨC,t(θa, θb) given in Table 4.1, the larger na(t)
nb(t) results in the larger

αs,t f 1
s,t(θs)

(1−αs,t) f 0
s,t(θs)

and αs,t f 1
s,t(θs)−

(1−αs,t) f 0
s,t(θs), thus the larger θa(t) and θb(t).

The above theorem characterizes the impact of the underlying population on the one-shot
decisions. Next we investigate how the one-shot decision impacts the underlying population.

4.4.2 Participation Dynamics

How a user reacts to the decision is captured by the retention dynamics (4.2) which is fully
characterized by the retention rate. Below we introduce two types of (perceived) mistreatment as
examples when the monotonicity condition is satisfied.

(1) User departure driven by model accuracy: Examples include discontinuing the use of
products viewed as error-prone, e.g., speech recognition software, or medical diagnostic tools. In
these cases, the determining factor is the classification error, i.e., users who experience low accuracy

5The cases represented by blank cells cannot happen. When C = Simple, the table only illustrates the result when
δa,t, δb,t ∈ Ta,t ∩Tb,t 6= ∅.
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have a higher probability of leaving the system. The retention rate at time t can be modeled as
λs,t(θs) = ν(Ls,t(θs)) for some strictly decreasing function ν(·) : [0,1]→ [0,1].

(2) User departure driven by intra-group disparity: Participation can also be affected by
intra-group disparity, that between users from the same demographic group but with different
labels, i.e., Gy

s for y ∈ {0,1}. An example is in making financial assistance decisions where one
expects to see more awards given to those qualified than to those unqualified. Denote by Ds,t(θs) =

Pr(Yt = 1,πs,t(X) = 1|S = s)−Pr(Yt = 0,πs,t(Xt) = 1|S = s) =
∫ ∞
θs

(
αs,t f 1

s,t(x)− (1−αs,t) f 0
s,t(x)

)
dx as

intra-group disparity of Gs at time t, then the retention rate can be modeled as λs,t(θs) = w(Ds,t(θs))
for some strictly increasing function w(·) mapping to [0,1].

Theorem 15. Consider the one-shot problem (4.1) defined in Section 4.4.1 under either Simple,

EqOpt or DP criterion, and assume distributions fs,t(x) = fs(x) are fixed over time. Then the one-

shot problems in any two consecutive time steps, i.e., OOOt,OOOt+1, satisfy the monotonicity condition

under dynamics (4.2) with λs(·) being either ν(Ls(·)) or w(Ds(·)).6 This implies that Theorem 12

holds and (θa(t), θb(t)) converges monotonically to a constant threshold (θ∞a , θ
∞
b ). Furthermore,

lim
t→∞

na(t)
nb(t) =

βa
βb

1−λb(θ∞b )
1−λa(θ∞a ) .

C( b) a
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Figure 4.1: Illustration of Ls(θs) and Ds(θs) w.r.t.
θs: Each black triangle represents the one-shot
decision θs; size of the colored area represents the
value of Ls(θs) (left) or Ds(θs) (right). Note that
for the right plot, there are two gray regions and
the darker one is for compensating the lighter one
thus they are of the same size; the smaller gray
regions result in the larger Da(θa).

When distributions are fixed, the discrep-
ancy between λa(θa(t)) and λb(θb(t)) increases
over time as (θa(t), θb(t)) changes. The
process is illustrated in Figure 4.1, where
θa(t) ∈ [ηC(δb), δa], θb(t) ∈ [δb, (ηC)−1(δa)] are
constrained by the same interval ∀t. Left
and right plots illustrate cases when λs(θs) =

ν(Ls(θs)) and λs(θs) = w(Ds(θs)) respectively.
Note that the case considered in Theorem

15 is a special case of Theorem 13, with dis-
tributions fs,t(x) = fs(x) fixed, Os(θs) = Ls(θs)
and both dynamics λs(·) = ν(Ls(·)) and λs(·) =

w(Ds(·)) some decreasing functions of Ls(·).7 In this special case we obtain the additional result of
monotonic convergence of thresholds, which holds due to Assumption 7.

6When fs,t(x) = fs(x), ∀t, subscript t is omitted in some notations (ηCt , δs,t,λs,t, etc.) for simplicity.
7We have Ds(θ) = αs−Ls(θ).
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Once na(t)
nb(t) starts to increase, the corresponding one-shot solution (θa(t), θb(t)) also increases

(Theorem 14), meaning that θa(t) moves closer to θ∗a = δa and θb(t) moves further away from θ∗b = δb

(solid arrows in Figure 4.1). Consequently, La(θa(t)) and Db(θb(t)) decrease while Lb(θb(t)) and
Da(θa(t)) increase. Under both dynamics, λa(θa(t)) increases and λb(θb(t)) decreases, resulting in
the increase of na(t+1)

nb(t+1) ; the feedback loop becomes self-reinforcing and representation disparity
worsens.

4.4.3 Impact of Decisions on Reshaping Feature Distributions
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Figure 4.2: Visualization of decisions shaping
feature distributions. g1

k,t = αk,t, g0
k,t = 1 − αk,t,

where k ∈ {a,b}

Our results so far show the potential adverse
impact on group representation when imposing
certain fairness criterion, while their underly-
ing feature distributions are assumed fixed. Be-
low we examine what happens when decisions
also affect feature distributions over time, i.e.,
fs,t(x) =αs,t f 1

s,t(x)+(1−αs,t) f 0
s,t(x), which is not

captured by Theorem 13. We will focus on the
dynamics λs,t(θs) = ν(Ls,t(θs)). Since G0

s , G1
s

may react differently to the same θs, we con-
sider two scenarios as illustrated in Figure 4.2,
which shows the change in distribution from t to
t + 1 when G1

k (resp. G0
k ) experiences the higher

(resp. lower) loss at t than t−1: ∀y ∈ {0,1},
Case (i): f y

s,t(x) = f y
s (x) remain fixed but αs,t changes over time given Gy

s ’s retention determined
by its perceived loss Ly

s,t
8. In other words, for i ∈ {0,1} and t ≥ 2 such that Li

s,t(θs(t))< Li
s,t−1(θs(t−1)),

we have αs,t+1 > αs,t if i = 1 and αs,t+1 < αs,t if i = 0.
Case (ii): αs,t = αs but for subgroup Gi

s that is less favored by the decision over time, its members
make extra effort such that f i

s,t(x) skews toward the direction of lowering their losses9. In other words,
for i ∈ {0,1} and t ≥ 2 such that Li

s,t(θs(t)) > Li
s,t−1(θs(t− 1)), we have f i

s,t+1(x) < f i
s,t(x), ∀x ∈ Ts,

8Here L1
s,t(θs) =

∫ θs

−∞
f 1
s,t(x)dx and L0

s,t(θs) =
∫ ∞
θs

f 0
s,t(x)dx.

9Suppose Assumption 7 holds for all f y
s,t(x) and their support does not change, then f 1

s,t(x) and f 0
s,t(x) overlap over

Ts = [s1, s0], ∀t.
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while f −i
s,t+1(x) = f −i

s,t (x), ∀x, where −i := {0,1} \ {i}.
In both cases, under the condition that fs,t(x) is relatively insensitive to the change in one-shot

decisions, representation disparity can worsen and deterioration accelerates. The precise conditions
are formally given in Conditions 3 and 4 in Appendix C.7, which describes the case where the
change from fs,t(x) to fs,t+1(x) is sufficiently small while the change from na(t)

nb(t) to na(t+1)
nb(t+1) and the

resulting decisions from θs(t) to θs(t + 1) are sufficiently large. These conditions hold in scenarios
when the change in feature distributions induced by the one-shot decisions is a slow process.

Theorem 16. [Exacerbation in representation disparity can accelerate] Consider the one-shot

problem defined in (4.1) under either Simple, EqOpt or DP fairness criterion. Let the one-shot

decision, representation disparity and retention rate at time t be given by θo
s (t), no

a(t)
no

b(t) , and λo
s,t(θ

o
k(t))

when distribution fs(x) is fixed ∀t. Let the same be denoted by θs(t),
na(t)
nb(t) , and λs,t(θs(t)) when fs,t(x)

changes according to either case (i) or (ii) defined above. Assume we start from the same distribution

fs,1(x) = fs(x). Under Conditions 3 and 4 in Appendix C.7, if λo
a,1(θo

a(1)) = λa,1(θa(1))�λo
b,1(θo

b(1)) =

λb,1(θb(1)), then na(t+1)
nb(t+1) �

na(t)
nb(t) (disparity worsens) and na(t+1)

nb(t+1) �
no

a(t+1)
no

b(t+1) (accelerates), ∀t, where �

represents either “ < ”or “ > ”.

4.4.4 Potential Mitigation & Finding the Proper Fairness Criterion From
Participation Dynamics

The above results show that when the objective is to minimize the average loss over the entire
population, applying commonly used and seemingly fair decisions at each time can exacerbate
representation disparity over time under reasonable participation dynamics. It highlights the fact
that fairness has to be defined with a good understanding of how users are affected by the algorithm,
and how they may react to it. For instance, consider the dynamics with λs,t(θs) = ν(Ls,t(θs)), then
imposing EqLos fairness at each time step would sustain group representations, i.e., lim

t→∞
na(t)
nb(t) =

βa
βb

,
as monotonicity condition is violated under EqLos and we are essentially equalizing departure
when equalizing loss. In contrast, under other fairness criteria the factors that are equalized do
not match what drives departure, and different losses incurred to different groups cause significant
change in group representation over time.

In reality the true dynamics is likely a function of a mixture of factors given the application
context, and a proper fairness constraint C should be adopted accordingly. Below we illustrate
a method for finding the proper criterion from a general dynamics model defined below when
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fs,t(x) = fs(x),∀t:

Ns(t + 1) = Λ(Ns(t), {λm
s (θs(t))}Mm=1,βs), ∀s ∈ {a,b}, (4.4)

where user retention in Gs is driven by M different factors {λm
s (θs(t))}Mm=1 (e.g. accuracy, true

positives, etc.) and each of them depends on decision θs(t). Constant βs is the intrinsic growth
rate while the actual arrivals may depend on λm

s (θs(t)). The expected number of users at time
t + 1 depends on users at t and new users; both may be effected by λm

s (θs(t)). This relationship is
characterized by a general function Λ. Let Θ be the set of all possible decisions.

Assumption 8. ∃(θa, θb) ∈ Θ × Θ such that ∀s ∈ {a,b}, N̂s = Λ(N̂s, {λ
m
s (θs)}Mm=1,βs) and

|Λ′(N̂s, {λ
m
s (θs)}Mm=1,βs)| < 1 hold for some N̂s, i.e., dynamics (4.4) under some decision pairs

(θa, θb) have stable fixed points, where Λ′ denotes the derivative of Λ with respect to Ns.

To find the proper fairness constraint, let C be the set of decisions (θa, θb) that can sustain group
representation. It can be found via the following optimization problem; the set of feasible solutions
is guaranteed to be non-empty under Assumption 8.

C = arg min
(θa,θb)

∣∣∣∣ Ña

Ñb
−
βa

βb

∣∣∣∣
s.t. Ñs = Λ(Ñs, {λ

m
s (θs)}Mm=1,βs) ∈ R+, θs ∈ Θ,∀s ∈ {a,b}.

(4.5)

The idea is to first select decision pairs whose corresponding dynamics can lead to stable fixed
points (Ña, Ñb); then among them select those that are best in sustaining group representation, which
may or may not be unique. Next, we use two dynamics as examples to demonstrate how to find C
based on dynamics.

Example 1. [Linear first order model] is given by Ns(t + 1) = Ns(t)λ2
s(θs(t)) + βsλ

1
s(θs(t)). This

is a general form of dynamics (4.2) where the arrivals can also depend on the decision. When

λ1
s(θs(t)) = 1, then dynamics model will be reduced to (4.2). Ñs =

βsλ
1
s (θs)

1−λ2
s (θs)

is the stable fixed

point if λ2
s(θs) < 1 holds. Since | Ña

Ñb
−
βa
βb
| =

βa
βb
|
λ1

a(θa)
λ1

b(θb)
1−λ2

b(θb)
1−λ2

a(θa)
−1|, solution pair (θa, θb) should satisfy

λ1
a(θa)

1−λ2
a(θa)

=
λ1

b(θb)
1−λ2

b(θb)
. The constraint set that can sustain the group representation is given by:

C = {(θa, θb)|(θa, θb) ∈ Θ×Θ,
λ1

a(θa)
1−λ2

a(θa)
=

λ1
b(θb)

1−λ2
b(θb)

,λ2
a(θa) < 1,λ2

b(θb) < 1}.
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Consider the case where departure is driven by positive rate λ2
s(θs) = ν(

∫ ∞
θs

fs(x)dx) and arrival

is driven by error rate λ1
s(θs) = ν

(
(1−αs)

∫ ∞
θs

f 0
s (x)dx +αs

∫ θs

−∞
f 1
s (x)dx

)
= ν(Ls(θs)) where ν(·) is a

strictly decreasing function. This can be applied in lending scenario, where an applicant will stay as
long as he/she gets the loan (positive rate) regardless of his/her qualification. Since an unqualified
applicant who is issued the loan cannot repay, his/her credit score will be decreased which lowers
the chance to get a loan in the future [103]. Therefore, users may decide whether to apply for a loan
based on the error rate.

Example 2. [Quadratic first order model] is given by Ns(t + 1) = (Ns(t))2λ1
s(θs(t)) + βs. Ñs =

1
2λ1

s (θs)
−

√
1

4(λ1
s (θs))2 −

βs
λ1

s (θs)
is the stable fixed point if λ1

s(θa) < 1
4βs

holds. Since
∣∣∣ Ña
Ñb
−

βa
βb

∣∣∣ =

βa
βb

∣∣∣βbλ
1
b(θb)

βaλ
1
a(θa)

1−
√

1−4βaλ
1
a(θa)

1−
√

1−4βbλ
1
b(θb)
−1

∣∣∣, then βaλ
1
a(θa) = βbλ

1
b(θb) should be satisfied. The constraint set that

can sustain the group representation is given by

C = {(θa, θb)|(θa, θb) ∈ Θ×Θ,βaλ
1
a(θa) = βbλ

1
b(θb),λ1

a(θa) <
1

4βa
,λ1

b(θb) <
1

4βb
}.

Figure 4.3: Left plot: λ2
s(θs) = ν(

∫ ∞
θs

fs(x)dx),
λ1

s(θs) = ν(Ls(θs)); right plot: λ2
s(θs) = ν(Ls(θs)),

λ1
s(θs) = 1, and ν(x) = 1− x. Value of each pair

(θa, θb) corresponds to | Ña
Ñb
−
βa
βb
| measuring how

well it can sustain the group representation. All
points (θa, θb) with the same value of | Ña

Ñb
−
βa
βb
| =

βa
βb
ε form a curve of the same color with ε ∈ [0,1]

shown in the color bar.

Sometimes guaranteeing the perfect fair-
ness can be unrealistic and a relaxed version
is preferred, in which case all pairs (θa, θb)
satisfying | Ña

Ñb
−

βa
βb
| ≤ min{| Ña

Ñb
−

βa
βb
|} + ∆ con-

stitute the ∆-fair set. An example under dy-
namics Ns(t + 1) = Ns(t)λ2

s(θs(t)) + βsλ
1
s(θs(t))

is illustrated in Figure 4.3, where f y
s (x) is

truncated normal distributed with parameters
[σ0

a,σ
1
a,σ

0
b,σ

1
b] = [5,6,6,5], [s0, s1, s0, s1] =

[5,11,20,35], [µ0
s ,µ

1
s] = [10,25] for s ∈ {a,b}.

x-axis and y-axis represent θb and θa respec-
tively. Each pair (θa, θb) has a corresponding
value of | Ña

Ñb
−
βa
βb
| measuring how well it can sus-

tain the group representation. The colored area
illustrates all the pairs such that | Ña

Ñb
−
βa
βb
| ≤

βa
βb

. All (θa, θb) that have the same value of | Ña
Ñb
−
βa
βb
| =

βa
βb
ε

form a curve of the same color, where the corresponding value of ε ∈ [0,1] is shown in the color bar.
All curves with ε ≤ ∆

βb
βa

constitute ∆-fair set (perfect fairness set is given by the deepest red curve

80



2000 4000 6000 8000 10000

b

2000

4000

6000

8000

10000
a

0.2

0.4

0.6

0.8

(a) Simple fair

2000 4000 6000 8000 10000

b

2000

4000

6000

8000

10000

a

0.2

0.4

0.6

0.8

(b) DP fair

2000 4000 6000 8000 10000

b

2000

4000

6000

8000

10000

a

0.2

0.4

0.6

0.8

(c) EqOpt fair

2000 4000 6000 8000 10000

b

2000

4000

6000

8000

10000

a

0.2

0.4

0.6

0.8

(d) EqLos fair

Figure 4.5: Each dot in Figures 4.5a-4.5d represents the final group proportion limt→∞ na(t) of
one sample path under a pair of arriving rates (βa,βb). If the group representation is sustained,
then limt→∞ na(t) = 1

1+βb/βa
for each pair of (βa,βb), as shown in Figure 4.5d under EqLos fairness.

However, under Simple, DP and EqOpt fairness, limt→∞ na(t) = 1/(1 +
βb(1−ν(La(θ∞a )))
βa(1−ν(Lb(θ∞b ))) ).

with ε = 0).

4.5 Experiments
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Figure 4.4: Sample paths under different fairness criteria
when βa +βb = 20000. Group proportion na(t) and average
total loss are shown in Figures 4.4a and 4.4b respectively:
solid lines are for the case βa = βb, dashed lines for βa = 3βb,
and dotted dashed lines for βa = βb/3.

We first performed a set of exper-
iments on synthetic data where
every f y

s (x) follows a truncated
normal distribution, the supports
of f y

s (x), s ∈ {a,b},y ∈ {0,1} are
[a0,a1,a0,a1] = [−8,5,19,35],
[b0,b1,b

0
,b

1
] = [−6,25,9,43],

with the means [µ0
a,µ

1
a,µ

0
b,µ

1
b] =

[4,20,8,27] and standard deviations
[σ0

a,σ
1
a,σ

0
b,σ

1
b] = [5,6,3,6]. The

label proportions are αa = 0.6,
αb = 0.4. A sequence of one-shot
fair decisions are used and group
representation changes over time according to dynamics (4.2) with λs(θs) = ν(Ls(θs)) = 1−Ls(θs).

Figure 4.4 shows sample paths of na(t) and average total loss using one-shot fair decisions
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under dynamics with λs,t(·) = ν(Ls,t(·)). In all cases convergence is reached (we did not include the
decisions θs(t) but convergence holds there as well). In particular, under EqLos fairness, the group
representation is sustained throughout the horizon. By contrast, under other fairness constraints,
even a “major” group (one with a larger arrival βs) can be significantly marginalized over time
(blue/green dashed line in Figure 4.4a). This occurs when the loss of the minor group happens to be
smaller than that of the major group, which is determined by feature distributions of the two groups
(see Figure 4.6). Whenever this is the case, the one-shot fair decision will seek to increase the minor
group’s proportion in order to drive down the average loss.
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(b) Group proportion βa = βb

Figure 4.6: Change f 0
b (x) by varying σ0

b ∈ {1,2,3,4,5,6,7}.
As σ0

b increases, the overlap area with f 1
b (x) also increases

as shown in Figure 4.6a. Figure 4.6b shows the result under
DP fairness. Given θa(t), the larger σ0

b results in the larger
Lb(θb(t)) and thus the smaller Gb’s retention rate.

Figure 4.5 illustrates the final
group proportion (the converged
state) limt→∞ na(t) as a function of
the exogenous arrival sizes βa and
βb under different fairness criteria.
With the exception of EqLos fair-
ness, group representation is severely
skewed in the long run, with the sys-
tem consisting mostly of Gb, even for
scenarios when Ga has larger arrival,
i.e., βa > βb. Moreover, decisions
under an inappropriate fairness cri-
terion (Simple, EqOpt or DP) can
result in poor robustness, where a mi-
nor change in βa and βb can result in very different representation in the long run (Figure 4.5b).

We also consider the dynamics presented in Figure 4.3 and show the effect of ∆ = ε
βa
βb

-fair
decision found with method in Section 4.4.4 on na(t). Each curve in Figure 4.7 represents a sample
path under different ε where (θa(t), θb(t)) is from a small randomly selected subset of ∆-fair set, ∀t

(to model the situation where perfect fairness is not feasible) and βa = βb. We observe that fairness
is always violated at the beginning in lower plot even with small ε. This is because the fairness set
is found based on stable fixed points, which only concerns fairness in the long run.

We also trained binary classifiers over Adult dataset [34] by minimizing empirical loss where fea-
tures are individual data points such as sex, race, and nationality, and labels are their annual income
(≥ 50k or < 50k). Since the dataset does not reflect dynamics, we employ (4.2) with λs(θs) = ν(Ls(θs))
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and βa = βb. We examine the monotonic convergence of representation disparity under Simple,
EqOpt (equalized false positive/negative cost(FPC/FNC)) and EqLos, and consider cases where Ga,
Gb are distinguished by the three features mentioned above. These results are shown in Figure 4.8.

Figure 4.7: Effect of ∆-fair decisions
found with proposed method.

 g
ro
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ro
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rti
on

Figure 4.8: Illustration of group repre-
sentation disparity using Adult dataset.

To sustain the group representation, the key point is
that the fairness definition should match the factors that
drive user departure and arrival. If adopt different dynamic
models, different fairness criteria should be adopted. We
further consider other types of dynamics and examine
the performance of four fairness criteria. The results are
shown in Figure 4.9. Specifically, Figure 4.9a illustrates
the model where the user departure is driven by false
negative rate: Ns(t + 1) = Ns(t)ν(FNs(θs(t))) + βs, with
FNs(θs(t)) =

∫ ∞
θs(t)

f 0
s (x)dx. Under this model EqOpt is

better at maintaining representation. Figure 4.9b illus-
trates the model where the users from each sub-group
Gy

s are driven by their own perceived loss: Ny
s (t + 1) =

Ny
s (t)ν(Ly

s(θs(t)))+β
y
s, with Ly

s(θs) being false positives for
y = 0 and false negatives for y = 1, arrivals β0

s = (1−αs)βs

and β1
s = αsβs. Under this model none of the four criteria

can maintain group representation.
If f y

s (x) is unknown to the decision maker and the
decision is learned from users in the system, then as users
leave the system the decision can be more inaccurate and
the exacerbation could potentially get more severe. In
order to illustrate this, we first modify the dynamic model
as Ns(t + 1) = (Ns(t) + βs)ν(Ls(θs(t))) so that the users’
arrivals are also effected by the model accuracy.10

10The size of one group can decrease under this dynamics, while the size of either group is always increasing under
dynamics (4.2).
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DP

(a) Users from Gs are driven by
false negative rate

DP

(b) Users from Gy
s are driven

by their own perceived loss

Figure 4.9: Sample paths under different dynamic models:
βa = βb (solid curves); βa = 3βb (dashed curves); βa = βb/3
(dotted dash curves).

We compare the performance of
two cases: (i) the Bayes optimal de-
cisions are applied in every round;
and (ii) decisions in (t + 1)-th round
are learned from the remaining users
in t-th round. The empirical results
are shown in Figure 4.10 where each
solid curve (resp. dashed curve) is
a sample path of case (i) (resp. case
(ii)). Although βa = βb, Gb suffers
a smaller loss at the beginning and
starts to dominate the overall objec-
tive gradually. It results in the less and less users from Ga than Gb in the sample pool and the model
trained from minority group Ga suffers an additional loss due to its insufficient samples. In contrast,
as Gb becomes more dominant in the objective and its loss may be decreased compared with the
case (i) (See Figure 4.10c). Therefore, the exacerbation in group representation disparity gets more
severe (See Figure 4.10a).

DP

(a) Group proportion

DP

(b) Ga’s total population

DP

(c) Gb’s total population

Figure 4.10: Impact of the classifier’s quality: dashed curves represent the results for decisions
learned from users (case (ii)), solid curves represent the results for Bayes optimal decisions (case
(i)). It shows the exacerbation of group disparity get more severe under case (ii) for Simple,
EqOpt and DP criteria.
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CHAPTER 5

Long-Term Impact of Fairness Interventions on
Group Qualification

5.1 Introduction

In Chapter 4, we focus on one type of interplay between individuals and ML system where
individuals respond to ML decisions by leaving/staying ML system, and we aim to understand
how group representation disparity evolves in the long run under different ML (fair) decisions. In
this chapter, we study the dynamics of group qualifications [83, 104, 113, 137]. In particular, we
consider scenarios where a decision maker (e.g., bank) observes individuals’ features (e.g., credit
scores), and makes myopic decisions (e.g., issue loans) by assessing individuals’ qualifications
(e.g., ability to repay) which are unknown and unobservable to the decision maker when making
decisions. Individuals respond to the decisions by investing in effort to either improve or maintain
their qualifications in the next time step. These actions collectively change the qualification rate of
the population. Our goal is to evaluate the long-term impact of various fairness criteria and examine
whether these fairness criteria mitigate or worsen the qualification disparity in the long run.

Our main contributions and findings are as follows.

1. We use a Partially Observed Markov Decision Process (POMDP) framework to model the
sequential decision making and construct a qualification dynamics model to characterize the
interactions between individuals and ML system (Section 5.3).

2. We analyze the equilibrium of qualification rates in different groups under a general class of
fairness constraints (Section 5.4).
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• We prove the existence of the equilibrium under the qualification dynamics model
(Theorem 17)

• We identify the sufficient conditions under which the equilibrium of this dynamics
model is unique (Theorem 18).

3. We study the long-term impact of fairness constraints on the group qualification disparity
when the equilibrium is unique (Section 5.5).

• We consider scenarios where the equality can be attained without fairness intervention
(natural equality), and examine the impact of fairness constraints (Theorem 19).

• We consider scenarios where different groups have different qualification rate at the
equilibrium without fairness intervention (natural inequality), and examine the impact of
fairness constraints (Theorems 20 and 21). Our findings suggest that the same fairness
constraint can have opposite impacts on the equilibrium and we identify conditions
under which fairness constraint can mitigate/exacerbate the inequality in the long run.

4. We explore alternative interventions that can be effective in improving qualification rates at
the equilibrium and promoting equality across different groups (Section 5.6).

5. We examine our theory on synthetic Gaussian datasets and two real-world scenarios (Section
5.8). Our experiments show that our framework can help examine findings cross domains and
support real-life policy making.

The remainder of this chapter is organized as follows. Section 5.2 presents related work. Section
5.3 formulates the problem. Section 5.4 conducts the equilibrium analysis. The impact of various
fairness criteria on group qualification disparity is analyzed and presented in Section 5.5. The
effective interventions are introduced in Section 5.6. Experiments are presented in Section 4.5.
Section 5.8 concludes the chapter. All proofs can be found in Appendix D.

5.2 Related Work

Among existing works on fairness in sequential decision making problems [154], many assume
that the population’s feature distribution neither changes over time nor is it affected by decisions;
examples include studies on handling bias in online learning [12,31,38,39,51,62,77,95] and bandits
problems [8,26,73,74,97,105,117,129]. The goal of most of these work is to design algorithms that
can learn near-optimal policy quickly from the sequentially arrived data and the partially observed
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information, and understand the impact of imposing fairness intervention on the learned policy (e.g.,
total utility, learning rate, sample complexity, etc.)

However, recent studies [6, 23, 47] have shown that there exists a complex interplay between
algorithmic decisions and individuals, e.g., user participation dynamics [60, 152, 153], strategic
reasoning in a game [66, 83], etc., such that decision making directly leads to changes in the
underlying feature distribution, which then feeds back into the decision making process. Many
studies thus aim at understanding the impacts of imposing fairness constraints when decisions affect
underlying feature distribution. For example, [63, 79, 83, 103] construct two-stage models where
only the one-step impacts of fairness intervention on the underlying population are examined but not
the long-term impacts in a sequential framework; [70, 114] focus on the fairness in reinforcement
learning, of which the goal is to learn a long-run optimal policy that maximizes the cumulative
rewards subject to certain fairness constraint; [60, 153] construct a user participation dynamics
model where individuals respond to perceived decisions by leaving the system uniformly at random.
The goal is to understand the impact of various fairness interventions on group representation.

Our work is most relevant to [66, 104, 113, 137], which study the long-term impacts of decisions
on the groups’ qualification states with different dynamics. In [66, 104], strategic individuals
are assumed to be able to observe the current policy, based on which they can manipulate the
qualification states strategically to receive better decisions. However, there is a lack of study on the
influence of the sensitive attribute on dynamics and impact of fairness constraints. Besides, in many
cases, the qualification states are affected by both the policy and the qualifications at the previous
time step, which is considered in [113, 137]. However, they assume that the decision maker have
access to qualification states and the dynamics of the qualification rates is the same in different
groups, i.e.,the equally qualified people from different groups after perceiving the same decision
will have the same future qualification state. In fact, the qualification states are unobservable in
most cases, and the dynamics can vary across different groups. If considering such difference, the
dynamics can be much more complicated such that the social equality can not be attained easily as
concluded in [113, 137].

5.3 Problem Formulation

Partially Observed Markov Decision Process (POMDP). Consider two groups Ga and Gb distin-
guished by a sensitive attribute S ∈ {a,b} (e.g., gender), with fractions ns = Pr(S = s) of the popula-
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tion. At time t, an individual with attribute S = s has feature1 Xt = x ∈R determined by a hidden qual-

ification state Yt = y ∈ {0,1}, both are time-varying. We adopt a natural assumption that an individ-
ual’s attribute and current features constitute sufficient statistics, so that conditioned on these, the de-
cision is independent of past features and decisions. This allows a decision maker to adopt a Markov
policy: it makes decisions Dt = d ∈ {0,1} (reject or accept) using a policy 2 πs,t(x) = PDt |Xt,s(1|x, s)
to maximize an instantaneous utility Rt(Dt,Yt), possibly subject to certain constraints. An individual
is informed of the decision, and subsequently takes actions that may change the qualification Yt+1

and features Xt+1. The latter is used to drive the institute’s decision at the next time step. This
process is shown in Figure 5.1. Note that this model can be viewed as capturing either a randomly
selected individual repeatedly going through the decision cycles, or population-wide average when
all individuals are subject to the decision cycles. Thus, αs(t) = PYt |S (1|s) is the probability of an
individual from Gs qualified at time t at the individual level, while being the qualification rate at the
group level. One of our primary goals is to study how αs(t) evolves under different (fair) policies.

S

X0 X1 X2

Y0 Y1 Y2

D0 D1 D2

Figure 5.1: The graphical representa-
tion of our model where gray shades
indicate latent variables.

Feature generation process. In many real-world sce-
narios, equally qualified individuals from different groups
can have different features, potentially due to the different
culture backgrounds and physiological differences of differ-
ent demographic groups.Therefore, we consider that at time
step t, given Yt = y and S = s, features Xt are generated by
f y
s (x) = PXt |Yt,S (x|y, s). This will be referred to as the fea-

ture distribution and assumed time-invariant. The convex
combination PXt |S (x|s) = αs(t) f 1

s (x) + (1−αs(t)) f 0
s (x) will be referred to as the composite feature

distribution of group Gs at time t.
Transition of qualification states. At time t, after receiving decision Dt, an individual takes

actions such as exerting effort/investment, imitating others, etc., which results in a new qualification

1For simplicity of exposition, our analysis is based on one-dimensional feature space. However, the conclusions hold
for high-dimensional features. This can be done by first mapping the feature space to a one-dimensional qualification
profile space.

2We use group-dependent policies so that the optimal policies can achieve the perfect fairness, i.e., certain statistical
measures are equalized exactly, which allows us to study the impact of fairness constraint precisely. Although using
group-dependent policies might be prohibited in some scenarios (e.g., criminal justice), our qualitative conclusions are
applicable to cases when two groups share the same policy, under which the approximate fairness is typically attained
to maximize utility.
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Yt+1. This is modeled by a set of transitions T yd
s = PYt+1|Yt,Dt,S (1|y,d, s), which are time-invariant

and group-dependent. These transitions characterize individuals’ ability to maintain or improve its
qualification. Note that we don’t model individuals’ strategic responses as in [66, 83], but rather use
T yd

s to capture the overall effect; in other words, this single quantity may encapsulate the individual’s
willingness to exert effort, the cost of such effort, as well as the strength of community support, etc.
Specifically, T 0d

s (resp. T 1d
s ) represents the probability of individuals from Gs who were previously

unqualified (resp. qualified) became (resp. remain) qualified after receiving decision d ∈ {0,1}. Note
that the case when feature distributions or transitions are group-independent is a special case of our
formulation, i.e., by setting f y

a = f y
b or T yd

a = T yd
b .

Fair myopic policy of an institute. A myopic policy πt at time t aims at maximizing the
instantaneous expected utility/reward U(Dt,Yt) = E[Rt(Dt,Yt)], where the institute gains u+ > 0 by
accepting a qualified individual and incurs a cost u− > 0 by accepting an unqualified individual,

i.e., Rt(Dt,Yt) =


u+, if Yt = 1 and Dt = 1

−u−, if Yt = 0 and Dt = 1

0, if Dt = 0

. A fair myopic policy maximizes the above utility

subject to a fairness constraint C. We focus on a set of group fairness constraints that equalize
certain statistical measure between Ga and Gb. A commonly studied (one-shot) fair machine learning
problem is to find (πa,t,πb,t) that solves the following constrained optimization,

maxπa,πb U(Dt,Yt) = naE[Rt(Dt,Yt)|S = a] + nbE[Rt(Dt,Yt)|S = b]

s.t. EXt∼PC
a

[πa(Xt)] = EXt∼PC
b

[πb(Xt)] , (5.1)

where PC
s is some probability distribution over features Xt and specifies the fairness metric C. Many

fairness metrics including EqOpt and DP can be written in this form, i.e.,
1. Equality of Opportunity (EqOpt) [57]: this requires the true positive rate (TPR) to be

equal, i.e., PDt |Yt,S (1|1,a) = PDt |Yt,S (1|1,b). This is equivalent to EXt |Yt=1,S =a[πa,t(Xt)] =

EXt |Yt=1,S =b[πb,t(Xt)], i.e., PEqOpt
s (x) = f 1

s (x).
2. Demographic Parity (DP) [11]: this requires the positive rate (PR) to be equal, i.e., PDt |S (1|a) =

PDt |S (1|b). This is equivalent to EXt |S =a[πa,t(Xt)] = EXt |S =b[πb,t(Xt)], i.e., PDP
s (x) = (1−

αs(t)) f 0
s (x) +αs(t) f 1

s (x).
We focus on this class of myopic polices in this chapter, and refer to the solution to (5.1) as the
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optimal policy. We further define qualification profile3, γs,t(x), the probability an individual with
features x from group Gs is qualified at t, i.e.,

γs,t(x) = PYt |Xt,S (1|x, s) =
1

f 0
s (x)

f 1
s (x)

( 1
αs(t)
−1) + 1

, x ∈ R. (5.2)

Then the utility obtained from the group Gs at time step t is given by E[Rt(Dt,Yt)|S = s] =

EXt |S =s[πs,t(Xt)(γs,t(Xt)(u+ + u−)−u−)]. .

5.4 Evolution and Equilibrium Analysis of Qualification Rates

In this section, we first solve the one-shot optimization problem (5.1) (Section 5.4.1). We then show
that under the optimal policy, there exists an equilibrium of qualification rates in the long run, and
that a sufficient condition for its uniqueness is also introduced (Section 5.4.2).

5.4.1 Threshold Policies are Optimal

If an individual’s qualification is observable, the optimal policy is straightforward absent of fairness
constraints: accepting all qualified ones and rejecting the rest. When qualification is not observable,
the institute needs to infer from observed features and accepts those most likely to be qualified.
Next we show that under mild assumptions, optimal policies are in the form of threshold policies.

Assumption 9. f y
s (x) and the CDF,

∫ x
−∞

f y
s (z)dz, are continuous in x ∈ R, ∀y, s; f 1

s (x) and f 0
s (x)

satisfy strict monotone likelihood ratio property, i.e., f 1
s (x)

f 0
s (x)

is strictly increasing in x ∈ R.

Assumption 10. ∀s ∈ {a,b}, PC
s (x) is continuous in x ∈ R; PX|S (x|s)

PC
s (x)

is non-decreasing in x ∈ R.

Assumption 9 says that an individual is more likely to be qualified as his/her feature value
increases4. We show that under Assumption 9, the optimal unconstrained policy is a threshold

policy, i.e., ∀x, t and s ∈ {a,b}, πs,t(x) = 1(x ≥ θs(t)) for some θs(t) ∈ R. Assumption 10 limits the
types of fairness constraints, but is satisfied by many commonly used ones, including EqOpt and

3We assume the institute has perfect knowledge of γs,t(x). In practice, this is obtained via learning/estimating αs,t
and f y

s (x) from data [71, 118].
4When qualification increases as the feature value x decreases, one can simply use the opposite of x.
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DP. We show that for any fairness constraint C satisfying Assumption 10, the optimal fair policy is

a threshold policy, which is consistent with Theorem 3.2 in [29]. Moreover, under Assumptions
9 and 10, a threshold as a function of qualification rates, θs(t) = θs(αa(t),αb(t)), is continuous and
non-increasing in αa(t) and αb(t). In the next Lemma 7, we further characterize these optimal (fair)
thresholds in the optimal (fair) policies.

Lemma 7 (Optimal (fair) threshold). Let (γa(x),γb(x)) be a pair of qualification profiles for groups

Ga and Gb at t. Let threshold pairs (θUNa , θUNb ) and (θCa , θ
C
b ) be the unconstrained and fair optimal

thresholds under constraint C, respectively. Then we have γa(θUNa ) = γb(θUNb ) =
u−

u++u−
and

na
(
γa(θCa )−

u−
u+ + u−

)PX|S (θCa |a)

PC
a (θCa )

+ nb
(
γb(θCb )−

u−
u+ + u−

)PX|S (θCb |b)

PC
b (θCb )

= 0. (5.3)

Here we have removed the subscript t since the thresholds are not t-dependent; they only depend
on current qualification rates. The solution to Eqn. (5.3) is the threshold pair (θCa , θ

C
b ) that satisfies

the fairness constraint
∫ ∞
θCa

PC
a (x)dx =

∫ ∞
θCb

PC
b (x)dx in Eqn. (5.1) while maximizing the expected

utility U(D,Y) at time t. Under DP and EqOpt fairness, Eqn. (5.3) can be reduced to

naγa(θDPa ) + nbγb(θDPb ) =
u−

u+ + u−
;

naαa

γa(θEqOpta )
+

nbαb

γb(θEqOptb )
=

naαa
u−

u++u−

+
nbαb

u−
u++u−

.

Lemma 7 also indicates the relation between the unconstrained and fair optimal polices, e.g., a
group’s qualification profile evaluated at the unconstrained threshold is the same as the weighted
combination of two groups’ qualification profiles evaluated at their corresponding fair thresholds
under DP.

5.4.2 Evolution and Equilibrium Analysis

We next examine what happens as the institute repeatedly makes decisions based on the optimal
(fair) policies derived in Section 5.4.1, while individuals react by taking actions to affect their future
qualifications. We say the qualification rate of Gs is at an equilibrium if αs(t + 1) = αs(t),∀t ≥ to
for some to, or equivalently, if limt→∞αs(t) = αs is well-defined for some αs ∈ [0,1]. Analyzing
equilibrium helps us understand the property of the population in the long-run. We begin by
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characterizing the dynamics of qualification rates αs(t) under policy πs,t as follows:

αs(t + 1) = g0
s
(
αa(t),αb(t)

)
· (1−αs(t)) + g1

s
(
αa(t),αb(t)

)
·αs(t), s ∈ {a,b} , (5.4)

where gy
s
(
αa(t),αb(t)

)
= EXt |Yt=y,S =s

[
(1−πs,t(Xt))T

y0
s +πs,t(Xt)T

y1
s

]
depends on qualification rates

αa(t),αb(t) through policy πs,t. When πs,t(x) = 1(x ≥ θs(t)), this reduces to gy
s
(
αa(t),αb(t)

)
=

T y0
s

∫ θs(t)
−∞

f y
s (x)dx + T y1

s
∫ ∞
θs(t)

f y
s (x)dx. Denote gy

s
(
αa(t),αb(t)

)
:= gy

s
(
θs(αa(t),αb(t))

)
, y ∈ {0,1}.

Dynamics (5.4) says that the qualified people at each time consists of two parts: the qualified
people in the previous time step remain being qualified, and those who were unqualified in the
previous time step change to become qualified.

Theorem 17 below shows that for any transition and any threshold policy that are continuous in
qualification rates, the above dynamical system always has at least one equilibrium.

Theorem 17 (Existence of equilibrium). Consider a dynamics (5.4) with a threshold policy

θs(αa,αb) that is continuous in αa and αb. ∀T yd
s ∈ (0,1), there exists at least one equilibrium

(α̂a, α̂b).

While an equilibrium exists under any set of transitions, its specific property (e.g., quantity,
value, etc.) highly depends on transition probabilities which specify different user dynamics.

We focus on two scenarios given in the condition below.

Condition 1. ∀s ∈ {a,b},

T 01
s ≤ T 00

s and T 11
s ≤ T 10

s ;a) T 01
s ≥ T 00

s and T 11
s ≥ T 10

s .b)

As mentioned, transitions T yd
s characterize the ability of individuals from Gs to maintain/improve

their future qualifications, this value summarizes individual’s behaviors. On one hand, an accepted
individual may feel less motivated to remain qualified (if it was) or become qualified (if it was not).
On the other hand, the accepted individual may have access to better resources or feel more inspired
to remain or become qualified. These competing factors (referred to later as the “lack of motivation”
effect and the “leg-up” effect, respectively) may work simultaneously, and the net effect can be
context dependent. Condition 1a) (resp. Condition 1b)) suggests that the first (resp. second) effect
is dominant for both qualified and unqualified individuals. There are two other combinations: c)
T 01

s ≥ T 00
s and T 11

s ≤ T 10
s ; d) T 01

s ≤ T 00
s and T 11

s ≥ T 10
s , under which the qualified and unqualified

are dominant by different effects. These cases incur more uncertainty; slight changes in feature
distributions or transitions may result in opposite conclusions. More discussions are in Section 5.7.
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Given the existence of an equilibrium, Theorem 18 further introduces sufficient conditions for it
to be unique. Based on the unique equilibrium, we can evaluate and compare policies (Section 5.5),
and design effective interventions to promote long-term equality and/or the overall qualifications
(Section 5.6).

Theorem 18 (Uniqueness of equilibrium). Consider a decision-making system with dynamics (5.4)
and either unconstrained or fair optimal threshold policy. Let hs(θs(αa,αb)) =

1−g1
s (θs(αa,αb))

g0
s (θs(αa,αb))

, s ∈

{a,b}. Under Assumptions 9 and 10, a sufficient condition for (5.4) to have a unique equilibrium is

as follows, ∀s ∈ {a,b}:

1. Under Condition 1a),
∣∣∣∂hs(θs(αa,αb))

∂α−s

∣∣∣ < 1, ∀αs ∈ [0,1], where −s := {a,b} \ s;

2. Under Condition 1b),
∣∣∣∂hs(θs(αa,αb))

∂α−s

∣∣∣ < 1 and
∣∣∣∂hs(θs(αa,αb))

∂αs

∣∣∣ < 1,∀αa,αb ∈ [0,1].

These sufficient conditions can further be satisfied if for the qualified (y = 1) and the unqualified
(y = 0), transitions T y1

s and T y0
s are sufficiently close, i.e., policies have limited influence on the

qualification dynamics. This is stated formally as follows.

Corollary 2. For any feature distributions { f y
s (x)}s,y, suppose

∣∣∣∂Fy
s(θs(αa,αb))
∂αu

∣∣∣ ≤ My holds for some

constant My ∈ [0,∞), ∀y ∈ {0,1},∀u ∈ {a,b}. Under either Condition 1a) or 1b), ∃εy
s > 0 such that

for any transitions that satisfy |T y1
s −T y0

s | < ε
y
s , s ∈ {a,b},y ∈ {0,1}, the corresponding dynamics

system has a unique equilibrium.

It is worth noting that the conditions of Theorem 18 only guarantee uniqueness of equilibrium
but not stability, i.e., it is possible that the qualification rates oscillate and don’t converge under
this discrete-time dynamics (see examples on COMPAS data in Section 5.8). The uniqueness
can be guaranteed and further attained if the dynamics (5.4) satisfies L-Lipschitz condition with
L < 1. However, Lipschitz condition is relatively stronger than the condition in Theorem 18 (see the
comparison in Section 5.7).

Figure 5.2 illustrates trajectories of qualification rates
(
αa(t),αb(t)

)
and the equilibrium for

a Gaussian case under Condition 1b). Let gy
s := gy

s(θs(αa,αb)), the points (αa, αb) on the red,
and blue dashed curves satisfy αb = g0

b(1−αb) + g1
bαb and αa = g0

a(1−αa) + g1
aαa, respectively.

Their intersection (black star) is the equilibrium (α̂a, α̂b). The sufficient conditions in Theorem 18
guarantee these two curves have only one intersection. Moreover, observe that these two curves
split the plane {(αa,αb) : αa ∈ [0,1],αb ∈ [0,1]} into four parts, which can be used for determining
how

(
αa(t),αb(t)

)
will change at t. For example, if

(
αa(t),αb(t)

)
falls into the left side of the blue
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Figure 5.2: Illustration of {(αa(t),αb(t))}t for a Gaussian case under EqOpt, DP, UN optimal policies:
u+ = u−, na = nb, f y

s (x) is Gaussian distributed with mean µy
s and variance σ2

s , where [µ0
a,µ

1
a,µ

0
b,µ

1
b] =

[−5,5,−5,5], [σa,σb] = [5,5], [T 00
a ,T 01

a ,T 10
a ,T 11

a ] = [0.4,0.5,0.5,0.9], [T 00
b ,T 01

b ,T 10
b ,T 11

b ] =

[0.1,0.5,0.5,0.7]. Each plot shows 6 sample paths with each circle/diamond/star representing
one pair of (αa(t),αb(t)).

dashed curve, then αa(t + 1) > αa(t); if
(
αa(t),αb(t)

)
falls into the lower side of the red dashed curve,

then αb(t + 1) > αb(t).

5.5 The Long-Term Impact of Fairness Constraints

In this section, we analyze the long-term impact of imposing fairness constraints on the equality of
group qualification. We will do so in the presence of natural equality (and inequality) [113] where
equitable equilibria are attained naturally without imposing additional constraints (in our context,
this means attaining α̂UNa = α̂UNb using unconstrained polices).

Although there may exist multiple equilibria, in this section we will assume the conditions in
Theorem 18 hold under Assumption 9 and 10 and limit ourselves to the unique equilibrium cases
under DP and EqOpt, thereby providing a theoretical foundation and an illustration of how their
long-term impact can be compared. As shown below, these short-term fairness interventions may
not necessarily promote long-term equity, and their impact can be sensitive to feature distributions
and transitions. A small change in either can lead to contrarian results, suggesting the importance
of understanding the underlying population.

Long-term impact on natural equality. When there is natural equality, an unconstrained
optimal policy will result in two groups converging to the same qualification rate, thus rendering
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fairness constraints is unnecessary. The interesting question here is whether applying a fairness
constraint can disrupt the equality. The theorem below shows that the DP and EqOpt fairness will
do harm if the feature distributions are different.

Theorem 19. For any feature distribution f y
s (x) and ∀αUN ∈ (0,1), there exist transitions {T yd

s }y,d,s

satisfying either Condition 1a) or Condition 1b) such that α̂UNa = α̂UNb = αUN. In this case, if

f y
a (x) 6= f y

b (x) (resp. f y
a (x) = f y

b (x)), then imposing either C = DP or EqOpt fair optimal policies

will violate (resp. maintain) equality, i.e., α̂Ca 6= α̂Cb (resp. α̂Ca = α̂Cb ).

Theorem 19 shows that ∀αUN ∈ (0,1), there exists model parameters under which αUN is the
equilibrium and natural equality is attained. Also, natural equality is not disrupted by imposing
either fairness constraint when feature distributions are the same across different groups (referred
to as demographic-invariant below). However, imposing either constraint will lead to unequal
outcomes if feature distributions are diverse across groups (referred to as demographic-variant

below), which is more likely to happen in reality. Thus, in these natural equality cases, imposing
fairness will often do harm.

Long-term impact on natural inequality. Natural inequality, i.e., α̂UNa 6= α̂
UN
b , is more common

than natural equality which only occurs under specific model parameters. This difference in
qualification rates at equilibrium typically stems from the fact that either feature distributions
or transitions or both are different across different groups. Thus, below we study the impact of
imposing fairness by considering these two sources of inequality separately, and we aim to examine
whether fairness constraints can address the inequality caused by each. Let disadvantaged group be
the group with a lower qualification rate at equilibrium.

Demographic-invariant feature distribution with demographic-variant transition. In this case,
we have the same feature distributions but different transitions in different groups, i.e., f y

s = f y
b ,

T yd
a 6= T yd

b . A real-world example is college admission based on ACT/SAT scores: given the same
qualification state, score distributions may be the same regardless of the applicant’s socio-economic
status, but the economically advantaged may be able to afford more investments and effort to
improve their score after a rejection.

Theorem 20. Under Condition 1a), DP and EqOpt fairness exacerbate inequality, i.e., |̂αCa −

α̂Cb | ≥ |̂α
UN
a − α̂

UN
b |; under Condition 1b), DP and EqOpt fairness mitigate inequality, i.e., |̂αCa −

α̂Cb | ≤ |̂α
UN
a − α̂

UN
b |. Moreover, the disadvantaged group remains disadvantaged in both cases, i.e.,

(α̂UNa − α̂
UN
b )(α̂Ca − α̂

C
b ) ≥ 0.
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This theorem shows that imposing fairness only helps when the “leg-up” effect is more prominent
than the “lack of motivation” effect; alternatively, this suggests that when the “lack of motivation”
effect is dominant, imposing fairness should be accompanied by other support structure to dampen
this effect (e.g., by helping those accepted to become or remain qualified).

Theorem 20 is illustrated in the plot to the
right, where transitions satisfy Condition 1a)-
b) and f y

a (x) = f y
b (x) is Gaussian distributed.

Each plot includes 3 pairs of red/blue dashed
curves corresponding to 3 policies (EqOpt,
DP, UN). Points (αa,αb) on these curves satisfy
αb = g0

b(αa,αb) · (1−αb) + g1
b(αa,αb) ·αb and αa = g0

a(αa,αb) · (1−αa) + g1
a(αa,αb) ·αa, respectively.

Each intersection (colored star) is an equilibrium (α̂Ca , α̂
C
b ); the length of colored segments represents

|̂αCa − α̂
C
b |. The black circle is the intersection of all three blue/red curves.

Demographic-variant feature distribution with demographic-invariant transition. In this case,
we have the same transitions and different feature distributions in different groups, i.e., f y

a 6= f y
b ,

T yd
a = T yd

b . In the same example of college admission this is a case where the ACT/SAT scores are
biased against a certain group but there is no difference in how different groups react to the decision.
Here, we will focus on a class of feature distributions where those qualified have the same feature
distribution regardless of group membership, while those unqualified from Gb are more likely to
have lower features than those unqualified from Ga. This is given in the condition below.

Condition 2. f y
s (x) is continuous in x ∈ R; f 1

a (x) = f 1
b (x),∀x ∈ R; f 0

a (x) and f 0
b (x) satisfy strict

monotone likelihood ratio property, i.e., f 0
a (x)

f 0
b (x)

is strict increasing in x ∈ R.

Condition 2 also implies that
∫ x
−∞

f 0
b (z)dz ≥

∫ x
−∞

f 0
a (z)dz,∀x ∈ R. Let

x̂ be defined such that f 0
b (x̂) = f 0

a (x̂) holds, which is unique. An example
satisfying Condition 2 is shown on the right.

Theorem 21. Under Condition 1b) and Condition 2, if u+

u−
≥

f 0
s (x̂)

f 1
s (x̂)

1−T 10

T 00 , we have

• α̂UNa > α̂UNb and α̂UNa − α̂
UN
b > α̂EqOpta − α̂EqOptb ≥ 0 hold, i.e., EqOpt fairness always mitigates

inequality and the disadvantaged group Gb remains disadvantaged.

• DP fairness may either (1) mitigate inequality, i.e., α̂UNa − α̂
UN
b > α̂DPa − α̂

DP
b ≥ 0; or (2) flip the

disadvantaged group from Gb to Ga, i.e., α̂DPb ≥ α̂
DP
a .
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Because Ga and Gb only differ in f 0
s (x), the condition in Theorem 21 ensures at least one group

has enough unqualified people to be accepted and can be satisfied if benefit u+ is sufficiently larger
than cost u−. We see that in this case the comparison is much more complex depending on the
model parameters.

5.6 Effective Interventions

As discussed, imposing static fairness constraints is not always a valid intervention in terms of its
long-term impact. In some cases it reinforces existing disparity; even when it could work, doing
it right can be very hard due to its sensitivity to problem parameters. In this section, we present
several alternative interventions that can be more effective in inducing more equitable outcomes or
improving overall qualification rates in the long run. We shall assume that the sufficient conditions
of Theorem 18 hold under Assumptions 9 and 10 so that the equilibrium is unique.

Policy intervention. In many instances, preserving static fairness at each time t is important,
for short-term violations may result in costly lawsuits [1]. Proposition 3 below shows that using
sub-optimal fair policies instead of the optimal ones can improve overall qualification in the long
run.

Proposition 3. Let (θCa , θ
C
b ), (θC

′

a , θ
C′
b ) be thresholds satisfying fairness constraint C under the optimal

and an alternative policy, respectively. Let (α̂Ca , α̂
C
b ), (α̂C

′

a , α̂
C′
b ) be the corresponding equilibrium.

• If θC
′

s (αa,αb) > θCs (αa,αb), ∀αs ∈ [0,1] under Condition 1a), then α̂C
′

s > α̂Cs , ∀s ∈ {a,b};

• If θC
′

s (αa,αb) < θCs (αa,αb), ∀αs ∈ [0,1] under Condition 1b), then α̂C
′

s > α̂Cs , ∀s ∈ {a,b}.

Note that the sacrifice is in instantaneous utility, not necessarily in total utility in the long run
(see an example in proof of Proposition 3, Appendix D). If static fairness need not be maintained at
all times, then we can employ separate policies for each group, and Proposition 4 below shows that
under certain conditions on transitions, threshold policies leading to equitable equilibrium always
exist.

Proposition 4. Let Is =
[1−max{T 11

s ,T 10
s }

max{T 01
s ,T 00

s }
,

1−min{T 11
s ,T 10

s }

min{T 01
s ,T 00

s }

]
, s ∈ {a,b}. Under Condition 1a) or 1b), if

Ia ∩ Ib 6= ∅, then ∀α̂ ∈ Ia ∩ Ib, there exist threshold policies θs(αs), ∀αs ∈ [0,1], under which

αs(t)→ α̂,∀s ∈ {a,b}, i.e., equitable equilibrium is attained; if Ia∩Ib = ∅, then there is no threshold

policy that can result in equitable equilibrium.
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Proposition 4 also indicates that when two groups’ transitions are significantly different, manip-
ulating policies cannot achieve equality. In this case, the following intervention can be considered.

Transition Intervention. Another intervention is to alter the value of transitions, e.g., by
establishing support for both the accepted and rejected. Proposition 5 shows that the qualification
rate α̂s at equilibrium can be improved by enhancing individuals’ ability to maintain/improve
qualification, which is consistent with the empirical findings in loan repayment [52, 64, 119] and
labor markets [43].

Proposition 5. ∀s ∈ {a,b}, increasing any transition probability T yd
s , d ∈ {0,1}, y ∈ {0,1} always

increases the value of equilibrium qualification rates α̂s.

5.7 Discussion

Transitions under Condition 1c) or 1d). This chapter mainly focus on transitions satisfying
Condition 1a) and 1b). As mentioned in Section 5.4.2, there are the other two combinations: c)
T 01

s ≥ T 00
s and T 11

s ≤ T 10
s ; d) T 01

s ≤ T 00
s and T 11

s ≥ T 10
s , in which there is more uncertainty when

conducting equilibrium analysis. The slight changes in the feature distributions or the values of
transitions may change conclusions significantly.

Because the system has equilibrium if αs(t) = αs(t + 1) holds, i.e., there is solution to αs =

g0
s
(
αa,αb

)
· (1− αs) + g1

s
(
αa,αb

)
· αs,∀s ∈ {a,b}. Re-organize, it requires 1

αs
− 1 =

1−g1
s (θs(αa,αb))

g0
s (θs(αa,αb))

,

∀s ∈ {a,b}. Let cumulative density function of f y
s (x) be denoted as Fy

s(x) =
∫ x
−∞

f y
s (z)dz. Since

1−g1
s(θs(αa,αb))

g0
s(θs(αa,αb))

=
1− (T 10

s F1
s(θs(αa,αb)) + T 11

s
(
1−F1

s(θs(αa,αb))
)
)

T 00
s F0

s(θs(αa,αb)) + T 01
s

(
1−F0

s(θs(αa,αb))
) .

Under optimal (fair) policies and Condition 1a) or 1b), 1−g1
s (θs(αa,αb))

g0
s (θs(αa,αb))

is guaranteed to be either
decreasing or increasing in αs. This monotonicity is critical to determine the properties (e.g.,
uniqueness, quantity, value, etc.) of the consequent equilibrium (α̂Ca , α̂

C
b ) so that impacts of different

fairness can be compared. In contrast, under Condition 1c) or 1d), 1−g1
s (θs(αa,αb))

g0
s (θs(αa,αb))

is no longer

monotonic, and its intersection with function 1
αs
−1, i.e., equilibrium, is thus hard to characterize.

As a consequence, the impacts of different fairness constraints cannot be compared in general.
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Comparison between sufficient conditions in Theorem 18 and Lipschitz condition. Let a
pair of qualification rats of Ga,Gb be noted as αααt = (αa(t),αb(t)) ∈ [0,1]× [0,1], and let mapping
Φ : [0,1]× [0,1]→ [0,1]× [0,1] be defined such that dynamical system (5.4) can be written as
αααt+1 = Φ(αααt). Then this dynamical system has an equilibrium α̂ if Φ(α̂) = α̂. According to Banach
Fixed Point Theorem, such equilibrium exists and is unique if the mapping Φ satisfies L-Lipschitz
condition with L < 1, i.e., Φ is a contraction mapping. Specifically, d(Φ(ααα0),Φ(ααα1)) ≤ Ld(ααα0,ααα1)
for some distance function d and Lipschitz constant L < 1.

While Lipschitz condition also ensures the uniqueness of equilibrium, the sufficient conditions
given in Theorem 18 are weaker. Use unconstrained optimal policies as an example, in this case
dynamics of two groups can be decoupled because threshold θs(αa,αb) used in Gs is independent
of qualification of the other group α−s. Therefore, sufficient condition |∂hs(θs(αa,αb))

∂α−s
| = 0 < 1 under

Condition 1a) always holds. In contrast, for dynamics of Gs after decoupling αs(t + 1) = Φs(αs(t)) =

g0
s(θs(αs(t)))(1−αs(t)) + g1

s(θs(αs(t)))αs(t), Φs is not necessarily a contraction mapping.
Although sufficient conditions in Theorem 18 are weaker, they do not guarantee the stability of

the equilibrium. In contrast, Lipschitz condition with L < 1 ensures the unique equilibrium is also
stable, i.e., we have (αa(t),αb(t))→ (α̂a, α̂b) given an arbitrary initial state (αa(0),αb(0)).

5.8 Experiments

We conducted experiments on both Gaussian synthetic datasets and real-world datasets (FICO credit
scores and COMPAS data). These are static, one-shot datasets, which we use to create a simulated
dynamic setting as detailed below.

Gaussian synthetic data. We first verify the conclusions in Sections 5.4 and 5.5 using the
synthetic data, where f y

s (x) is Gaussian distributed with mean µy
s and variance σ2

s .
Table 5.1 and 5.2 illustrate the impacts of EqOpt and DP fairness on the equilibrium, where each

column shows the value of α̂Ca − α̂
C
b when C = UN,EqOpt,DP under different sets of parameters.

Specifically, in Table 5.1, na = nb, u+ = u−, [µ0
s ,µ

1
s ,σs] = [−5,5,5], ∀s ∈ {a,b} and transitions

satisfying either Condition 1a) or 1b) are randomly generated; in Table 5.2, transitions satisfying
Condition 1b) and f y

s (x) that satisfy Condition 2 are randomly generated, u+

u−
also satisfies the

condition in Theorem 21. These results are consistent with Theorem 20 and 21.
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Table 5.1: α̂Ca − α̂
C
b when C = UN,EqOpt,DP: f y

a = f y
b and T yd

a 6= T yd
b .

Condition 1a)

UN (×10−2) -18.45 16.89 19.82 -7.21 -16.34 -26.56 16.66 -6.03 -38.63
EqOpt (×10−2) -21.11 19.13 21.78 -7.62 -18.56 -29.21 18.14 -6.28 -41.52
DP (×10−2) -27.98 23.11 25.65 -8.90 -23.11 -33.22 21.09 -6.66 -43.35

Condition 1b)

UN (×10−2) -19.05 18.18 -0.70 -58.80 -40.91 61.30 12.82 -44.67 2.66
EqOpt (×10−2) -18.40 17.98 -0.64 -57.62 -34.50 48.66 12.35 -41.43 2.61
DP (×10−2) -17.52 17.73 -0.57 -55.62 -28.97 36.10 11.69 -37.97 2.57

Table 5.2: α̂Ca − α̂
C
b when C = UN,EqOpt,DP: f y

a 6= f y
b and T yd

a = T yd
b under Condition 1b).

UN (×10−2) 1.88 26.35 2.12 0.38 5.64 12.35 11.70 0.20 4.12
EqOpt (×10−2) 0.57 17.43 1.75 0.32 5.05 7.81 7.21 0.18 1.68
DP (×10−4) 16.26 18.29 -5.94 -0.93 -2.25 1.47 0.92 -1.68 -0.80

Figure 5.3: The feature distribu-
tions: the scores are rescaled so
that they are between 0 and 1.

FICO scores data. We use the FICO score dataset [122]
to study the long-term impact of fairness constraints EqOpt
and DP and other interventions on loan repayment rates in
the Caucasian group GC and the African American group GAA.
FICO scores are widely used in the US to assess an individual’s
creditworthiness. With the pre-processed data in [57], we
simulate a dataset with loan repayment records and credits
scores. We first compute group proportions nC = 0.88,nAA =

0.12, the initial qualification (loan repayment) rates αC(0) =

0.76,αAA(0) = 0.34 and estimate the feature distributions f y
s (x)

with beta distributions based on the simulated data, as shown in Figure 5.3. Then, we compute the
optimal UN, EqOpt, DP threshold according to Eqn. (5.3). Consequently, with the dynamics (5.4),
we update the qualification rates in both groups. This process proceeds and qualification rates in
both groups change over time.
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(a) D-invariant transitions (b) D-variant transitions

Figure 5.4: Results on the FICO dataset: Points are the equi-
libria of repayment rates in GAA,GC under Condition 1b) with
different transitions. Arrows indicate the direction of increas-
ing T 01

s ; a more transparent point represents the smaller value
of T 10

s . In panel a, T yd
AA = T yd

C , while in panel b, T yd
AA < T yd

C .

Our results show consistent find-
ings with studies in loan repayment
literature [52, 119]. Specifically,
[119] studied the loan repayment
in group lending and pointed out
that in practice effective training
and leadership among the groups
who were issued loans can increase
their willingness to pay and improve
the group repayment rate. Similar
conclusion is also suggested by [52].
In our model, these interventions
can be regarded as stimulating tran-
sitions (i.e., T y1

s ) to improve the fu-
ture repayment rates. And the sce-
narios under such intervention would satisfy Condition 1b). Figure 6.10 illustrates the equilibria
(α̂AA, α̂C) under different sets of transitions (including demographic-invariant (D-invariant) and
demographic-variant (D-variant) transitions). Their specific values are listed below, where the
system has an equilibrium in all cases.

D-invariant: T 00
s = 0.1,T 11

s = 0.9, T 10
s ,T 01

s ∈ {0.1, 0.5, 0.9}, s ∈ {AA,C}

D-variant: T 00
AA = 0.1,T 11

AA = 0.9, T 10
AA,T

01
AA ∈ {0.20, 0.53, 0.85}

T 00
C = 0.4,T 11

C = 0.9, T 10
C ,T 01

C ∈ {0.45, 0.65, 0.85}

It shows that under Condition 1b), increasing the transition T 01
s always increases qualification

rates, and DP in general can result in a more equitable equilibrium than EqOpt. Figure 5.4a shows
that in Demographic-invariant (D-invariant) transition cases (T yd

AA = T yd
C ): (1) GAA always remains as

disadvantaged group; (2) when T 10
s is small, the inequality under UN optimal policies is small and

the intervention on T 01
s only has minor effects on equality; when T 10

s is large (darker blue points),
varying T 01

s can affect disparity significantly; (3) imposing DP attains equitable equilibria in general,
which is robust to transitions and consistent with the conclusion in [113]; (4) when T 10

s is small,
imposing EqOpt exacerbates inequality as T 01

s increases; while T 10
s is sufficient large, equality
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(a) T 01 = 0.1×T 00.
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(c) T 01 = 0.5×T 00.
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(d) T 01 = 0.7×T 00.
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(e) T 01 = 0.9×T 00.

Figure 5.5: The oscillation level of recidivism rates under different transitions. In each panel, scalar
k denotes the ratio, of which T 11 = k×T 10.

can be attained and robust to transitions. In Figure 5.4b, it shows that in D-variant transition cases,
by setting T yd

AA < T yd
C , the inequality between GAA and GC further gets reinforced. In summary, the

effectiveness of such intervention (increasing T 01
s ) on promoting equality highly depends on the

value of T 10
s and policies.

The COMPAS data. Our second set of experiments is conducted on a multivariate recidivism
prediction dataset from Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS) [7]. We again use this static and high-dimensional dataset to create a simulated
decision-making process as the FICO experiments.

Specifically, from the raw data we calculate the initial qualification (recidivism) rate and train
optimal classifier using a logistic regression model, based on which recidivism rate is updated
according to Eqn. (5.4) under a given set of transitions. In the context of recidivism prediction, we
consider all the possible types of transitions under an unconstrained policy, i.e., transitions satisfying

102



conditions 1a)-d). The classifier decision here corresponds to incarceration based on predicted
likelihood of recidivism: the higher the predicted recidivism, the more likely an incarceration
decision. In subsequent time steps, the data is re-sampled from the raw data proportional to the
updated recidivism rates. This process repeats and the group recidivism rates change over time.

Table 5.3: osi/osiH/osiL is the percentage that oscillation occurs among 125 set of different transitions
under policy UN/UNθH /UNθL . Among transitions that lead to stable equilibrium, Column 2/Column
3 shows the percentage that UNθH / UNθL results in lower recidivism compared with UN.

α̂θH < α̂ α̂θL < α̂ osi osiH osiL

1a) 0 1 0.29 0.12 0.36
1b) 0.99 0.01 0 0 0
1c) 0.37 0.28 0 0 0
1d) 0.79 0.63 0.06 0 0.13
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Figure 5.6: T y1 = k×T y0, y = 0,1. The
oscillation level of recidivism rates in
the long run is represented by the size
of red circles, the bigger size means the
severer oscillation. The blue dots indi-
cate the cases with a unique equilibrium.

Our results here primarily serve to highlight the com-
plexity in such a decision making system. In particular,
we see that an equilibrium may not exist and under some
transitions the qualification rate may oscillate. Specif-
ically, Table 5.3 shows that Proposition 1 holds under
Condition 1a)-b); there is no oscillation under Condition
1b)- c); under Condition 1c)-d), there is more uncertainty.

To further explore when the system is in an equi-
librium state under unconstrained optimal policy, we
consider a set of transitions with T 00 and T 10 taking
the values 0.1, 0.3, 0.5, 0.7 and 0.9. Figure 5.6 shows
the results when T 01 = k × T 00 and T 11 = k × T 10, k ∈

{0,1,0.3,0.5,0.7,0.9}. We find that when Corollary 2 is
satisfied, e.g., when k ≥ 0.5, most of the systems have a
unique equilibrium (blue dot). Moreover, when T 00 ≤ 0.5, the system is also mostly in the unique
equilibrium state. For other transitions, the system oscillates between two states (red circle). We
also show the results under other combinations of T 01 and T 11 in Figure 5.5.
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Table 5.4: Recidivism rates in the long
run under different policies of 5 inde-
pendent runs of experiments.

UN∗ UNθH UNθL

α̂1 0.164 0.166 0.147
α̂2 0.343 0.356 0.307
α̂3 0.230 0.246 0.162
α̂4 0.306 0.3415 0.156
α̂5 0.162 0.166 0.140

Next, we study the impact of policy interventions in
cases with equilibrium. We randomly choose the transi-
tions under which the system has an equilibrium and then
apply the unconstrained policy with optimal threshold
(classifier threshold 0.5), a higher and a lower threshold
(classifier thresholds 0.8 and 0.2 respectively) compared
to the optimum respectively. The results are show in Table
5.4, where UN indicates the unconstrained policy with the
optimal threshold, UNθH means the policy with a higher
threshold, and UNθL the policy with a lower threshold.
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CHAPTER 6

Impact of Fairness Interventions on Strategic
Manipulation

6.1 Introduction

In Chapters 4 and 5, we studied two types of interactions between individuals and ML system,
where ML decisions have downstream impacts, i.e., impact on participation (Chapter 4) or impact
on qualification (Chapter 5), on individuals’ behaviors. Such impacts are then captured in the
dataset used for building the future ML systems. In practice, when ML systems are deployed to
make decisions about people, there is a requirement for transparency in terms of how decisions are
reached given input. As a result, given (partial) information about an algorithm, individuals subject
to its decisions can and will adapt their behavior by strategically manipulating their data in order to
obtain favorable decisions [19,21,25,32,53,56,66,96,110,111]. This strategic behavior in turn hurts
the performance of ML models and diminishes their utility. Such a phenomenon has been widely
observed in real-world applications, and is known as Goodhart’s law, which states “once a measure
becomes a target, it ceases to be a good measure” [127]. For instance, a hiring or admissions
practice that heavily depends on GPA might motivate students to cheat on exams; not accounting for
such manipulation may result in disproportionate hiring of under-qualified individuals. A strategic
decision maker is one who anticipates such behavior and thus aims to make its ML models robust to
such strategic manipulation.

In this chapter, we focus on the design of (fair) machine learning models in the presence of
strategic manipulation. Same as Chapters 4 and 5, we consider a decision maker whose goal is to
select qualified individuals based on a given set of features. Given knowledge of the selection policy,
individuals can tailor their behavior and manipulate their features to receive favorable decisions.
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We shall assume that this feature manipulation does not affect an individual’s true qualification
state. We say the decision maker (and its policy) is strategic if it anticipates such manipulation; it is
non-strategic if it does not take into account individuals’ manipulation in its policies.

We adopt a typical two-stage (Stackelberg) game setting where the decision maker commits to
its policies, following which individuals best-respond. Under this model, we study the impact of
fairness intervention on different social groups in the presence of strategic manipulative behavior,
and explore the role of fairness intervention in (dis)incentivizing such manipulation. We aim to
answer the following questions: how does the anticipation of individuals’ strategic behavior impact
a decision maker’s utility, and the resulting policies’ fairness properties? How is the Stackelberg
equilibrium affected when fairness constraints are imposed? Can fairness intervention serve as
incentives/disincentives for individuals’ strategic manipulation?

Our main contributions and findings are as follows.

1. We formulate a Stackelberg game to model the interaction between a decision maker and
strategic individuals (Section 6.3). We characterize both strategic (fair) optimal policies and
non-strategic (fair) optimal policies of the decision maker, and individuals’ best response
(Section 6.4, Lemmas 8-11).

2. We study the impact of the decision maker’s anticipation of individuals’ strategic manipulation
by comparing non-strategic with strategic policies (Section 6.5):

• We show that compared to the non-strategic policy, the strategic policy always disincen-
tivizes manipulative behavior, but that it over (resp. under) selects when a population is
majority-qualified (resp. majority-unqualified)1 (Theorem 22).

• We show that the anticipation of manipulation can adversely affect the fairness of a strate-
gic policy: when one group is majority-qualified while the other is majority-unqualified,
we identify conditions under which strategic policy always worsens unfairness (Theorem
23); on the other hand, when both groups are majority-unqualified, we show that it is
possible to use the strategic policy to mitigate unfairness and even flip the disadvantaged
group (Theorem 24).

3. We study the impact of fairness interventions on policies and individuals’ manipulation
(Section 6.6).

• If a decision maker lacks information or awareness to anticipate strategic behavior (but
which in fact exists), we identify conditions under which such non-strategic decision

1A group is majority-(un)qualified if the majority of that population is (un)qualified.
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maker benefits from using fairness constrained policies rather than unconstrained policies
(Theorem 25).

• By comparing individuals’ responses to a strategic policy with and without fairness
intervention, we show that fairness interventions can serve as (dis)incentives for manip-
ulation, and identify scenarios under which a strategic fair policy can (dis)incentivize
manipulation compared to a strategic policy (Theorems 26 and 27).

4. We examine our theoretical findings using both synthetic and real-world data (Section 6.7).

The remainder of this chapter is organized as follows. Section 6.2 presents related work. Section
6.3 formulates the problem. Section 6.4 presents four types of (non-)strategic (fair) policies. The
impact of decision maker’s anticipation of manipulative behavior is analyzed and presented in
Section 6.5. The impact of fairness interventions on policies and individuals’ manipulation is
studied in Section 6.6. Experiments are presented in Section 6.7. All proofs can be found in
Appendix E.

6.2 Related Work

Our work closely connects to the literature in classification problems in the presence of strategic
manipulation. [56] formulates such problem as a Stackelberg competition between the decision
maker and individuals, where the decision maker publishes the classifier first, and individuals
after observing the classifier can manipulate their features at costs to maximize their utilities.
Different from the Stackelberg formulation in our work, manipulation cost in [56] is modeled as a
deterministic function of change in features before and after manipulation. The decision maker aims
to find an optimal classifier such that the classification accuracy is maximized when individuals best
respond, and the learning algorithms are developed in [56]. [32] extends this strategic classification
to an online setting, where data arrives sequentially and only the manipulated data is revealed. An
online convex classification learning algorithm is designed such that the averaged regret diminishes
in the long run. [66, 111] extend [56] by assuming individuals from the different social groups
have different costs in manipulation, and the disparate impacts on different groups are studied. [19]
explores the role of randomness in strategic classification and focuses on randomized classifiers.
It shows that randomness can improve classification accuracy and mitigate the disparate effects
incurred by manipulation costs across different groups in strategic settings.
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Note that the manipulation does not affect an individual’s underlying label in the works men-
tioned above, i.e., strategic manipulation is viewed as gaming. In contrast, another line of re-
search [27, 53, 96] considers a setting where the individual’s label (qualification) changes in accor-
dance with the strategic behavior. Specifically, the goal of the decision maker is to design a classifier
such that individuals are incentivized to behave toward directions that improve the underlying
qualifications [53,96]. [25,110] consider both types of strategic behavior: gaming without changing
labels and improvement. Specifically, [25] trains classifiers that disincentivize the manipulation
while incentivizing improvement. [110] proposes a causal framework for distinguishing between
gaming and improvement.

In Stackelberg game formulations, the decision maker always moves first and individuals respond
after decision maker’s action has been disclosed. Instead, [20, 27, 104] consider scenarios where
both individuals and the decision maker act simultaneously. They formulate the strategic interaction
between individuals and decision maker as a game and study the Nash equilibria of the game. [27]
considers a setting where individuals are from two social groups which are identical in nature but
one group suffers from the negative stereotype. It shows that such stereotype results in different
equilibria of two groups. The impact of demographic parity fairness is also examined in [27]. [104]
studies a similar game, but it assumes two groups can be different in feature distributions and
manipulation costs.

6.3 Problem Formulation

Consider two demographic groups Ga, Gb distinguished by a sensitive attribute S ∈ {a,b} (e.g.,
gender), with fractions ns = Pr(S = s) of the population. An individual from either group has
observable features X ∈ Rd and a hidden qualification state Y ∈ {0,1}. Let αs = PY |S (1|s) be the
qualification rate of Gs, and f y

s (x) = PX|Y,S (x|y, s). A decision maker makes a decision D ∈ {0,1}
( “0” being negative/reject and “1” positive/accept) for an individual using a group-dependent
policy πs(x) = PD|X,S (1|x, s). An individual’s action is denoted by M ∈ {0,1}, with M = 1 indicating
manipulation and M = 0 otherwise. Note that in our context manipulation does not change the true
qualification state Y .

Best response. An individual in Gs incurs a random cost Cs ≥ 0 when manipulating its features,
with probability density function (PDF) PCs(c) and cumulative density function (CDF) FCs(c) =∫ c

0 PCs(z)dz. The realization of this random cost is known to an individual when determining its

108



action M; the decision maker on the other hand only knows the overall cost distribution of each
group. Thus the response that the decision maker anticipates (from the group as a whole or from a
randomly selected individual) is expressed as follows, whereby given policy πs, an individual in Gs

will manipulate its features if doing so increases its utility:

wPD|Y,M,S (1|y,1, s)−Cs ≥ wPD|Y,M,S (1|y,0, s).

Here w > 0 is a fixed benefit to the individual associated with a positive decision D = 1 (the benefit
is 0 otherwise); without loss of generality we will let w = 1. In other words, the best response
the decision maker expects from the individuals of Gs with qualification y is their probability of
manipulation, denoted by py

s and written as:

py
s(πs) = Pr

(
Cs ≤ PD|Y,M,S (1|y,1, s)−PD|Y,M,S (1|y,0, s)

)
.

We will assume that only those unqualified may choose to manipulate, and they do so by im-
itating the features of the qualified, i.e., PM|Y,S (1|1, s) = 0, PX|Y,M,S (x|0,0, s) = PX|Y,S (x|0, s) and
PX|Y,M,S (x|0,1, s) = PX|Y,S (x|1, s). This would mean, for instance, that those qualified have no in-
centive to cheat on an exam, whereas those unqualified may choose to cheat by copying answers
from the qualified. This assumption is inspired by the imitative learning behavior observed in social
learning, whereby new behaviors are acquired by copying social models’ actions [49, 50].

Importantly, the feature distributions of unqualified individuals are different before and after
manipulation. To avoid confusion, we will always use f y

s (x) = PX|Y,S (x|y, s) to denote the condi-
tional probability distributions of features before manipulation. The feature distribution of those
unqualified after manipulation becomes (1− p0

s(πs)) f 0
s (x) + p0

s(πs) f 1
s (x).

Optimal (fair) policy. The decision maker receives a true-positive (resp. false-positive) benefit
(resp. penalty) u+ (resp. u−) when accepting a qualified (resp. unqualified) individual. Its utility,
denoted by R(D,Y), is R(1,1) = u+, R(1,0) = u−, R(0,0) = R(0,1) = 0. The decision maker aims to
find optimal policies for the two groups such that its expected total utility E[R(D,Y)] is maximized.

As mentioned earlier, there are two types of decision makers, strategic and non-strategic:
A strategic decision maker anticipates strategic manipulation, has perfect information on the
manipulation cost distribution, and accounts for this in determining policies, while a non-strategic

decision maker ignores manipulative behavior in determining its policies. Either type may further
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impose a fairness constraint C, to ensure that πa and πb satisfy the following:

EX∼PC
a

[πa(X)] = EX∼PC
b

[πb(X)] , (6.1)

where PC
s is some probability distribution over X in accordance with the fairness constraint C. Many

common fairness notions can be written in this form, e.g., equal opportunity (EqOpt) [57] where
PEqOpt

s (x) = PX|Y,S (x|1, s), or demographic parity (DP) [11] where PDP
s (x) = PX|S (x|s).

The above leads to four types of optimal policies a decision maker can use, which we consider
in this chapter: (1) a non-strategic policy; (2) a non-strategic fair policy; (3) a strategic policy; (4) a
strategic fair policy. These are detailed in Section 6.4.

The Stackelberg game. The interaction between the decision maker and the individuals consists
of the following two stages in sequence: (i) The former publishes its policies (πa,πb), which may
be strategic or non-strategic, and may or may not satisfy a fairness constraint, and (ii) the latter,
while observing the published policies and their realized costs, decide whether to manipulate their
features.

6.4 The Four Types of (Non-)Strategic (Fair) Policies

Non-strategic policy. A decision maker who does not account for individuals’ strategic manipu-
lation optimizes the following expected utility over Gs

Ûs(πs) =

∫
X

[
u+αs f 1

s (x)−u−(1−αs) f 0
s (x)

]
πs(x)dx.

Define Gs’s qualification profile as γs(x) = PY |X,S (1|x, s). Based on Chapter 5, we can show that
the non-strategic policy π̂UNs = argmaxπs

Ûs(πs) is in the form of a threshold policy, i.e., π̂UNs (x) =

1
(
γs(x) ≥ u−

u++u−

)
. Throughout the chapter, we will present results in the one dimensional feature

space. The same can be generalized to high dimensional spaces (Appendix E.1).

Assumption 11. f 1
s (x), f 0

s (x) are continuous and satisfy the strict monotone likelihood ratio

property, i.e., f 1
s (x)

f 0
s (x)

is increasing in x ∈ R. Let unique x∗s be s.t. f 1
s (x∗s)

f 0
s (x∗s)

= 1.

Assumption 11 is relatively mild and can be satisfied by distributions such as exponential and
Gaussian, and has been widely used [10, 27, 75, 88, 155]. It implies that an individual is more likely
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to be qualified as their feature value increases. Under Assumption 11, the threshold policy can be
written as πs(x) = 1(x ≥ θs) for some θs ∈ R. Throughout the chapter, we assume Assumption 11
holds and focus on threshold policies. We will frequently use θs to denote policy πs.

Under Assumption 11, the thresholds for non-strategic policies are characterized as follows.

Lemma 8. Let (̂θUNa , θ̂UNb ) be non-strategic optimal thresholds. Then f 1
s (̂θUNs )

f 0
s (̂θUNs )

=
u−(1−αs)

u+αs
.

Non-strategic fair policy. Denoted as (̂πCa , π̂
C
b ), this is found by maximizing the total utility

subject to fairness constraint C, i.e., (̂πCa , π̂
C
b ) = argmax(πa,πb)naÛa(πa)+nbÛb(πb) such that Eqn (6.1)

holds. Based on Chapter 5, It can be shown that for EqOpt and DP fairness, the optimal fair policies
are also threshold policies and can be characterized by the following.

Lemma 9 (Lemma 7, Chapter 5). Let (̂θCa , θ̂
C
b ) be thresholds in non-strategic optimal fair policies.

These satisfy ∑
s=a,b

ns

u+αs f 1
s (̂θCs )−u−(1−αs) f 0

s (̂θCs )

PC
s (̂θCs )

 = 0 .

Strategic policy. Let p0
s := PM|Y,S (1|0, s), the probability that unqualified individuals in Gs manip-

ulate. The decision maker’s expected utility over Gs under π(x) = 1(x ≥ θ) is as follows:

Us(θ) = u+αs(1−F1
s(θ))−u−(1−αs)

(
1−F0

s(θ)(1− p0
s)−F1

s(θ)p0
s

)
= Ûs(θ)−u−(1−αs)

(
F0

s(θ)−F1
s(θ)

)
p0

s

where Fy
s(x) =

∫ x
−∞

f y
s (z)dz denotes the CDF.

Define the manipulation benefit as ∆s(θ) := F0
s(θ)−F1

s(θ); this represents the additional benefit
an individual gains from manipulation. The unqualified individuals’ best-response to a policy with
threshold θ will be p0

s(θ) = FCs

(
PD|Y,M,S (1|0,1, s)− PD|Y,M,S (1|0,0, s)

)
= FCs(∆s(θ)). This manip-

ulation probability p0
s(θ) is single-peaked with maximum occurring at x∗s, and limθ→−∞ p0

s(θ) =

limθ→+∞ p0
s(θ) = 0, meaning that when the threshold is sufficiently low or high, unqualified individ-

uals are less likely to manipulate their features. Plugging this in the decision maker’s utility, we
have

Us(θ) = Ûs(θ)−u−(1−αs)∆s(θ)FCs(∆s(θ))︸ ︷︷ ︸
term 2:=Ψs(∆s(θ))

. (6.2)
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Define a function Ψs(z) := u−(1−αs)FCs(z)z, then term 2 in Eqn. (6.2) can be written as Ψs(∆s(θ)),
and can be interpreted as the additional loss incurred by the decision maker due to manipulation
(equivalently, the average manipulation gain by group Gs). Further, consider its first order derivative
Ψ′s(z) = u−(1−αs)

dFCs (z)z
dz = u−(1−αs)

(
FCs(z) + zPCs(z)

)
. This Ψ′s(∆s(θ)) indicates the decision

maker’s marginal loss caused by strategic manipulation (equivalently, the marginal manipulation
gain of Gs). The thresholds for strategic policies are characterized as follows.

Lemma 10. For (θUNa , θUNb ), the strategic optimal thresholds, f 1
s (θUNs )

f 0
s (θUNs )

=
u−(1−αs)−Ψ′s(∆s(θUNs ))

u+αs−Ψ′s(∆s(θUNs )) .

Strategic fair policy. The strategic fair thresholds (θCa , θ
C
b ) are found by maximizing the total

expected utility subject to fairness constraint C, i.e., (θCa , θ
C
b ) = argmax(θa,θb)naUa(θa) + nbUb(θb)

such that Eqn. (6.1) holds. They can be characterized by the following.

Lemma 11. Let (θCa , θ
C
b ) be thresholds in strategic optimal fair policies. These satisfy

∑
s=a,b

ns

(
f 0
s (θCs )− f 1

s (θCs )

PC
s (θCs )

Ψ′s(∆s(θCs )) +
u+αs f 1

s (θCs )−u−(1−αs) f 0
s (θCs )

PC
s (θCs )

)
= 0.

Note that in addition to (θUNa , θUNb ) and (θCa , θ
C
b ), the equations in Lemmas 10 and 11 may be

satisfied by other threshold pairs that are not optimal. We discuss this further in the next section.

6.5 Impact of the Decision Maker’s Anticipation of Manipula-
tive Behavior

Impact on the optimal policy & utility function. We first compare strategic policy θUNs to non-
strategic policy θ̂UNs , and examine how the policy and the decision maker’s expected utility differ.

Assumption 12. Ψ′s(z) <∞ is non-decreasing over [0,maxθ∆s(θ)].

For any threshold θ, ∆s(θ) represents the manipulation benefit of Gs; those in Gs choose to
manipulate if Cs ≤ ∆s(θ). Therefore, maxθ∆s(θ) indicates the maximum additional benefit an
individual in Gs may gain from manipulation. As Ψ′s(∆s(θ)) represents the marginal manipulation
gain of Gs on average, Assumption 12 means that a group’s marginal manipulation gain does
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not decrease as manipulation benefit increases. Examples (e.g., beta/uniformly distributed cost)
satisfying this assumption can be found in the following.2

Remark 1. For simplicity, we drop subscript s in the following.

Example 1: cost C ∼ U[0,c]. In this case, Ψ′(z) = u−(1−α)2
c z is non-decreasing.

Example 2: cost C ∼ Beta(a,b) with a ∈ [1,10], b ∈ [1,10].

2 4 6 8 10
b

2

4

6

8

10

a

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) ∆ that ensures Ψ′(z) to be non-decreasing over [0,∆]
when C ∼ Beta(a,b), a ∈ [1,10],b ∈ [1,10]
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(b) maxθ∆(θ) for Gaussian distributed feature
where X|Y = 1 ∼N (µ,σ2), X|Y = 0 ∼N (−µ,σ2),
and µ > 0.

For Beta distributed cost and Gaussian distributed features, above figures show that Assumption

12 is relatively mild. For example, when C ∼ Beta(8,3), the left plot shows that Ψ′(z) is non-

decreasing over [0,0.82]. For features that follow Gaussian distributions X|Y = 1 ∼N (µ,σ2) and

X|Y = 0 ∼N (−µ,σ2), the condition is satisfied as long as σ > 0.72µ.

Other examples: There are many other probability density distributions with support [0,1] or

[0,∞) that could satisfy this condition, such as beta prime distribution, gamma distribution, chi

distribution, chi-squared distribution, etc.

Note that under Assumption 12, Ψ′s(0) = 0 and Ψ′s(∆s(θ)) is single-peaked with maximum
occurring at x∗s. We assume it holds in Sections 6.5 and 6.6.

Theorem 22. Let Ψ′s = maxθΨ′s(∆s(θ)), and δu =
u−

u−+u+
.

1. If αs = δu, then θUNs = θ̂UNs = x∗s when Ψ′s ≤ u−(1−αs), and θUNs ∈ {xs, xs} otherwise.

2In economics, a choice of generalized beta distribution is common to model costs (e.g., healthcare costs [72]). In
addition to uniformly distributed Cs (same as [104]), we consider beta distributed Cs in our experiments.
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2. If αs < δu, then θUNs > θ̂UNs > x∗s. Moreover, if Ψ′s > u−(1−αs), then θUNs > xs and Us(θ) may have

additional extreme points in (xs, x∗s); otherwise θ̂UNs is the unique extreme point of Us(θ).

3. If αs > δu, then θUNs < θ̂UNs < x∗s. Moreover, if Ψ′s > u+αs, then θUNs < zs and Us(θ) may have

additional extreme points in (x∗s,zs); otherwise θ̂UNs is the unique extreme point of Us(θ).
Here xs < xs,zs < zs are defined such that Ψ′s(∆s(xs)) = Ψ′s(∆s(xs)) = u−(1− αs), Ψ′s(∆s(zs)) =

Ψ′s(∆s(zs)) = u+αs.

We note that even though Ûs(θ) (non-strategic utility) and Ψs(∆s(θ)) are single-peaked and have
unique extreme points, their difference Us(θ) ( Eqn.(6.2)) may have multiple extreme points. As we
will see later, this results in strategic and non-strategic policies having different properties in many
aspects.

zs zsx∗
s

−0.2

0.0

0.2

0.4

U
s
(θ

)

An example of Us(θ) is shown to the right, where
f 1
s (x), f 0

s (x) are Gaussian distributed with the same variance
4.72 and means 5,−5 respectively. Cs ∼ Beta(10,4), αs = 0.6
and u− = u+. The red star is the optimal threshold θUNs < zs;
two magenta dots are other extreme points of Us(θ), which are
in (x∗s,zs). Theorem 22 states that Us(θ) has multiple extreme
points if Ψ′s is sufficiently large, and it also specifies the range of those extreme points.

Note that the maximum marginal manipulation gain Ψ′s depends on f y
s (x), αs, and Cs. Given

fixed cost Cs, Ψ′s increases as the maximum manipulation benefit ∆s(x∗s) increases and/or αs

decreases (i.e., when there are more unqualified individuals who can manipulate). Given fixed
∆s(x∗s) and αs, Ψ′s increases as cost decreases (i.e., PCs(c) is shifted/skewed toward the direction of
lower cost). Theorem 22 shows that as compared to non-strategic policy θ̂UNs , strategic policy θUNs

over(under) selects when a group is majority-(un)qualified.3 In either case, as shown by Theorem
22, this means θ̂UNs is always closer to x∗s (the single peak of p0

s(θ)) compared to θUNs . Therefore,
the strategic policy always disincentivizes manipulative behavior, i.e., manipulation probability
p0

s(θUNs ) < p0
s (̂θUNs ).

Impact on fairness. The characterization of strategic policy (θUNa , θUNb ) and non-strategic policy
(̂θUNa , θ̂UNb ) allows us to further compare them against a given fairness criterion C. Suppose we define

3We say Gs is majority-unqualified (resp. majority-qualified) if αs < δu (resp. αs > δu). When u− = u+, δu = 0.5, a
group is majority-(un)qualified if more than a half of its members are (un)qualified.
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the unfairness of threshold policy (θa, θb) as EC(θa, θb) = EX∼PC
a

[1(x ≥ θa)]−EX∼PC
b

[1(x ≥ θb)] =

FC
b (θb)−FC

a (θa), where we denote the CDF FC
s (θ) =

∫ θ
−∞

PC
s (x)dx. Define the disadvantaged group

under policy (θa, θb) as the group with the larger FC
s (θs), i.e., the group with the smaller selection

rate (DP) or the smaller true positive rate (EqOpt). Define group index −s := {a,b} \ s. Note that we
measure unfairness EC(θa, θb) over the original feature distributions f y

s (x) before manipulation. We
first identify distributional conditions under which the strategic optimal policy worsens unfairness.

Theorem 23. If αs > δu > α−s and FC
s (x∗s) ≤ FC

−s(x∗−s), then strategic policy (θUNa , θUNb ) has worse un-

fairness compared to non-strategic (̂θUNa , θ̂UNb ), i.e.,
∣∣∣EC(θUNa , θUNb )

∣∣∣ > ∣∣∣EC (̂θUNa , θ̂UNb )
∣∣∣, C ∈ {EqOpt,DP}.

Moreover, the disadvantaged group under (θUNa , θUNb ) and (̂θUNa , θ̂UNb ) is the same.

Given the conditions in Theorem 23, G−s is disadvantaged under non-strategic policy. Because
the majority-(un)qualified group Gs(G−s) is over(under) selected under strategic policy (Theorem
22), G−s becomes more disadvantaged while Gs becomes more advantaged, i.e., the unfairness gap
is wider under strategic policy. Note that condition FC

s (x∗s) ≤ FC
−s(x∗−s) holds if f y

a (x) = f y
b (x). For

the DP fairness measure, it holds for any distribution when αs is sufficiently large or α−s sufficiently
small. As shown in Section 6.7, it is also seen in the real world (e.g., FICO data).

We next identify conditions on the manipulation cost, under which strategic policy (θUNa , θUNb )
can lead to a more equitable outcome or flip the (dis)advantaged group compared to non-strategic
(̂θUNa , θ̂UNb ).

Theorem 24. If αa,αb < δu and FC
−s(̂θ

UN
−s ) > FC

s (̂θUNs ), i.e., G−s is disadvantaged under non-strategic

policy, then given any G−s, there always exists cost Cs for Gs s.t. Ψ′s is sufficiently large and

1. (θUNa , θUNb ) mitigates the unfairness, i.e.,
∣∣∣EC(θUNa , θUNb )

∣∣∣ < ∣∣∣EC (̂θUNa , θ̂UNb )
∣∣∣.

2. (θUNa , θUNb ) flips the disadvantaged group, i.e., FC
−s(θ

UN
−s ) < FC

s (θUNs ).

Because αs < δu, we have θUNs > θ̂UNs > x∗s (by Theorem 22). Moreover, θUNs increases as Ψ′s(∆s(θ))
increases (PCs(c) is skewed toward the direction of lower cost). Intuitively, as Gs’s manipulation cost
decreases, more individuals can afford manipulation; thus a strategic decision maker disincentivizes
manipulation by increasing the threshold θUNs . For any G−s, as FC

s (θUNs ) increases, either the unfairness
gets mitigated or FC

s (θUNs ) becomes larger than FC
−s(θ

UN
−s ). Proposition 6 in the following considers a

special case when f y
a (x) = f y

b (x), and gives conditions on Ψ′s(·) under which (θUNa , θUNb ) mitigates the
unfairness or flips the disadvantaged group when C ∈ {EqOpt,DP}.

115



Proposition 6. Suppose f y
a (x) = f y

b (x), α−s < αs < δu, then FC
−s(̂θ

UN
−s ) > FC

s (̂θUNs ), i.e., G−s is disad-

vantaged under non-strategic policy. Denote ∆(·) = ∆a(·) = ∆b(·). Given any G−s, always there

exists manipulation cost Cs for Gs s.t. Ψ′s(·) satisfies the followings:

1. Ψ′s(∆(θUN−s ))−u+αs

Ψ′−s(∆(θUN−s ))−u+α−s
=

u−(1−αs)−u+αs
u−(1−α−s)−u+α−s

, then θUNa = θUNb and (θUNa , θUNb ) mitigates unfairness.

2. Ψ′s(∆(ηC(θUN−s ))) ≥ u−(1−αs), then (θUNa , θUNb ) flips the disadvantaged group.

where
(
ηC(θUN−s ), θUN−s

)
satisfies fairness C, i.e., ηEqOpt(θUN−s ) = θUN−s , ηDP(θUN−s ) = (FDPs )−1FDP−s (θUN−s ).

Note that above conditions are sufficient. In particular, case 1 corresponds to the case where
the perfect EqOpt fairness is attained (i.e., EEqOpt(θUNa , θUNb ) = 0) and DP fairness is improved (i.e.,∣∣∣EDP(θUNa , θUNb )

∣∣∣ < ∣∣∣EDP(̂θUNa , θ̂UNb )
∣∣∣).

6.6 Impact of Fairness Interventions

In this section, we study how non-strategic and strategic policies are affected by fairness interven-
tions.

Impact of fairness intervention on the non-strategic policy. First, we consider the non-strategic
decision maker and compare (̂θUNa , θ̂UNb ) with (̂θCa , θ̂

C
b ), both ignoring strategic manipulation but the

latter imposing a fairness criterion. Theorem 25 identifies conditions under which a fairness
constrained (̂θCa , θ̂

C
b ) yields higher utility from both groups compared to unconstrained (̂θUNa , θ̂UNb ).

This is worth noting because had strategic manipulation been absent, policy (̂θUNa , θ̂UNb ) by definition
would attain the optimal/highest utility for the decision maker.

Theorem 25. When FC
s (̂θUNs ) < FC

−s(̂θ
UN
−s ), i.e., G−s is disadvantaged under non-strategic optimal

policy, then Ua(̂θCa ) > Ua(̂θUNa ) and Ub(̂θCb ) > Ub(̂θUNb ) hold under any of the following cases:

1. αs < δu < α−s and Ψ′s(∆s(̂θCs )) > u−(1−αs), Ψ′−s(∆−s(̂θC−s)) > u+α−s.

2. αa,αb > δu and αs→ δu and Ψ′a(∆a(̂θCa )) > u+αa, Ψ′b(∆b(̂θCb )) > u+αb.

3. αa,αb < δu and α−s→ δu and Ψ′a(∆a(̂θCa )) > u−(1−αa), Ψ′b(∆b(̂θCb )) > u−(1−αb).

Condition αs,α−s → δu means that the qualification rates αs,α−s are sufficiently close to δu.
Theorem 25 says that when the marginal manipulation gains of the groups under non-strategic fair
policy (̂θCa , θ̂

C
b ) are sufficiently large, (̂θCa , θ̂

C
b ) may outperform (̂θUNa , θ̂UNb ) in terms of both fairness
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and utility due to the misalignment of Us(θ) and Ûs(θ) caused by manipulation. This means that if
the decision maker lacks information or awareness to anticipate manipulative behavior (but which
in fact exists), then it would benefit from using a fairness constrained policy (̂θCa , θ̂

C
b ) rather than

unconstrained policy (̂θUNa , θ̂UNb ).

Impact of fairness intervention on the strategic policy. We now compare (θUNa , θUNb ) and
(θCa , θ

C
b ). We also explore their respective subsequent impact on individuals’ manipulative behavior

by comparing manipulation probabilities
(
p0

a(θUNa ), p0
b(θUNb )

)
and

(
p0

a(θCa ), p0
b(θCb )

)
. The goal here is

to understand whether fairness intervention can serve as incentives or disincentives for strategic
manipulation. According to Theorem 22, Us(θ) may have multiple extreme points under strate-
gic manipulation if the group’s marginal manipulation gain is sufficiently large. Depending on
whether Us(θ) has multiple extreme points, different conclusions result as outlined in Theorem 26
below, which identifies conditions under which fairness intervention may increase the manipulation
incentive for one group while disincentivizing the other, or it may serve as incentives for both
groups.

Theorem 26. Denote pCs := p0
s(θCs ) and pUNs := p0

s(θUNs ). For C ∈ {DP,EqOpt}, we have:

1. When both Ua(θ) and Ub(θ) have unique extreme points, then θUNs > θCs and θUN−s < θ
C
−s must hold.

Moreover,

(i) If αs > δu > α−s, then ∀α−s, there exist κ ∈ (δu,1) and τ ∈ (0,1) such that ∀αs > κ and ∀ns > τ,

we have pUNs < pCs , pUN−s > pC−s.

(ii) If αa,αb > δu (resp. αa,αb < δu), then ∀α−s, there exists κ ∈ (δu,1) (resp. κ ∈ (0, δu)) such that

∀ αs > κ (resp. αs < κ), we have pUNa < pCa , pUNb > pCb or pUNb < pCb , pUNa > pCa .

2. When at least one of Ua(θ), Ub(θ) has multiple extreme points, then it is possible that ∀s ∈ {a,b},

θUNs > θCs or θUNs < θCs , i.e., both groups are over/under selected under fair policies. In this case,

(i) If αs > δu > α−s, we have

pUNs > pCs , p
UN
−s < pC−s when θUNa > θCa , θ

UN
b > θCb .

pUNs < pCs , p
UN
−s > pC−s when θUNa < θCa , θ

UN
b < θCb .

(ii) If αa,αb > δu (or αa,αb < δu), we have pUNa < pCa , p
UN
b < pCb or pUNs < pCs , p

UN
−s > pC−s.

When not accounting for strategic manipulation, Ûs(θ) has a unique extreme point, and imposing
a fairness constraint results in one group getting under-selected and the other over-selected. In
contrast, when the decision maker anticipates strategic manipulation, Us(θ) may have multiple
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extreme points. One consequence of this difference is that both Ga and Gb may be over- or under-
selected when fairness is imposed, resulting in more complex incentive relationships. Specifically,
if one group is majority-qualified while the other is majority-unqualified, then under-selecting (resp.
over-selecting) both groups under fair policies will increase (resp. decrease) the incentives of the
former to manipulate, while disincentivizing (resp. incentivizing) the latter (by 2.(i)); if both groups
are majority-(un)qualified, then the fair policy may incentivize both to manipulate (by 2.(ii)).

If the marginal manipulation gain of both groups are not sufficiently large, i.e., Us(θ) has a
unique extreme point, then fairness intervention always results in one group getting over-selected
and the other under-selected. However, its subsequent impact on incentives may vary depending on
f y
s (x), ns. Theorem 26 identifies two scenarios under which fair policies incentivize one group (say
Gs) while disincentivizing the other (G−s): when Gs is majority-qualified, G−s majority-unqualified,
and Gs sufficiently qualified (αs > κ) and represented in the entire population (ns > τ) (by 1.(i)); or,
when both are majority-(un)qualified and Gs sufficiently (un)qualified (by 1.(ii)).

An example when both Ua(θ) and Ub(θ) have multiple extreme points is shown below where
u− = u+, fairness constraint C = EqOpt.
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θCa = θCb , pCa =0.1634, pCb =0.0444

Ua(θ)
Ub(θ)
U(θ)

(a) f 1
s (x) ∼ N (5,4), f 0

s (x) ∼ N (−5,4),∀s ∈ {a,b},
na = 0.3, αa = 0.4,αb = 0.6, Ca ∼ Beta(10,2),Cb ∼

Beta(10,1). It shows that θCs < θ
UN
s ,∀s ∈ {a,b} and

pCa > pUNa , pCb < pUNb .
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θUNa , pUNa =0.1262
θUNb , pUNb =0.1051
θCa = θCb , pCa =0.3016, pCb =0.1364

Ua(θ)
Ub(θ)
U(θ)

(b) f 1
s (x) ∼ N (5,9), f 0

b (x) ∼ N (−5,9), f 0
a (x) ∼

N (−10,9), na = 0.5, αa = 0.65,αb = 0.6, Ca ∼

Beta(10,3),Cb ∼ Beta(10,2). It shows that θCs > θ
UN
s

and pCs > pUNs ,∀s ∈ {a,b}.

Because f 1
a (x) = f 1

b (x), under EqOpt fairness, θCa = θCb and the total utility naUa(θCa ) + nbUb(θCb )
can be expressed as a function of θ = θCa = θCb . The above two examples show that when Ua(θ)
and Ub(θ) have multiple extreme points, it’s possible that both groups are over (left)/under (right)
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selected under strategic fair policies. When αb > δu > αa (left), fairness intervention incentivizes Ga

while disincentivizing Gb; when αa,αb > δu (right), fairness intervention incentivizes both groups to
manipulate. These results are consistent with Theorem 26.

Next, we identify conditions under which fairness intervention can disincentivize both groups.
Let xUNs be defined s.t. ∆s(xUNs ) = ∆s(θUNs ) and xUNs 6= θ

UN
s when θUNs 6= x∗s. Note that xUNs is the point at

which p0
s(xUNs ) = p0

s(θUNs ). Because manipulation probability is single-peaked, fairness intervention
incentivizes manipulative behavior of Gs if θCs falls between xUNs and θUNs .

Theorem 27 (Disincentivize both groups). When both Ua(θ) and Ub(θ) have unique extreme

points,

If αa,αb > δu and FC
−s(xUN−s ) < FC

s (x∗s), then ∃κ > δu and τ ∈ (0,1) such that ∀αs ∈ (δu, κ)

If αa,αb < δu and FC
−s(xUN−s ) > FC

s (x∗s), then ∃κ < δu and τ ∈ (0,1) such that ∀αs ∈ (κ,δu)
and ∀ns > τ, we have pUNa > pCa and pUNb > pCb .

Note that x∗s depends on f y
s (x) and xUN−s is determined by u−,u+, f y

−s(x) and α−s. Theorem
27 says that when both groups are majority-(un)qualified, for certain population distributions
and G−s, fair policies disincentivize both groups if Gs is sufficiently unqualified(qualified) and
sufficiently represented in the population. For a special Gaussian case, conditions for satisfying
FC
−s(xUN−s ) ≶ FC

s (x∗s) in Theorem 27 are given in Proposition 7 below.

Proposition 7. Suppose f y
s (x) follows Gaussian distribution with mean µy

s and variance σ2. If

0 < µ1
s −µ

0
s < µ

1
−s−µ

0
−s, i.e., qualified and unqualified individuals from Gs are less distinguishable

than those from G−s, then

• C = EqOpt: ∀αs > δu (resp. αs < δu), there exists ω > δu (resp. ω < δu) such that ∀α−s ∈ [δu,ω]
(resp. α−s ∈ [ω,δu]), conditions FC

−s(xUN−s ) ≶ FC
s (x∗s) in Theorem 27 hold.

• C = DP: if u+ < u− (resp. u+ > u− ), then there exist ω1,ω2 > δu (resp. ω1,ω2 < δu) such

that ∀αb ∈ [δu,ω1] (resp. ∀αb ∈ [ω1, δu]) and ∀αa ∈ [δu,ω2] (resp. ∀αa ∈ [ω2, δu]), conditions

FC
−s(xUN−s ) ≶ FC

s (x∗s) in Theorem 27 hold.

Theorems 26 and 27 suggest that the impact of fairness intervention on the individuals’ manipu-
lative behavior highly depends on manipulation costs, feature distributions, group qualification and
representation. This complexity stems from the misalignment in manipulation probability p0

s(θ),
utility Us(θ), and fairness C. In particular, the manipulation probability of Gs is single-peaked with
maximum at x∗s, which does not depend on group qualification and representation, but on which
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Figure 6.3: Examples validating Proposition 7: black region indicates (αa,αb) satisfying condi-
tion FC

−s(xUN−s ) < FC
s (x∗s) in Theorem 27: αa,αb > δu, Ca,Cb ∼ Beta(10,1), f y

s (x) follows Gaussian
distribution with mean µy

s and variance σ2, and [µ0
a,µ

1
a,µ

0
b,µ

1
b] = [−2,2,−5,5], σ = 4.5.

the decision maker’s total utility depends, as varying αs and ns will affect the policies. As a result,
depending on which region θUNs falls into, i.e., smaller or larger than x∗s, and how it may change
under constraint C, fairness intervention will have different impacts on incentives.

Although Theorems 26 and 27 hold for both EqOpt and DP fairness, there are scenarios under
which they have different impact on incentives. Proposition 8 below further considers a special
case when f y

a (x) = f y
b (x) and one group is majority-qualified while the other majority-unqualified,

in which EqOpt never disincentivize both groups while DP can disincentivize both.

Proposition 8. Suppose f y
a (x) = f y

b (x), if αs > δu > α−s, then

• ∀ f y
s (x), pEqOpta < pUNa , pEqOptb < pUNb is unattainable, i.e., EqOpt never disincentivize both.

• ∃ f y
s (x), (αa,αb), and na under which pDPa < pUNa , pDPb < pUNb , i.e., DP may disincentivize both

groups.

6.7 Experiments

We conduct experiments on both a Gaussian synthetic dataset, and the FICO scores dataset [122]. We
assume manipulation costs follow either a uniform distribution (Cs ∼ U[0,c]) or a beta distribution
(Cs ∼Beta(a,b), smaller b and larger a lead to larger manipulation costs, Figure 6.4 below illustrates
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examples of probability density function PCs(z) and scaled marginal manipulation gain Ψ′s(z)
u−(1−αs)

=

FCs(z) + zPCs(z)).
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Figure 6.4: Illustration of PCs(z) and FCs(z) + zPCs(z): Cs ∼ Beta(a,b).
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Figure 6.5: Verification of Theorem 23: Ca ∼

Beta(10,1), Cb ∼ Beta(10,3), u− = u+, f 1
s (x) ∼

N (5,52), f 0
s (x) ∼N (−5,52), s = a,b.

Gaussian data. Suppose X|Y,S is Gaus-
sian distributed. Figure 6.6 shows an example
where f y

s (x) ∼N (µy
s,σ

2) with [µ0
a,µ

1
a,µ

0
b,µ

1
b] =

[−2,2,−5,5], σ = 4.5, and fairness intervention
can serve as disincentive for manipulation for
both groups. It shows that ∀αb > δu satisfying
condition FC

b (xUNb ) < FC
a (x∗a), there exist suffi-

ciently small αa and sufficiently large na under
which p0

a(θUNa ) > p0
a(θCa ) and p0

b(θUNb ) > p0
b(θCb ),

i.e., both groups are disincentivized under strate-
gic fair policies. This verifies Theorem 27.

We verify Theorem 23 by conducting 40 rounds of experiment independently. In each round
of experiment, (αa,αb) is randomly generated with αa > δu > αb. We consider EqOpt (red) or DP
(blue) as fairness measure. In Figure 6.5, circles and stars represent the unfairness EC(θUNa , θUNb ) and
EC (̂θUNa , θ̂UNb ) respectively. It shows that the strategic policy (circles) always worsens the unfairness
(both EqOpt and DP) compared to non-strategic policy (stars), and Gb is disadvantaged in all
scenarios. Varying costs Cs, distributions f y

s (x), and u+,u−, we observe the similar results.
Similarly, we verify Theorem 24 by running 40 rounds of experiments independently. In each

round, (αa,αb) is randomly generated with δu > αa > αb. In Figure 6.7, circles that fall below
the black dashed line indicate the disadvantaged group being flipped under strategic policy. It
shows as Ga’s manipulation cost decreases, unfairness can be mitigated (circles fall below stars) and
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Figure 6.6: αa,αb > δu, Ca = Cb ∼ Beta(10,1), u+
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1.1 (right). Grey region indicates
(αa,αb,na) satisfying FC

b (xUNb ) < FC
a (x∗a) in Theorem 27; meanwhile both groups are disincentivized

under (θCa , θ
C
b ).
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Figure 6.7: Cb ∼ Beta(10,1), f 1
s (x) ∼N (5,52), f 0

s (x) ∼N (−5,52), s = a,b.

122



disadvantaged group can be flipped (circles fall below black dashed line).
Figures 6.8 and 6.9 illustrate the manipulation probabilities of two groups under strategic policy

(UN) and strategic fair policy (EqOpt, DP), where u+ = u−, Cs ∼ Beta(10,1), f 1
b (x) ∼ N (5,52),

f 0
b (x) ∼N (−5,52), f 1

a (x) ∼N (5,42), f 0
a (x) ∼N (−5,42). Black, blue, red surfaces correspond to

p0
s(θUNs ) := pUNs , p0

s(θDPs ) := pDPs , p0
s(θEqOpts ) := pEqOpts respectively. Figure 6.8 shows that when

na and αa are sufficiently large, pUNa < pCa and pUNb > pCb hold, C ∈ {EqOpt,DP}. Figure 6.9 shows
when two groups are majority-(un)qualified, pUNa < pCa , pUNb > pCb or pUNa > pCa , pUNb < pCb holds as
long as one of αa, αb is sufficiently large (small).
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Figure 6.8: Verification of 1(i) in Theorem 26: αb = 0.4. Varying Ga’s qualification αa ∈ [0.5,1] and
representation na ∈ [0.5,1], the resulting manipulation probabilities are shown in plots.
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FICO scores [122]. FICO scores are widely used in the US to assess an individual’s creditwor-
thiness. The is a dataset pre-processed by [57] to generate CDF of scores FX|S (x|s) and qualification
profile PY |X,S (1|x, s) for different social groups (Caucasian, African-American, Hispanic, Asian).
We use these to estimate the conditional feature distribution f y

s (x) by fitting the simulated data
to a Beta distribution. We can see from Figure 6.10 that f 1

s (x)
f 0
s (x)

is strictly increasing, it implies
that Assumption 11 holds for FICO scores data. This allows us to derive the various equilibrium
strategies studied in this chapter. We further calculate repayment rates αs and proportions ns. These
are summarized in Figures 6.10 & 6.11 and Table 6.1.

Table 6.1: Qualification rate αa = PY |S (1|s), conditional feature distributions f y
s (x), group propor-

tions ns of four social groups. x∗s satisfies f 1
s (x∗s) = f 0

s (x∗s).

Gs αs f 0
s (x) f 1

s (x) ns x∗s
Caucasian 0.758 Beta(1.23,12.34) Beta(2.57,1.24) 0.7651 0.277
African-American 0.338 Beta(1.18,15.99) Beta(1.84,2.32) 0.1050 0.174
Hispanic 0.570 Beta(1.23,9.02) Beta(2.03,1.90) 0.0845 0.262
Asian 0.804 Beta(0.89,4.94) Beta(2.31,1.38) 0.0454 0.342
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Figure 6.10: Illustration of score PDF/CDF, qualification profiles, and validation of Assumption 11.

We first compare strategic policy (θUNa , θUNb ) and non-strategic policy (̂θUNa , θ̂UNb ) in terms of their
fairness. Let Ga denote Caucasian, Hispanic or Asian, and Gb denote African-American. As shown
in Table 6.2, Gb is always disadvantaged compared to other groups, and strategic policy worsens
unfairness. When Ca 6= Cb, the manipulation cost of Gb is shifted lower. It further shows that this
gets worse when it is less costly for those in Gb to manipulate their features. Since αa > δu > αb,
this is consistent with Theorem 23.
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Figure 6.11: Fit Beta distributions to the simulated data to get f y
s (x).

Table 6.2: Unfairness EC(θUNa , θUNb ) and EC (̂θUNa , θ̂UNb ) for C ∈ {EqOpt,DP}: Gb = African-American,
u+ = u−, Ca ∼Beta(10,2) (or Ca ∼U[0,1]). When cost Ca 6= Cb, Cb ∼Beta(10,6) (or Cb ∼U[0,0.5]).

EqOpt DP

Ga
strategic

non-strategic
strategic

non-strategic
Ca = Cb Ca 6= Cb Ca = Cb Ca 6= Cb

B
et

a

Caucasian 0.355 0.556 0.136 0.611 0.680 0.449
Hispanic 0.292 0.493 0.034 0.421 0.490 0.242

Asian 0.333 0.533 0.123 0.634 0.703 0.522

U
ni

fo
rm Caucasian 0.743 0.871 0.136 0.794 0.838 0.449

Hispanic 0.722 0.850 0.034 0.684 0.727 0.242
Asian 0.738 0.866 0.123 0.825 0.868 0.522

Figure 6.12 illustrates how unfairness can be mitigated and how the disadvantaged group can
gain advantage under strategic policies. Specifically, let Ga,Gb be Hispanic and African-American
respectively. We fix Gb and vary Ga’s manipulation cost. It shows while Gb is disadvantaged under
non-strategic policies (EC (̂θUNa , θ̂UNb ) > 0), unfairness can be mitigated under strategic policies as Ga’s
manipulation cost decreases, and the disadvantaged group may gain an advantage in the process
(EC(θUNa , θUNb ) < 0). This is an example of Theorem 24.

According to Theorem 25, under strategic manipulation, non-strategic fair policy (̂θCa , θ̂
C
b ) may

yield higher utilities from both groups compared to (̂θUNa , θ̂UNb ). We verify this in Table 6.3, in which
Ga, Gb denote Caucasian and Asian groups, respectively, with EqOpt as the fairness constraint.
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Figure 6.12: Unfairness EC(θUNa , θUNb ) and EC (̂θUNa , θ̂UNb ), u+

u−
= 1

2 , αa,αb < δu. Perfect equity is
indicated by the black dashed line. Cb ∼ Beta(10,5) and Ca ∼ Beta(10,b) (left), where larger b
indicates smaller costs; Cb ∼ U[0,1], Ca ∼ U[0,c] (right).

Table 6.3: Ga = Caucasian(αa = 0.758), Gb = Asian(αb = 0.804), C = EqOpt. The first (resp.
second) row corresponds to case 1 (resp. case 2) in Theorem 25.

u+ : u− δu Ca Cb Ua(̂θUNa ) Ua(̂θCa ) Ub(̂θUNb ) Ub(̂θCb )

1 : 4 0.8 Beta(10,10) Beta(10,10) -0.190 -0.189 0.024 0.034
1 : 3.1 0.756 Beta(10,1) Beta(10,10) 0.396 0.397 0.181 0.201

It illustrates two cases corresponding to cases 1 and 2 in Theorem 25, and Ua(̂θCa ) > Ua(̂θUNa ),
Ub(̂θCb ) > Ub(̂θUNb ) hold in both cases, i.e., (̂θCa , θ̂

C
b ) satisfies fairness and attains higher utility than

(̂θUNa , θ̂UNb ).
Lastly, we examine how fairness intervention acts as incentives for manipulation. Manipulation

probabilities p0
s(θUNs ), p0

s(θEqOpts ), and p0
s(θDPs ) are compared under different manipulation costs in

Figures 6.13 and 6.14. In Figure 6.13, groups have the same manipulation costs Ca = Cb ∼Beta(a,b)
while in Figure 6.14, Ca ∼U[0,ca] and Cb ∼U[0,cb] are different; u− = u+ in both cases. Black, red
and blue surfaces indicate the manipulation probabilities p0

s(θs) under (θUNa , θUNb ), (θEqOpta , θ
EqOpt

b ) and
(θDPa , θDPb ) policies as manipulation costs change. It shows that fairness intervention can incentivize
both groups to manipulate (Figure 6.13a), and that EqOpt and DP may have contrarian impact
(Figure 6.13b). Moreover, when there is a significant gap in the two groups’ manipulation costs,
fairness intervention incentivizes the group with a low manipulation cost while disincentivizing the
group with a high manipulation cost (Figure 6.14).

126



b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1

0.2

0.3

0.4

Ga

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3
0.4
0.5
0.6

Gb

UN EqOpt DP

(a) Ga = African-American; Gb =Hispanic

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3
0.4
0.5
0.6

Ga

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3
0.4
0.5
0.6

Gb

UN EqOpt DP

(b) Ga = Caucasian; Gb =Asian

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3
0.4
0.5
0.6

Ga

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3

0.4

0.5

Gb

UN EqOpt DP

(c) Ga = Asian; Gb =African-American

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.2

0.4

0.6

0.8

Ga

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3
0.4
0.5
0.6

Gb

UN EqOpt DP

(d) Ga = Asian; Gb =Hispanic

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3
0.4
0.5
0.6

Ga

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.05
0.10
0.15
0.20
0.25
0.30

Gb

UN EqOpt DP

(e) Ga = Caucasian; Gb =African-American

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3
0.4
0.5
0.6

Ga

b

1.0
4.5

8.0
11.5

15.0 a1.0 4.5 8.0 11.5 15.0

0.1
0.2
0.3
0.4
0.5
0.6

Gb

UN EqOpt DP

(f) Ga = Caucasian; Gb =Hispanic

Figure 6.13: Manipulation probabilities under strategic (fair) policy: Ca = Cb ∼Beta(a,b), a ∈ [1,15],
b ∈ [1,15].
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Figure 6.14: Manipulation probabilities under strategic (fair) policy: Cs ∼ U[0,cs], s = a,b, ca ∈

[0.2,2], cb ∈ [0.2,2].
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CHAPTER 7

Conclusion

7.1 Thesis Summary

As machine learning techniques are increasingly used in domains involving human. It is critical to
understand the societal implications of ML systems, and build and use ML systems responsibly.
Toward this end, we studied two important issues, privacy and fairness, in this thesis and investigated
the following questions.

(1) When individuals’ data are used for building the computational system, how to accomplish
the computational goals without violating individual privacy.

(2) When ML systems are used to make decisions about individuals from multiple demographic
groups, how do they interact with each other? What are the (long-term) impacts of fairness
interventions?

Specifically, we studied (1) in the first part of the thesis. We adopted differential privacy as notion
of privacy and developed a number of randomized algorithms for two types of computations:
distributed learning and sequential computations. Because the same/correlated data is repeatedly
used during these computations, balancing the trade-off between outcome accuracy and individual
privacy is challenging. It was shown that our algorithms can achieve a higher accuracy than the
existing algorithms under the same privacy guarantee. These algorithms are developed based on
two ideas to improve this privacy-accuracy tradeoff: (a) reuse intermediate computations to reduce
the total information leakage so that less noise is needed to guarantee a certain level of privacy, and
(b) improve algorithmic robustness so that more noise can be accommodated to enhance privacy
without jeopardizing too much accuracy.
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In the second part of the thesis, we investigated problem (2) by studying fairness problems with
human in feedback loops. We constructed three types of dynamics to capture the interplay between
individuals and ML systems: (a) participation dynamics: ML decisions affect individuals’ retention
in the system which further affects the group representations in future dataset. (b) qualification

dynamics: ML decisions affect individuals’ qualifications in the system which further affects the
rate of positive class in future dataset. (c) strategic dynamics: individuals by knowing how decisions
are made given input can manipulate their features strategically which affects ML system given
decision maker being aware of such manipulative behavior. Under each dynamics, we conducted
equilibrium analysis to understand the impacts ML system and individuals each have on the other,
and explored the role of fairness interventions by studying how these equilibria are affected when a
certain fairness constraint is imposed in ML systems.

Specifically, when studying participation and qualification dynamics, we show that fairness
intervention that intends to protect the disadvantaged group may actually cause harm to the disad-
vantaged group by exacerbating the group disparity, i.e., the disparity in group qualifications (under
qualification dynamics) and disparity in group representations (under participation dynamics), in
the long run. We identified conditions under which such worsening of fairness may happen and
proposed potential mitigating solutions: for participation dynamics, we formulated an optimization
problem for finding a proper fairness notion that can sustain group representations over time; for
qualification dynamics, we suggested policy/transition interventions that can either lead to a more
equitable equilibrium or improve qualifications of both groups in the long run.

For strategic dynamics where individuals strategically manipulate features, we examined the
impacts of decision maker’s awareness of strategic manipulation and impacts of fairness interven-
tions. We identified conditions under which being aware of strategic manipulation can improve
or worsen the fairness, and conditions under which fairness interventions can serve as incentives
or disincentives for strategic manipulation. When decision maker lacks awareness to anticipate
manipulative behavior, we identified conditions under which decision maker also benefits from the
fairness interventions.

The societal implications of these quantitative results are as follows. Firstly, our results may
help policymakers (e.g., companies, banks, governments, etc.) in their decision making process by
highlighting the potential pitfalls of commonly used static fairness criteria and providing guidance
on how to design effective interventions (e.g., based on Chapter 5, giving community support
to social groups to increase their transitions and long-term qualifications) that can avoid such
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unintended consequences and result in positive long-term societal impacts. Secondly, our results
may be useful to research in fields outside of the computer science community. For example, the
experiments in Chapter 5 have shown consistent findings with literature in social sciences [52, 119].
Although these empirical results are obtained using simulated dynamics due to a lack of real datasets,
they may provide insights and theoretical supports for research in other fields. Lastly, while this
work is limited to binary decisions, the main take-away can be applied in other applications such
as computer vision, natural language processing, etc., using more complicated classifiers such as
DNN. We hope that our work will encourage researchers in these domains to similarly consider
discrimination risks when developing techniques, and raise awareness that static fairness constraint
may not suffice and long-term fairness cannot be designed in a vacuum without considering the
human element. We thus emphasize the importance of performing real-time measurements and
developing proper fair classifiers from dynamic datasets.

7.2 Limitations & Future Directions

We also want to point out the limitations and the potential extensions.
For the studies on private distributed learning, we proposed R-ADMM to improve tradeoff

between individual privacy and accuracy. Note that R-ADMM violates monotonicity property of
ADMM because of the linearized approximation introduced in even iterations. It is worthwhile
to study the impact of linearization and analyse the convergence rate of R-ADMM. Although
experiments on real-world data showed that the fluctuation (non-monotonicity) of R-ADMM
induced by linearization decreases over time, and the convergence rates between R-ADMM and
original ADMM were compared empirically, a theoretical explanation is needed to better understand
R-ADMM. As such, one potential future direction is to conduct robust analysis and theoretically
prove the fluctuation converges to 0.

For the studies on fairness with human in feedback loops, some limitations and extensions
are as follows. Firstly, we partitioned the entire population based on a single binary demographic
attribute and considered two demographic groups in our work. This cannot adequately capture
the heterogeneity of the population, and there can be multiple non-binary demographic attributes.
Secondly, the dynamics we formulated are simplified models. The individual behaviors in real-world
are much more complicated and can vary across individuals from the same demographic group.
For instance, in qualification dynamics, we use a set of transitions to capture individuals’ abilities
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to improve/maintain future qualifications, and our analysis and conclusions rely on this set of
values; in strategic dynamics, we assumed individuals are fully rational who always take actions
that maximize its own utility and there is a constraint on manipulation cost. The experiments are
also conducted on uniform/beta distributed cost. However, in practice, quantities of transitions and
manipulation costs can be extremely hard to measure due to the complexity of human behaviors
and environmental factors. Thirdly, we considered the case where individuals’ labels/qualification
states are binary while in many applications qualification is continuous on a spectrum. As a result,
transitions in qualification dynamics can not be captured by four quantifies and all individuals
(not only the unqualified ones) may have an incentive to manipulate under strategic dynamics.
Fourthly, our results indeed are sensitive to the models and depends on certain assumptions. For
example, as discussed in Section 5.7, the change in transition types or feature distributions could
lead to significant change in consequences. Moreover, Chapter 5 separately studies two scenarios
that causes natural inequality, i.e., either transitions or feature distributions are demographic-
variant. However, in practice it’s likely that both are demographic-variant. This can complicates the
dynamical model significantly and adds more uncertainty. It is not clear how our results are robust
to the perturbation in dynamics. Lastly, due to the lack of dynamic datasets, our experiments are
performed over static real-world datasets with simulated dynamics.

Some extensions to tackle the aforementioned limitations are as follows. One potential direction
is to extend models from binary qualifications/demographic groups to non-binary cases. For
strategic dynamics, it is worthwhile to study a more generalized scenario where all individuals have
incentives to manipulate, and consider partially rational individuals who instead of taking actions
that maximize their utilities take sub-optimal actions. Another extension is to conduct sensitivity
analysis to understand the robustness of our results.

In addition to the extensions of current studies, there are several long-term future directions.

The Intersection Between Privacy and Fairness in ML. In this thesis, we studied privacy and
fairness issues separately. Indeed, there is a strong connection between them. It is interesting to
study the impact of one on the other (e.g., whether achieving privacy helps improve fairness and
vice versa) [88]. On the other hand, sometimes achieving one societal constraint may add difficulties
to satisfy another. For instance, it becomes more difficult to develop fair ML models when protected
attributes (e.g., race, gender) are private and unobservable. Building upon the relations between
privacy and fairness, we will also develop ML systems that simultaneously satisfy both.
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Learning Human Behavioral Models. The second part of this thesis has highlighted the im-
portance of understanding human behaviors in building ML systems. As mentioned, three types
of dynamics studied in the thesis are simplified models, it is critical to learn interpretable human
behavioral models using ML techniques via empirical studies. One potential future direction is
to develop online crowdsourcing platforms or survey sites to collect dynamic data from people
and then use ML algorithms to train a human behavioral model. Such a model is essential for
building ML systems with long-term social benefits. It may help advance ML research towards a
more interpretable domain and open up the possibility of understanding the causal relationships of
human-generated data.

Ethical Issues From Multiple Disciplinary Perspectives. Ethical issue such as fairness or pri-
vacy itself is complicated and controversial. It is critical to consider them from multiple disciplinary
perspectives such as economics, social sciences, law, etc. For example, there is no universal notion
of fairness and the proper notions are context dependent. Finding the proper notions that best
capture human perception, especially in dynamic environment, and notions that aligned with law
and policies is critical for building ML system with social benefits.
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APPENDIX A

Private ADMM-Based Distributed Algorithms

A.1 Proof of Simplifying ADMM [45]

By KKT condition of (2.5), there is:

0 = λb
i j(t)−λ

a
i j(t) +η(2wi j(t + 1)− fi(t + 1)− f j(t + 1))

Implies:

wi j(t + 1) =
1
2η

(λa
i j(t)−λ

b
i j(t)) +

1
2

( fi(t + 1) + f j(t + 1)) (A.1)

Plug (A.1) into (2.6)(2.7):

λa
i j(t + 1) =

1
2

(λa
i j(t) +λb

i j(t)) +
η

2
( fi(t + 1)− f j(t + 1)) (A.2)

λb
i j(t + 1) =

1
2

(λb
i j(t) +λa

i j(t)) +
η

2
( fi(t + 1)− f j(t + 1)) (A.3)

If initialize λa
i j(0) = λb

i j(0) to be zero vectors for all node pairs (i, j), (A.2)(A.3) imply that
λa

i j(t) = λb
i j(t) and λk

ji(t) = −λk
i j(t),k ∈ {a,b} will hold for all t. (A.1) becomes:

wi j(t + 1) =
1
2

( fi(t + 1) + f j(t + 1)) (A.4)

Let λi j(t) = λa
i j(t) = λb

i j(t), (2.6)(2.7) can be simplified as:

λi j(t + 1) = λi j(t) +
η

2
( fi(t + 1)− f j(t + 1)) (A.5)
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Plug (A.4) into the augmented Lagrangian (2.3) to simplify it:

Lη({ fi}, {wi j,λ
k
i j}) =

N∑
i=1

O( fi,Di) +

N∑
i=1

∑
j∈Vi

(λi j(t))T ( fi− f j)

+

N∑
i=1

∑
j∈Vi

η

2
(|| fi−

1
2

( fi(t) + f j(t))||22) +

N∑
i=1

∑
j∈Vi

η

2
(||

1
2

( fi(t) + f j(t))− f j||
2
2)

(A.6)

Since
∑N

i=1
∑

j∈Vi λi j(t) f j =
∑N

i=1
∑

j∈Vi λ ji(t) fi and λi j(t) = −λ ji(t), the second term in (A.6) can
be simplified:

N∑
i=1

∑
j∈Vi

(λi j(t))T ( fi− f j) = 2
N∑

i=1

∑
j∈Vi

(λi j(t))T fi

The last term can be expressed as:

N∑
i=1

∑
j∈Vi

η

2
(||

1
2

( fi(t) + f j(t))− f j||
2
2) =

N∑
i=1

∑
j∈Vi

η

2
(||

1
2

( fi(t) + f j(t))− fi||22)

Therefore, (A.6) is simplified as:

Lη({ fi}, {wi j,λ
k
i j}) =

N∑
i=1

O( fi,Di) + 2
N∑

i=1

∑
j∈Vi

λi j(t)T fi +
N∑

i=1

∑
j∈Vi

η(|| fi−
1
2

( fi(t) + f j(t))||22) (A.7)

Define λi(t) =
∑

j∈Vi λi j(t). Based on (A.5)(A.7), the original ADMM updates (2.4)-(2.7) are
simplified as:

fi(t + 1) = argmin
fi

O( fi,Di) + 2λi(t)T fi +η
∑
j∈Vi

|| fi−
1
2

( fi(t) + f j(t))||22

λi(t + 1) = λi(t) +
η

2

∑
j∈Vi

( fi(t + 1)− f j(t + 1))
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A.2 Proof of Theorem 1

Subtract (2.20) from (2.27) and (2.21) from (2.28):

∇Ô( f̂ (t + 1),Dall)−∇Ô( f̂ ∗,Dall) +
√

D−A(Y(t + 1)−Y∗)

+(W(t + 1)− θI)(D−A) f̂ (t + 1) + W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t)) = 0N×d
(A.8)

Y(t + 1) = Y(t) + θ
√

D−A( f̂ (t + 1)− f̂ ∗) (A.9)

By convexity of O( fi,Di), for any f 1
i and f 2

i , there is:

( f 1
i − f 2

i )T (∇O( f 1
i ,Di)−∇O( f 2

i ,Di)) ≥ 0

Let 〈·, ·〉F be frobenius inner product of two matrices, there is:

〈 f̂ (t + 1)− f̂ ∗,∇Ô( f̂ (t + 1),Dall)−∇Ô( f̂ ∗,Dall)〉F ≥ 0

Substitute ∇Ô( f̂ (t + 1),Dall)−∇Ô( f̂ ∗,Dall) from (A.8):

0 ≤ 〈 f̂ (t + 1)− f̂ ∗,−
√

D−A(Y(t + 1)−Y∗)〉F

+〈 f̂ (t + 1)− f̂ ∗,−(W(t + 1)− θI)(D−A) f̂ (t + 1)〉F

+〈 f̂ (t + 1)− f̂ ∗,−W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t))〉F (A.10)

Consider the right hand side of (A.10). Since D−A is symmetric and PSD,
√

D−A is also a
symmetric matrix and by (A.9),

〈 f̂ (t + 1)− f̂ ∗,−
√

D−A(Y(t + 1)−Y∗)〉F

= 〈−
√

D−A( f̂ (t + 1)− f̂ ∗), (Y(t + 1)−Y∗)〉F

= −〈
1
θ

(Y(t + 1)−Y(t)),Y(t + 1)−Y∗〉F (A.11)

Rearrange (A.10) and use (D−A) f̂ ∗ = 0N×d

0 ≥ 〈Z(t + 1)−Z∗, J(t + 1)(Z(t + 1)−Z(t))〉F

+〈 f̂ (t + 1)− f̂ ∗, (W(t + 1)− θI)(D−A)( f̂ (t + 1)− f̂ ∗)〉F (A.12)
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Suppose ηi(t) ≥ θ for all t, i, i.e., the diagonal matrix W(t)− θI � 0 for all t. Since D−A � 0,
whose eigenvalues are all non-negative, the eigenvalues of (W(t + 1)− θI)(D− A) are thus also
non-negative, i.e., (W(t + 1)− θI)(D−A) � 0. Then for the second term of the RHS of (A.12), there
is:

〈 f̂ (t + 1)− f̂ ∗, (W(t + 1)− θI)(D−A)( f̂ (t + 1)− f̂ ∗)〉F ≥ 0

Therefore,
〈Z(t + 1)−Z∗, J(t + 1)(Z(t + 1)−Z(t))〉F ≤ 0 (A.13)

To simplify the notation, for a matrix X, let ||X||2J = 〈X, JX〉F , then (A.13) can be represented as:

1
2
||Z(t + 1)−Z∗||2J(t+1) +

1
2
||Z(t + 1)−Z(t)||2J(t+1)−

1
2
||Z(t)−Z∗||2J(t+1) ≤ 0

implies

||Z(t + 1)−Z(t)||2J(t+1) ≤ −||Z(t + 1)−Z∗||2J(t+1) + ||Z(t)−Z∗||2J(t)

+||Z(t)−Z∗||2J(t+1)− ||Z(t)−Z∗||2J(t) (A.14)

Suppose ηi(t + 1) ≥ ηi(t) for all t and i, i.e., the diagonal matrix W(t + 1)−W(t) � 0 for all t.
Since D + A � 0, implies (W(t + 1)−W(t))(D + A) � 0. Let U = sup

i,t,k
|( fi(t)− f ∗c )k| ∈ R be the finite

upper bound of all nodes i, all iterations t and all components k, then

||Z(t)−Z∗||2J(t+1)− ||Z(t)−Z∗||2J(t)

= Tr((Z(t)−Z∗)T (J(t + 1)− J(t))(Z(t)−Z∗))

= Tr(( f̂ (t)− f̂ ∗)T (W(t + 1)−W(t))(D + A)( f̂ (t)− f̂ ∗))

≤ U2(||ones(N,d)||2W(t+1)(D+A)−ones(N,d)||2W(t)(D+A)) (A.15)

where ones(N,d) is all one’s matrix of size N ×d. By (A.14)(A.15):

||Z(t + 1)−Z(t)||2J(t+1) ≤ ||Z(t)−Z∗||2J(t)− ||Z(t + 1)−Z∗||2J(t+1)

+U2(||ones(N,d)||2W(t+1)(D+A)− ||ones(N,d)||2W(t)(D+A))
(A.16)
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Sum up (A.16) over t from 0 to +∞ leads to:

+∞∑
t=0

||Z(t + 1)−Z(t)||2J(t+1) ≤ ||Z(0)−Z∗||2J(0)− ||Z(+∞)−Z∗||2J(+∞)

+U2(||ones(N,d)||2W(+∞)(D+A)− ||ones(N,d)||2W(0)(D+A))

(A.17)

Since ηi(t) < +∞, the RHS of (A.17) is finite, implies that limt→+∞ ||Z(t + 1)−Z(t)||2J(t+1) = 0
must hold.

By the definition of Z(t), J(t) and ||X||2J = 〈X, JX〉F , the following must hold

lim
t→+∞

|| f̂ (t + 1)− f̂ (t)||2W(t+1)(D+A) = 0 (A.18)

lim
t→+∞

||Y(t + 1)−Y(t)||2F = 0 (A.19)

(A.19) shows that Y(t) converges to a stationary point Y s, along with (2.28) imply
limt→+∞

√
D−A f̂ (t + 1) = 0. Since Null(

√
D−A) = c1, f̂ (t + 1) must lie in the subspace spanned by

1 as t→∞. To satisfy (A.18), either of the following two statements must hold:

• limt→+∞( f̂ (t + 1)− f̂ (t)) = 0N×d

• limt→+∞W(t + 1)(D + A)1 = limt→+∞W(t + 1)A1 + limt→+∞
∑N

i=1 ηi(t + 1)Vi = 0N×1

Since ηi(t) ≥ θ > 0 for all t, implies limt→+∞
∑N

i=1 ηi(t +1)Vi > 0. The second statement can never
be true because all elements of A and W(t + 1) are non-negative. Hence, f̂ (t) should also converge
to a stationary point f̂ s.

Now show that the stationary point (Y s, f̂ s) is (Y∗, f̂ ∗).
Take limit of both sides of (2.27) (2.28), substitute f̂ s,Y s yields

∇Ô( f̂ s,Dall) +
√

D−AY s + (W(t + 1)− θI)(D−A) f̂ s = 0N×d (A.20)
√

D−A f̂ s = 0N×d (A.21)

By (A.21), (A.20) turns into:

∇Ô( f̂ s,Dall) +
√

D−AY s = 0N×d (A.22)
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Compare (A.21)(A.22) with (2.20)(2.21) in Lemma 1 and observe that (Y s, f̂ s) satisfies the
optimality condition (2.20)(2.21) and is thus the optimal point. Therefore, f (t) converges to f̂ ∗ and
Y(t) converges to Y∗.

A.3 Proof of Theorem 2

According to the Assumption 3 that O( fi,Di) is strongly convex and has Lipschitz continues
gradients for all i ∈N , define diagonal matrices Dm = diag([m1;m2; · · · ;mN]) ∈ RN×N and DM =

diag([M2
1; M2

2; · · · ; M2
N]) ∈ RN×N , (2.30) yield:

〈 f̂ 1− f̂ 2,∇Ô( f̂ 1,Dall)−∇Ô( f̂ 2,Dall)〉F ≥ 〈 f̂ 1− f̂ 2,Dm( f̂ 1− f̂ 2)〉F (A.23)

||∇Ô( f̂ 1,Dall)−∇Ô( f̂ 2,Dall)||2F ≤ 〈 f̂
1− f̂ 2,DM( f̂ 1− f̂ 2)〉F (A.24)

Since for any µ > 1 and any matrices C1, C2 with the same dimensions, there is:

||C1 +C2||
2
F ≤ µ||C1||

2
F +

µ

µ−1
||C2||

2
F

From (A.8), there is:

||
√

D−A(Y(t + 1)−Y∗)||2F ≤ µ||∇Ô( f̂ (t + 1),Dall)−∇Ô( f̂ ∗,Dall)

+W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t))||2F
+

µ

µ−1
||(W(t + 1)− θI)(D−A) f̂ (t + 1)||2F

≤
µ2

µ−1
||∇Ô( f̂ (t + 1),Dall)−∇Ô( f̂ ∗,Dall)||2F

+µ2||W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t))||2F
+

µ

µ−1
||(W(t + 1)− θI)(D−A) f̂ (t + 1)||2F (A.25)

Let σmin(·), σmax(·) denote the smallest nonzero singular value and the largest singular value of
a matrix respectively.
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For any matrices C1, C2, let C1 = UΣVT be SVD of C1, there is:

||C1C2||
2
F ≤ σmax(C1)||C2||

2
CT

1

σmin(C1)2||C2||
2
F ≤ ||C1C2||

2
F ≤ σmax(C1)2||C2||

2
F

Denote
σ̄max(t + 1) = σmax((W(t + 1)− θI)(D−A))

σ̄min(t + 1) = σmin((W(t + 1)− θI)(D−A))

σ̃max(t + 1) = σmax(W(t + 1)(D + A))

Using (A.24) and (D−A) f̂ ∗ = 0, (A.25) is turned into:

1
θ
||Y(t + 1)−Y∗||2F ≤

µ2

θσmin(D−A)(µ−1)
|| f̂ (t + 1)− f̂ ∗||2DM

+
µ2σ̃max(t + 1)
θσmin(D−A)

|| f̂ (t + 1)− f̂ (t)||2W(t+1)(D+A) +
µσ̄max(t + 1)2

θσmin(D−A)(µ−1)
||( f̂ (t + 1)− f̂ ∗)||2F

Adding || f̂ (t + 1)− f̂ ∗||2W(t+1)(D+A) at both sides leads to:

||Z(t + 1)−Z∗||2J(t+1) ≤
µ2σ̃max(t + 1)
θσmin(D−A)

|| f̂ (t + 1)− f̂ (t)||2W(t+1)(D+A)

+|| f̂ (t + 1)− f̂ ∗||2
µ2DM+µσ̄max(t+1)2IN

θσmin(D−A)(µ−1) +W(t+1)(D+A)

(A.26)

Since
δ(t + 1)µ2σ̃max(t + 1)

θσmin(D−A)
≤ 1 (A.27)

and

δ(t + 1)(
µσ̄max(t + 1)2IN +µ2DM

θσmin(D−A)(µ−1)
+ W(t + 1)(D + A)) � 2(W(t + 1)− θI)(D−A) + 2Dm (A.28)
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It implies from (A.26) that:

δ(t + 1)||Z(t + 1)−Z∗||2J(t+1)

≤ || f̂ (t + 1)− f̂ (t)||2W(t+1)(D+A) + || f̂ (t + 1)− f̂ ∗||22(W(t+1)−θI)(D−A)+2Dm

≤ ||Z(t + 1)−Z(t)||2J(t+1) + || f̂ (t + 1)− f̂ ∗||22(W(t+1)−θI)(D−A)+2Dm
(A.29)

Substituting f̂ 1 with f̂ (t + 1) and f̂ 2 with f̂ ∗ and the gradient difference from (A.8) in (A.23)
leads to:

〈 f̂ (t + 1)− f̂ ∗,
√

D−A(Y(t + 1)−Y∗)〉F + 〈 f̂ (t + 1)− f̂ ∗,W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t))〉F

+〈 f̂ (t + 1)− f̂ ∗, (W(t + 1)− θI)(D−A) f̂ (t + 1)〉F ≤ −〈 f̂ (t + 1)− f̂ ∗,Dm( f̂ (t + 1)− f̂ ∗)〉F

Similar to the proof of Theorem 1, using the definition of Z(t +1), Z∗, J(t +1) and (D−A) f̂ ∗ = 0,
there is:

||Z(t + 1)−Z∗||2J(t+1) ≤ −||Z(t + 1)−Z(t)||2J(t+1)

+||Z(t)−Z∗||2J(t+1)− || f̂ (t + 1)− f̂ ∗||22Dm+2(W(t+1)−θI)(D−A) (A.30)

Sum up (A.29) and (A.30) gives:

(1 +δ(t + 1))||Z(t + 1)−Z∗||2J(t+1) ≤ ||Z(t)−Z∗||2J(t+1)

Let mo = mini∈N {mi}, MO = maxi∈N {Mi}. One δ(t + 1) that satisfies (B.5) and (A.28) could be:

min{
θσmin(D−A)
µ2σ̃max(t + 1)

,
2mo + 2σ̄min(t + 1)

µ2M2
O+µσ̄max(t+1)2

θσmin(D−A)(µ−1) + σ̃max(t + 1)
}

A.4 Proof of Theorem 3

By convexity of O( fi,Di), ( f 1
i − f 2

i )T (∇O( f 1
i ,Di)−∇O( f 2

i ,Di)) ≥ 0 holds ∀ f 1
i , f 2

i . Let 〈·, ·〉F be
frobenius inner product of two matrices, there is:

〈 f̂ (t + 1)− f̂ ∗,∇Ô( f̂ (t + 1),Dall)−∇Ô( f̂ ∗,Dall)〉F ≥ 0
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According to (2.42)(2.22) and (2.43), substitute ∇Ô( f̂ (t + 1),Dall)−∇Ô( f̂ ∗,Dall) and add an extra
term W(t + 1)(D + A)D̃(t)−1(∇Ô( f̂ ∗,Dall) + 2Λ∗) = 0N×d, implies Eqn. (A.31).

〈
f̂ (t + 1)− f̂ ∗,−W(t + 1)(D + A)D̃(t)−1(∇Ô( f̂ (t),Dall)−∇Ô( f̂ ∗,Dall))

+ (I + W(t + 1)(D + A)D̃(t)−1)(2Λ∗−2Λ(t + 1))

+ W(t + 1)(D + A)D̃(t)−1(2Λ(t + 1)−2Λ(t))−W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t))

− W(t + 1)(D + A)D̃−1W(t)(D−A) f̂ (t)
〉

F ≥ 0 . (A.31)

To simplify the notation, for a matrix X, let ||X||2J = 〈X, JX〉F and (X)+ be the pseudo inverse of
X. Define:

G1(t + 1) = W(t + 1)(D + A)D̃(t)−1W(t)(D−A) ;

G2(t + 1) = (W(t + 1)(D−A))+ · (I + W(t + 1)(D + A)D̃(t)−1) .

Use (2.43)(2.23) and the fact that 〈A, JB〉F = 〈JT A,B〉F , we have

〈
f̂ (t + 1)− f̂ ∗,W(t + 1)(D + A)D̃(t)−1(2Λ(t + 1)−2Λ(t)) (A.32)

−W(t + 1)(D + A)D̃(t)−1W(t)(D−A) f̂ (t)
〉

F

=
〈

f̂ (t + 1)− f̂ ∗,W(t + 1)(D + A)D̃(t)−1W(t)(D−A)( f̂ (t + 1)− f̂ (t))
〉

F

+
〈

f̂ (t + 1)− f̂ ∗,W(t + 1)(D + A)D̃(t)−1(W(t + 1)−W(t))(D−A)( f̂ (t + 1)− f ∗)
〉

F

=
1
2
|| f̂ (t + 1)− f̂ ∗||2G1(t+1) +

1
2
|| f̂ (t + 1)− f̂ (t)||2G1(t+1)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t+1)

+
〈

f̂ (t + 1)− f̂ ∗,W(t + 1)(D + A)D̃(t)−1(W(t + 1)−W(t))(D−A)( f̂ (t + 1)− f ∗)
〉

F ;

and

〈
f̂ (t + 1)− f̂ ∗, (I + W(t + 1)(D + A)D̃(t)−1)(2Λ∗−2Λ(t + 1))

〉
F

=
〈
(W(t + 1)(D−A))+(2Λ(t + 1)−2Λ(t)),

(I + W(t + 1)(D + A)D̃(t)−1)(2Λ∗−2Λ(t + 1))
〉

F

=
1
2
||2Λ∗−2Λ(t)||2G2(t+1)−

1
2
||2Λ∗−2Λ(t + 1)||2G2(t+1)−

1
2
||2Λ(t + 1)−2Λ(t)||2G2(t+1) ;
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and

〈 f̂ (t + 1)− f̂ ∗,−W(t + 1)(D + A)( f̂ (t + 1)− f̂ (t))〉F

=
1
2
|| f̂ (t)− f̂ ∗||2W(t+1)(D+A)−

1
2
|| f̂ (t + 1)− f̂ ∗||2W(t+1)(D+A)

−
1
2
|| f̂ (t)− f̂ (t + 1)||2W(t+1)(D+A) . (A.33)

Let
√

X denote the square root of a symmetric positive semi-definite (PSD) matrix X that is also
symmetric PSD. Eqn. (A.34) holds,

〈 f̂ (t + 1)− f̂ ∗,−W(t + 1)(D + A)D̃(t)−1(∇Ô( f̂ (t),Dall)−∇Ô( f̂ ∗,Dall))〉F (A.34)

= 〈 f̂ (t + 1)− f̂ (t) + f̂ (t)− f̂ ∗,−W(t + 1)(D + A)D̃(t)−1(∇Ô( f̂ (t),Dall)−∇Ô( f̂ ∗,Dall))〉F

≤ 〈 f̂ (t)− f̂ (t + 1),W(t + 1)(D + A)D̃(t)−1(∇Ô( f̂ (t),Dall)−∇Ô( f̂ ∗,Dall))〉F

= 〈W(t + 1)(D + A)
√

D̃(t)−1( f̂ (t)− f̂ (t + 1)),
√

D̃(t)−1(∇Ô( f̂ (t),Dall)−∇Ô( f̂ ∗,Dall))〉F .

where the inequality uses the facts that O( fi,Di) is convex for all i and that the matrix W(t +

1)(D + A)D̃(t)−1 is positive definite.
According to (2.34) in Assumption 4, define the matrix DM = diag([M2

1; M2
2; · · · ; M2

N]) ∈ RN×N ,
it implies

||∇Ô( f̂ 1,Dall)−∇Ô( f̂ 2,Dall)||2F ≤ 〈 f̂
1− f̂ 2,DM( f̂ 1− f̂ 2)〉F

Since 〈A,B〉F ≤ 1
L ||A||

2
F + L

4 ||B||
2
F holds for any L > 0, there is:

(A.34) ≤
1
L
||W(t + 1)(D + A)

√
D̃(t)−1( f̂ (t)− f̂ (t + 1))||2F

+
L
4
||

√
D̃(t)−1(∇Ô( f̂ (t),Dall)−∇Ô( f̂ ∗,Dall))||2F (A.35)

≤
1
L
||( f̂ (t)− f̂ (t + 1))||2W(t+1)(D+A)D̃(t)−1W(t+1)(D+A) +

L
4σmin(D̃(t))

|| f̂ ∗− f̂ (t)||2DM

where σmax(·), σmin(·) denote the largest and smallest singular value of a matrix respectively.
Since for any µ > 1 and any matrices C1, C2, J with the same dimensions, there is ||C1 +C2||

2
J ≤
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µ||C1||
2
J +

µ
µ−1 ||C2||

2
J . which implies:

|| f̂ ∗− f̂ (t)||2DM
= || f̂ ∗− f̂ (t + 1) + f̂ (t + 1)− f̂ (t)||2DM

≤ µ|| f̂ ∗− f̂ (t + 1)||2DM
+

µ

µ−1
|| f̂ (t + 1)− f̂ (t)||2DM

Plug into (A.35) and use (2.43)(2.23) gives Eqn. (A.36).

(A.34) ≤
1
L
||( f̂ (t)− f̂ (t + 1))||2W(t+1)(D+A)D̃(t)−1W(t+1)(D+A)

+
L

4σmin(D̃(t))
(µ|| f̂ ∗− f̂ (t + 1)||2DM

+
µ

µ−1
|| f̂ (t + 1)− f̂ (t)||2DM

)

=
1
2
||( f̂ (t)− f̂ (t + 1))||22

L W(t+1)(D+A)D̃(t)−1W(t+1)(D+A)+ Lµ
2σmin(D̃(t))(µ−1)

DM

+
1
2
||2Λ(t + 1)−2Λ(t)||2 Lµ

2σmin(D̃(t))
((W(t+1)(D−A))+)2DM

(A.36)

Combine (A.32)(A.33)(A.33)(A.36), (A.31) becomes Eqn. (A.37).

1
2
|| f̂ (t)− f̂ (t + 1)||2W(t+1)(D+A)−G1(t+1) (A.37)

−
1
2
||( f̂ (t)− f̂ (t + 1))||22

L W(t+1)(D+A)D̃(t)−1W(t+1)(D+A)+ Lµ
2σmin(D̃(t))(µ−1)

DM

+
1
2
||2Λ(t + 1)−2Λ(t)||2G2(t+1)−

1
2
||2Λ(t + 1)−2Λ(t)||2 Lµ

2σmin(D̃(t))
((W(t+1)(D−A))+)2DM

≤
1
2
|| f̂ (t + 1)− f̂ ∗||2G1(t+1)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t+1) +

1
2
||2Λ∗−2Λ(t)||2G2(t+1)

−
1
2
||2Λ∗−2Λ(t + 1)||2G2(t+1) +

1
2
|| f̂ (t)− f̂ ∗||2W(t+1)(D+A)−

1
2
|| f̂ (t + 1)− f̂ ∗||2W(t+1)(D+A)

+
〈

f̂ (t + 1)− f̂ ∗,W(t + 1)(D + A)D̃(t)−1(W(t + 1)−W(t))(D−A)( f̂ (t + 1)− f ∗)
〉

F
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Suppose the following two conditions hold for all t under some constants L > 0 and µ > 1:

(i) I + W(t + 1)(D + A)D̃(t)−1 �
Lµ

2σmin(D̃(t))
(W(t + 1)(D−A))+DM ;

(ii) W(t + 1)(D + A) � W(t + 1)(D + A)D̃(t)−1
(
W(t)(D−A)

+
2
L

W(t + 1)(D + A)
)
+

Lµ
2σmin(D̃(t))(µ−1)

DM .

Substitute G1(t + 1) and G2(t + 1), define R1(t + 1) and R2(t + 1) as (A.38)(A.39). By conditions
(i)(ii), both R1(t + 1) and R2(t + 1) are positive definite.

R1(t + 1) = W(t + 1)(D + A)−G1(t + 1)−
2
L

W(t + 1)(D + A)D̃(t)−1W(t + 1)(D + A)

−
Lµ

2σmin(D̃(t))(µ−1)
DM � 0N×N ; (A.38)

R2(t + 1) = −
Lµ

2σmin(D̃(t))
((W(t + 1)(D−A))+)2DM +G2(t + 1) � 0N×N . (A.39)

Eqn. (A.37) becomes Eqn. (A.40).

1
2
|| f̂ (t)− f̂ (t + 1)||2R1(t+1) +

1
2
||2Λ(t + 1)−2Λ(t)||2R2(t+1) (A.40)

≤
1
2
|| f̂ (t + 1)− f̂ ∗||2G1(t+1)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t+1) +

1
2
||2Λ∗−2Λ(t)||2G2(t+1)

−
1
2
||2Λ∗−2Λ(t + 1)||2G2(t+1) +

1
2
|| f̂ (t)− f̂ ∗||2W(t+1)(D+A)−

1
2
|| f̂ (t + 1)− f̂ ∗||2W(t+1)(D+A)

+
〈

f̂ (t + 1)− f̂ ∗,W(t + 1)(D + A)D̃(t)−1(W(t + 1)−W(t))(D−A)( f̂ (t + 1)− f ∗)
〉

F

Since W(t + 1), W(t) and D̃(t) are all diagonal matrices of the same size, define new diagonal
matrix Dnew

1 (t + 1) with Dnew
1 (t + 1)ii =

ηi(t+1)ηi(t)
2ηi(t)Vi+γ

, then G1(t + 1) can be rewritten as:

G1(t + 1) = Dnew
1 (t + 1)(D + A)(D−A).
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Consider

1
2
|| f̂ (t + 1)− f̂ ∗||2G1(t+1)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t+1) =

1
2
|| f̂ (t + 1)− f̂ ∗||2G1(t+1)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t)

+
1
2
|| f̂ (t)− f̂ ∗||2G1(t)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t+1)

If ηi(t + 1) ≥ ηi(t), ∀t, i, then Dnew
1 (t + 1)ii ≥ Dnew

1 (t)ii. Therefore, G1(t + 1)−G1(t) � 0. Let
U1 = sup

i,t,k
|( fi(t)− f ∗c )k| ∈ R be the finite upper bound over all components k, all nodes i and all

iterations t, then

1
2
|| f̂ (t)− f̂ ∗||2G1(t)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t+1) =

1
2

Tr(( f̂ (t)− f̂ ∗)T (G1(t)−G1(t + 1))( f̂ (t)− f̂ ∗))

≤
1
2

U2
1(||1N×d ||

2
G1(t+1)− ||1N×d ||

2
G1(t))

where 1N×d is the matrix of size N by d with 1 on all the entries. Therefore,

1
2
|| f̂ (t + 1)− f̂ ∗||2G1(t+1)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t+1) ≤

1
2
|| f̂ (t + 1)− f̂ ∗||2G1(t+1)−

1
2
|| f̂ (t)− f̂ ∗||2G1(t)

+
1
2

U2
1(||1N×d ||

2
G1(t+1)− ||1N×d ||

2
G1(t))

Similarly, (W(t + 1)−W(t))(D + A) � 0 holds if ηi(t + 1) ≥ ηi(t), ∀t, i, and the following holds.

1
2
|| f̂ (t)− f̂ ∗||2W(t+1)(D+A)−

1
2
|| f̂ (t + 1)− f̂ ∗||2W(t+1)(D+A)

≤
1
2
|| f̂ (t)− f̂ ∗||2W(t)(D+A)−

1
2
|| f̂ (t + 1)− f̂ ∗||2W(t+1)(D+A)

+
1
2

U2
1(||1N×d ||

2
W(t+1)(D+A)− ||1N×d ||

2
W(t)(D+A))

Similarly, if ηi(t + 1) ≥ ηi(t), ∀t, i, G2(t)−G2(t + 1) � 0. Let U2 = sup
i,t,k
|(λi(t)−λ∗i )k| ∈ R be the
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finite upper bound over all components k, all nodes i and all iterations t, there is:

1
2
||2Λ∗−2Λ(t)||2G2(t+1)−

1
2
||2Λ∗−2Λ(t + 1)||2G2(t+1)

≤
1
2
||2Λ∗−2Λ(t)||2G2(t)−

1
2
||2Λ∗−2Λ(t + 1)||2G2(t+1)

+
1
2

U2
2(||1N×d ||

2
G2(t)− ||1N×d ||

2
G2(t+1))

If ηi(t + 1) ≥ ηi(t), ∀t, i, let σmax = max
t
σmax(W(t + 1)(D + A)D̃(t)−1(D−A)), then there is:

〈
f̂ (t + 1)− f̂ ∗,W(t + 1)(D + A)D̃(t)−1 · (W(t + 1)−W(t))(D−A)( f̂ (t + 1)− f ∗)

〉
F

≤ σmaxU2
1(||1N×d ||

2
W(t+1)− ||1N×d ||

2
W(t))

Sum up (A.40) over t from 0 to +∞ leads to:

∞∑
t=0

{|| f̂ (t)− f̂ (t + 1)||2R1(t+1) + ||2Λ(t + 1)−2Λ(t)||2R2(t+1)}

≤ || f̂ (0)− f̂ ∗||2W(0)(D+A)− || f̂ (+∞)− f̂ ∗||2W(+∞)(D+A) + || f̂ (+∞)− f̂ ∗||2G1(+∞)

−|| f̂ (0)− f̂ ∗||2G1(0) + ||2Λ∗−2Λ(0)||2G2(0)− ||2Λ∗−2Λ(+∞)||2G2(+∞)

+U2
1(||1N×d ||

2
G1(+∞)− ||1N×d ||

2
G1(0)) + U2

1(||1N×d ||
2
W(+∞)(D+A)− ||1N×d ||

2
W(0)(D+A))

+U2
2(||1N×d ||

2
G2(0)− ||1N×d ||

2
G2(+∞)) + 2σmaxU2

1(||1N×d ||
2
W(+∞)− ||1N×d ||

2
W(0)) (A.41)

The RHS of (A.41) is finite, implies that limt→∞{|| f̂ (t)− f̂ (t+1)||2R1(t+1) + ||2Λ(t+1)−2Λ(t)||2R2(t+1)}=

0. Since R1(t + 1), R2(t + 1) are not unique, by (A.38)(A.39), it requires limt→∞ || f̂ (t) − f̂ (t +

1)||2R1(t+1) = 0 and limt→∞ ||2Λ(t + 1)−2Λ(t)||2R2(t+1) = 0 should hold for all possible R1(t + 1), R2(t +

1). Therefore, limt→∞( f̂ (t)− f̂ (t + 1)) = 0N×d and limt→∞(2Λ(t + 1)− 2Λ(t)) = 0N×d should hold.
( f̂ (t),Λ(t)) converges to the stationary point ( f̂ s,Λs). Now show that the stationary point ( f̂ s,Λs) is
the optimal point ( f̂ ∗,Λ∗).

Take the limit of both sides of (2.42)(2.43) yield:

(I + W(t + 1)(D + A)D̃(t)−1) · (∇Ô( f̂ s,Dall) + 2Λs) = 0N×d ; (A.42)

(D−A) f̂ s = 0N×d . (A.43)
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Since I + W(t + 1)(D + A)D̃(t)−1 � 0N×N , to satisfy (A.42), ∇Ô( f̂ s,Dall) + 2Λs = 0N×d must hold.
Compare with (2.22)(2.23) in Lemma 1 and observe that ( f̂ s,Λs) satisfies the optimality condition
and is thus the optimal point. Therefore, ( f̂ (t),Λ(t)) converges to ( f̂ ∗,Λ∗).

A.5 Proof of Theorem 4

In the following proof, use the uppercase letters and lowercase letters to denote random variables
and the corresponding realizations.

Since the modified ADMM is randomized, denote Fi(t) as the random variable of the result that
node i broadcasts in t-th iteration, of which the realization is fi(t). Define F(t) = {Fi(t)}Ni=1 whose
realization is { fi(t)}Ni=1.

Let FF(0:t)(·) be the joint probability distribution of F(0 : t) = {F(r)}tr=0, and FF(t)(·) be the
distribution of F(t), by chain rule:

FF(0:T )({ f (r)}Tr=0) = FF(0:T−1)({ f (r)}T−1
r=0 ) ·FF(T )( f (T )|{ f (r)}T−1

r=0 ) = · · ·

= FF(0)( f (0)) ·
T∏

t=1

FF(t)( f (t)|{ f (r)}t−1
r=0)

For two neighboring datasets Dall and D̂all of the network, the ratio of joint probabilities is given by:

FF(0:T )({ f (r)}Tr=0|Dall)

FF(0:T )({ f (r)}Tr=0|D̂all)
=

FF(0)( f (0)|Dall)

FF(0)( f (0)|D̂all)
·

T∏
t=1

FF(t)( f (t)|{ f (r)}t−1
r=0,Dall)

FF(t)( f (t)|{ f (r)}t−1
r=0, D̂all)

(A.44)

Since fi(0) is randomly selected for all i, which is independent of dataset, there is
FF(0)( f (0)|Dall) = FF(0)( f (0)|D̂all).

First only consider t-th iteration, since the primal variable is updated according to (2.47), by
KKT optimality condition, ∇ fi L

priv
i (t)| fi= fi(t) = 0, implies:

εi(t) = −
1

2ηi(t)Vi

C
Bi

Bi∑
n=1

yn
i L

′(yn
i fi(t)T xn

i )xn
i −

1
2ηi(t)Vi

(
ρ

N
∇R( fi(t)) + 2λi(t−1))

−
1

2Vi

∑
j∈Vi

(2 fi(t)− fi(t−1)− f j(t−1))
(A.45)
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Given { fi(r)}t−1
r=0, Fi(t) and Ei(t) will be bijective:

• For any Fi(t) with the realization fi(t), ∃ an unique Ei(t) = εi(t) having the form of (A.45)
such that the KKT condition holds.

• Since the Lagrangian Lpriv
i (t) is strictly convex (by Assumption 4,5), its minimizer is unique,

implies that for any Ei(t) with the realization εi(t), ∃ an unique Fi(t) = fi(t) such that the KKT
condition holds.

Since each node i generates εi(t) independently, fi(t) is also independent from each other. Let
FFi(t)(·) be the distribution of Fi(t), there is:

FF(t)( f (t)|{ f (r)}t−1
r=0,Dall)

FF(t)( f (t)|{ f (r)}t−1
r=0, D̂all)

=

N∏
v=1

FFv(t)( fv(t)|{ fv(r)}t−1
r=0,Dv)

FFv(t)( fv(t)|{ fv(r)}t−1
r=0, D̂v)

=
FFi(t)( fi(t)|{ fi(r)}t−1

r=0,Di)

FFi(t)( fi(t)|{ fi(r)}t−1
r=0, D̂i)

(A.46)

Since two neighboring datasets Dall and D̂all only have at most one data point that is different,
the second equality holds is because of the fact that this different data point could only be possessed
by one node, say node i. Then there is D j = D̂ j for j 6= i.

Given { fi(r)}t−1
r=0, let gt(·,Di) : Rd→ Rd denote the one-to-one mapping from Ei(t) to Fi(t) using

dataset Di. Let FEi(t)(·) be the probability density of Ei(t), by Jacobian transformation, there is1:

FFi(t)( fi(t)|Di) = FEi(t)(g
−1
t ( fi(t),Di)) · |det(J(g−1

t ( fi(t),Di)))| (A.47)

where g−1
t ( fi(t),Di) is the mapping from Fi(t) to Ei(t) using data Di as shown in (A.45) and

J(g−1
t ( fi(t),Di)) is the Jacobian matrix of it.
Without loss of generality, let Di and D̂i be only different in the first data point, say (x1

i ,y
1
i ) and

(x̂1
i , ŷ

1
i ) respectively. Then by (A.46)(A.47), (A.44) yields:

FF(0:T )({ f (r)}Tr=0|Dall)

FF(0:T )({ f (r)}Tr=0|D̂all)
=

T∏
t=1

FEi(t)(g
−1
t ( fi(t),Di))

FEi(t)(g
−1
t ( fi(t), D̂i))

·

T∏
t=1

|det(J(g−1
t ( fi(t),Di)))|

|det(J(g−1
t ( fi(t), D̂i)))|

(A.48)

1We believe that there is a critical mistake in [147] and the original paper [24] where the objective perturbation
method was proposed. A wrong mapping is used in both work:

FFi(t)( fi(t)|Di) = FEi(t)(g
−1
t ( fi(t),Di)) · |det(J(g−1

t ( fi(t),Di)))|−1
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Consider the first part, Ei(t) ∼ exp{−αi(t)||ε ||}, let ε̂i(t) = g−1
t ( fi(t), D̂i) and εi(t) = g−1

t ( fi(t),Di)

T∏
t=1

FEi(t)(g
−1
t ( fi(t),Di))

FEi(t)(g
−1
t ( fi(t), D̂i))

=

T∏
t=1

exp(αi(t)(||ε̂i(t)|| − ||εi(t)||)) ≤ exp(
T∑

t=1

αi(t)||ε̂i(t)− εi(t)||) (A.49)

By (A.45), Assumptions 4 and the facts that ||xn
i ||2 ≤ 1 (pre-normalization), yn

i ∈ {+1,−1}.

||ε̂i(t)− εi(t)|| =
1

2ηi(t)Vi

C
Bi
· ||y1

i L
′(y1

i fi(t)T x1
i )x1

i − ŷ1
i L

′(ŷ1
i fi(t)T x̂1

i )x̂1
i || ≤

C
ηi(t)ViBi

(A.49) can be bounded:

T∏
t=1

FEi(t)(g
−1
t ( fi(t),Di))

FEi(t)(g
−1
t ( fi(t), D̂i))

≤ exp(
T∑

t=1

Cαi(t)
ηi(t)ViBi

) (A.50)

Consider the second part, the Jacobian matrix J(g−1
t ( fi(t),Di)) is:

J(g−1
t ( fi(t),Di)) = −

1
2ηi(t)Vi

C
Bi

Bi∑
n=1

L ′′(yn
i fi(t)T xn

i )xn
i (xn

i )T −
1

2ηi(t)Vi

ρ

N
∇2R( fi(t))− Id

Let G(t) = C
2ηi(t)ViBi

(L ′′(ŷ1
i fi(t)T x̂1

i )x̂1
i (x̂1

i )T − L ′′(y1
i fi(t)T x1

i )x1
i (x1

i )T ) and H(t) =

−J(g−1
t ( fi(t),Di)), there is:

|det(J(g−1
t ( fi(t),Di)))|

|det(J(g−1
t ( fi(t), D̂i)))|

=
|det(H(t))|

|det(H(t) +G(t))|

=
1

|det(I + H(t)−1G(t))|
=

1
|
∏r

j=1(1 +λ j(H(t)−1G(t)))|

where λ j(H(t)−1G(t)) denotes the j-th largest eigenvalue of H(t)−1G(t). Since G(t) has rank at
most 2, implies H(t)−1G(t) also has rank at most 2.

Because θ is determined such that 2c1 <
Bi
C ( ρN + 2θVi), and θ ≤ ηi(t) holds for all node i and

iteration t, which implies:
c1

Bi
C ( ρN + 2ηi(t)Vi)

<
1
2

(A.51)
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By Assumptions 4 and 5, the eigenvalue of H(t) and G(t) satisfy:

λ j(H(t)) ≥
ρ

2ηi(t)ViN
+ 1 > 0

−
Cc1

2ηi(t)ViBi
≤ λ j(G(t)) ≤

Cc1

2ηi(t)ViBi

Implies:
−

c1
Bi
C ( ρN + 2ηi(t)Vi)

≤ λ j(H(t)−1G(t)) ≤
c1

Bi
C ( ρN + 2ηi(t)Vi)

By (A.51):

−
1
2
≤ λ j(H(t)−1G(t)) ≤

1
2

Since λmin(H(t)−1G(t)) > −1, there is:

1
|1 +λmax(H(t)−1G(t))|2

≤
1

|det(I + H(t)−1G(t))|
≤

1
|1 +λmin(H(t)−1G(t))|2

Therefore,

T∏
t=1

|det(J(g−1
t ( fi(t),Di)))|

|det(J(g−1
t ( fi(t), D̂i)))|

≤

T∏
t=1

1
|1− c1

Bi
C ( ρN +2ηi(t)Vi)

|2
= exp(−

T∑
t=1

2ln(1−
c1

Bi
C ( ρN + 2ηi(t)Vi)

))

(A.52)
Since for any real number x ∈ [0,0.5], − ln(1− x) < 1.4x. By condition (A.51), (A.52) can be

bounded with a simper expression:

T∏
t=1

|det(J(g−1
t ( fi(t),Di)))|

|det(J(g−1
t ( fi(t), D̂i)))|

≤ exp(
T∑

t=1

2.8c1
Bi
C ( ρN + 2ηi(t)Vi)

) ≤ exp(
T∑

t=1

1.4Cc1

ηi(t)ViBi
) (A.53)

Combine (A.50)(A.53), (A.48) can be bounded:

FF(0:T )({ f (r)}Tr=0|Dall)

FF(0:T )({ f (r)}Tr=0|D̂all)
≤ exp(

T∑
t=1

(
1.4Cc1

ηi(t)ViBi
+

Cαi(t)
ηi(t)ViBi

)) = exp(
T∑

t=1

C
ηi(t)ViBi

(1.4c1 +αi(t)))
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Therefore, the total privacy loss during T iterations can be bounded by any β:

β ≥max
i∈N
{

T∑
t=1

C
ηi(t)ViBi

(1.4c1 +αi(t))}

A.6 Proof of Lemma 2

Consider the private MR-ADMM up to 2k-th iteration. In (2k−1)-th iteration, the primal variable is
updated via (2.47), By KKT condition:

∇O( fi(2k−1),Di) + εi(2k−1) = −2λi(2k−2)

−ηi(2k−1)
∑
j∈Vi

(2 fi(2k−1)− fi(2k−2)− f j(2k−2)) (A.54)

Given { fi(t)}Ni=1 for t ≤ 2k − 2, {λi(2k − 2)}Ni=1 are also given. RHS of (A.54) can be calculated
completely after releasing { fi(k− 1)}Ni=1, i.e., the information of ∇O( fi(2k− 1),Di) + εi(2k− 1) is
completely released during (2k−1)-th iteration. Suppose the private MR-ADMM satisfies β2k−1-
differential privacy during (2k−1) iterations, then in (2k)-th iterations, by (2.48):

fi(2k) = fi(2k−1)−
1

2ηVi +γ
{∇O( fi(2k−1),Di) + εi(2k−1) + 2λi(2k−1)

+ηi(2k−1)
∑
j∈Vi

( fi(2k−1)− f j(2k−1))}

which is a deterministic mapping taking the outputs from (2k−1)-th iteration as input. Because
the differential privacy is immune to post-processing [37], releasing { fi(2k)}Ni=1 doesn’t increase the
privacy loss, i.e., the total privacy loss up to (2k)-th iteration can still be bounded by β2k−1.

A.7 Proof of Theorem 5

Use the uppercase letters X and lowercase letters x to denote random variables and the corresponding
realizations, and use FX(·) to denote its probability distribution.

For two neighboring datasets Dall and D̂all of the network, by Lemma 2, the total privacy loss is
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only contributed by odd iterations. Thus, the ratio of joint probabilities (privacy loss) is given by:

FF(0:2K)({ f (r)}2r=0K|Dall)
FF(0:2K)({ f (r)}2r=0K|D̂all)

=
FF(0)( f (0)|Dall)
FF(0)( f (0)|D̂all)

∏K
k=1

FF(2k−1)( f (2k−1)|{ f (r)}2k−2
r=0 ,Dall)

FF(2k−1)( f (2k−1)|{ f (r)}2t−2
r=0 ,D̂all)

(A.55)

Since fi(0) is randomly selected for all i, which is independent of dataset, there is FF(0)( f (0)|Dall) =

FF(0)( f (0)|D̂all). First only consider (2k − 1)-th iteration, since the primal variable is updated
according to (2.47), by KKT optimality condition:

εi(2k−1) = −∇O( fi(2k−1),Di)−2λi(2k−2)

−ηi(2k−1)
∑
j∈Vi

(2 fi(2k−1)− fi(2k−2)− f j(2k−2)) (A.56)

Given { f (r)}2k−2
r=0 , Fi(2k−1) and Ei(2k−1) will be bijective ∀i, there is:

FF(2k−1)( f (2k−1)|{ f (r)}2k−2
r=0 ,Dall)

FF(2k−1)( f (2k−1)|{ f (r)}2k−2
r=0 , D̂all)

=

N∏
v=1

FFv(2k−1)( fv(2k−1)|{ fv(r)}2k−2
r=0 ,Dv)

FFv(2k−1)( fv(2k−1)|{ fv(r)}2k−2
r=0 , D̂v)

=
FFi(2k−1)( fi(2k−1)|{ fi(r)}2k−2

r=0 ,Di)

FFi(2k−1)( fi(2k−1)|{ fi(r)}2k−2
r=0 , D̂i)

(A.57)

Since two neighboring datasets Dall and D̂all only have at most one data point that is different, the
second equality holds is because of the fact that this different data point could only be possessed by
one node, say node i. Then there is D j = D̂ j for j 6= i.

Given { f (r)}2k−2
r=0 , let gk(·,Di) : Rd → Rd denote the one-to-one mapping from Ei(2k − 1)

to Fi(2k − 1) using dataset Di. By Jacobian transformation, there is FFi(2k−1)( fi(2k − 1)|Di) =

FEi(2k−1)(g−1
k ( fi(2k−1),Di)) · |det(J(g−1

k ( fi(2k−1),Di)))| , where g−1
k ( fi(2k−1),Di) is the mapping

from Fi(2k− 1) to Ei(2k− 1) using data Di as shown in (A.56) and J(g−1
k ( fi(2k− 1),Di)) is the

Jacobian matrix of it. Then (A.55) yields:

FF(0:2K)({ f (r)}2K
r=0|Dall)

FF(0:2K)({ f (r)}2K
r=0|D̂all)

=
∏K

k=1
FEi(2k−1)(g−1

k ( fi(2k−1),Di))

FEi(2k−1)(g−1
k ( fi(2k−1),D̂i))

∏K
k=1

|det(J(g−1
k ( fi(2k−1),Di)))|

|det(J(g−1
k ( fi(2k−1),D̂i)))|

(A.58)

Consider the first part, Ei(2k−1)∼ exp{−αi(k)||ε ||}, let ε̂i(2k−1) = g−1
k ( fi(2k−1), D̂i) and εi(2k−1) =
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g−1
k ( fi(2k−1),Di)

K∏
k=1

FEi(2k−1)(g−1
k ( fi(2k−1),Di))

FEi(2k−1)(g−1
k ( fi(2k−1), D̂i))

=

K∏
k=1

exp(αi(k)(||ε̂i(2k−1)|| − ||εi(2k−1)||))

≤ exp(
K∑

k=1

αi(k)||ε̂i(2k−1)− εi(2k−1)||) (A.59)

Without loss of generality, let Di and D̂i be only different in the first data point, say (x1
i ,y

1
i ) and

(x̂1
i , ŷ

1
i ) respectively. By (A.56), Assumptions 4 and the facts that ||xn

i ||2 ≤ 1 (pre-normalization),
yn

i ∈ {+1,−1}.

||ε̂i(2k−1)− εi(2k−1)|| = ||∇O( fi(2k−1), D̂i)−∇O( fi(2k−1),Di)|| ≤
2C
Bi

(A.60)

(A.59) can be bounded:

K∏
k=1

FEi(2k−1)(g−1
k ( fi(2k−1),Di))

FEi(2k−1)(g−1
k ( fi(2k−1), D̂i))

≤ exp(
K∑

k=1

2Cαi(k)
Bi

) (A.61)

Consider the second part, the Jacobian matrix J(g−1
k ( fi(2k−1),Di)) is:

J(g−1
k ( fi(2k−1),Di)) = −

C
Bi

Bi∑
n=1

L ′′(yn
i fi(2k−1)T xn

i )xn
i (xn

i )T

−
ρ

N
∇2R( fi(2k−1))−2ηi(2k−1)ViId

Define

G(k) =
C
Bi

(L ′′(ŷ1
i fi(2k−1)T x̂1

i )x̂1
i (x̂1

i )T −L ′′(y1
i fi(2k−1)T x1

i )x1
i (x1

i )T ) ;

H(k) = −J(g−1
k ( fi(2k−1),Di)) .
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There is:

|det(J(g−1
k ( fi(2k−1),Di)))|

|det(J(g−1
k ( fi(2k−1), D̂i)))|

=
|det(H(k))|

|det(H(k) +G(k))|
=

1
|det(I + H(k)−1G(k))|

=
1

|
∏r

j=1(1 +λ j(H(k)−1G(k)))|
(A.62)

where λ j(H(k)−1G(k)) denotes the j-th largest eigenvalue of H(k)−1G(k). Since G(k) has rank
at most 2, H(k)−1G(k) also has rank at most 2. By Assumptions 4 and 5, the eigenvalue of H(k) and
G(k) satisfy

λ j(H(k)) ≥
ρ

N
+ 2ηi(2k−1)Vi > 0 ;

−
Cc1

Bi
≤ λ j(G(k)) ≤

Cc1

Bi
.

Implies

−
c1

Bi
C ( ρN + 2ηi(2k−1)Vi)

≤ λ j(H(k)−1G(k)) ≤
c1

Bi
C ( ρN + 2ηi(2k−1)Vi)

.

Since 2c1 <
Bi
C ( ρN + 2ηi(1)Vi) and ηi(2k− 1) ≤ ηi(2k + 1) for all k, 2c1 <

Bi
C ( ρN + 2ηi(2k− 1)Vi)

holds. It implies the following,

−
1
2
≤ λ j(H(k)−1G(k)) ≤

1
2
.

Since λmin(H(k)−1G(k)) > −1, there is

1
|1 +λmax(H(k)−1G(k))|2

≤
1

|det(I + H(k)−1G(k))|
≤

1
|1 +λmin(H(k)−1G(k))|2

.
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Therefore,

K∏
k=1

|det(J(g−1
k ( fi(2k−1),Di)))|

|det(J(g−1
k ( fi(2k−1), D̂i)))|

≤

K∏
k=1

1
|1− c1

Bi
C ( ρN +2ηi(2k−1)Vi)

|2

= exp(−
K∑

k=1

2ln(1−
c1

Bi
C ( ρN + 2ηi(2k−1)Vi)

)) (A.63)

Since for any real number x ∈ [0,0.5], − ln(1− x) < 1.4x. (A.63) can be bounded with a simper
expression:

K∏
k=1

|det(J(g−1
k ( fi(2k−1),Di)))|

|det(J(g−1
k ( fi(2k−1), D̂i)))|

≤ exp(
K∑

k=1

2.8c1
Bi
C ( ρN + 2ηi(2k−1)Vi)

). (A.64)

Combine (A.61)(A.64), (A.58) can be bounded:

FF(0:2K)({ f (r)}2K
r=0|Dall)

FF(0:2K)({ f (r)}2K
r=0|D̂all)

≤ exp(
K∑

k=1

2C
Bi

(
1.4c1

( ρN + 2ηi(2k−1)Vi)
+αi(k))) . (A.65)

Therefore, the total privacy loss during T iterations can be bounded by any β:

β ≥max
i∈N
{

K∑
k=1

2C
Bi

(
1.4c1

( ρN + 2ηi(2k−1)Vi)
+αi(k))} .

A.8 Proof of Theorem 6

Let Õ( f ) = CL( f )+
ρ

2N || f ||
2 and f̃i = argmin f Õ( f ). Let f opt

i = argmin f O( f ,Di) be node i’s classifier
trained with its own data.

L( f ∗c ) = L( fre f ) + (
Õ( f ∗c )

C
−

Õ( f̃i)
C

) + (
ρ

2NC
|| fre f ||

2−
ρ

2NC
|| f ∗c ||

2) +
(Õ( f̃i)

C
−

Õ( fre f )
C

)
By [126], Õ( f ∗c )− Õ( f̃i) ≤ (1 + a)(O( f ∗c ,Di)−O( f opt

i ,Di)) +O(C2N log(1/δ)
ρBi

) holds ∀a > 0 with proba-
bility 1−δ, where O is big-O notation.

Since f ∗c is the centralized classifier trained with samples from all nodes, we assume the
difference of empirical loss under two classifiers f ∗c and f opt

i is bounded by ν > 0, i.e., O( f ∗c ,Di)−
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O( f opt
i ,Di) ≤

ρ
2N (|| f ∗c ||

2− || f opt
i ||

2) +Cν. Moreover, Õ( f̃i) ≤ Õ( fre f ).

L( f ∗c ) ≤ L( fre f ) +O(
CN log(1/δ)

ρBi
) + (1 + a)(

ρ

2NC
|| f ∗c ||

2−
ρ

2NC
|| f opt

i ||
2 + ν)

+(
ρ

2NC
|| fre f ||

2−
ρ

2NC
|| f ∗c ||

2)

We assume ν is relatively small as compared to other terms. If choosing a > 0 to be a sufficient
small number such that a|| f ∗c ||

2− (1 + a)|| f opt
i ||

2 ≤ 0 and choosing ρ such that ρ
2NC || fre f ||

2 ≤
τ−∆i(k)

2 ,
e.g., ρ ≤ NC(τ−∆i(k))

|| fre f ||2
, and if Bi also satisfies O(CN log(1/δ)

ρBi
) ≤ τ−∆i(k)

2 , i.e.,

Bi ≥ wmax
k
{
CN log(1/δ)
ρ(τ−∆i(k))

} ≥ wmax
k
{
|| fre f ||

2 log(1/δ)
(τ−∆i(k))2 }

for some constant w, then the following holds with probability 1−δ.

L( f ∗c ) ≤ L( fre f ) +τ−∆i(k)

Since L( f non
i (2k − 1)) ≤ L( f ∗c ) + ∆i(k), it implies that L( f non

i (2k − 1)) ≤ L( fre f ) + τ holds with
probability 1−δ.

A.9 proof of Theorem 7

Let Õ( f ) = CL( f )+
ρ

2N || f ||
2 and f̃i = argmin f Õ( f ). Let f opt

i = argmin f O( f ,Di) be node i’s classifier
trained with its own data. Let f privOpt

i = argmin f Opriv( f ,Di;ε) = O( f ,Di) + εT f and Õpriv( f ;ε) =

Õ( f ) + εT f .

L( f ∗new) = L( fre f ) + (
Õ( f ∗new)

C
−

Õ( f privOpt
i )
C

) + (
Õ( f privOpt

i )
C

−
Õ( f̃i)

C
)

+(
ρ

2NC
|| fre f ||

2−
ρ

2NC
|| f ∗new||

2) + (
Õ( f̃i)

C
−

Õ( fre f )
C

)

For the new optimization problem, f ∗new is centralized classifier trained with samples from all
nodes while f privOpt

i is the classifier trained with samples from node i. We assume the difference
of empirical loss under two classifiers f ∗new and f privOpt

i can be bounded by ν > 0, i.e., Õ( f ∗new)−
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Õ( f privOpt
i ) ≤ ρ

2N (|| f ∗new||
2− || f privOpt

i ||2) +Cν.

By [126], Õ( f privOpt
i )− Õ( f̃i) ≤ (1+a)(O( f privOpt

i ,Di)−O( f opt
i ,Di))+O(C2N log(1/δ)

ρBi
) holds ∀a >

0 with probability 1− δ. By Lemma 12, O( f privOpt
i ,Di)−O( f opt

i ,Di) ≤ Nd2

ρ(αi(k))2 (log(d/δ))2 holds

with probability 1−δ. Therefore, Õ( f privOpt
i )− Õ( f̃i) ≤ (1 + a)( Nd2

ρ(αi(k))2 (log(d/δ))2) +O(C2N log(1/δ)
ρBi

)
holds ∀a > 0 with probability 1−2δ.

Since f̃i = argmin f Õ( f ), implying Õ( f̃i) ≤ Õ( fre f ). The following holds ∀a > 0 with probability
1−2δ,

L( f ∗new) ≤ L( fre f ) + ν+O(
CN log(1/δ)

ρBi
) + (1 + a)

Nd2

Cρ(αi(k))2 (log(d/δ))2

+(
ρ

2NC
|| fre f ||

2−
ρ

2NC
|| f privOpt

i ||2)

We assume ν is relatively small as compared to other terms. If choosing ρ such that
ρ

2NC || fre f ||
2 ≤ 1

2 (τ−∆new
i (k)), i.e., ρ≤

NC(τ−∆new
i (k))

|| fre f ||2
, and if Bi also satisfies ((1+a) Nd2

C(αi(k))2 (log(d/δ))2 +

O(CN log(1/δ)
Bi

)) ≤
ρ(τ−∆new

i (k))
2 , i.e., Bi ≥ w CN log(1/δ)

ρ(τ−∆new
i (k))
2 −(1+a) Nd2

C(αi(k))2
(log(d/δ))2

for some a > 0 and constant

w. Then L( f ∗new) ≤ L( fre f ) +τ−∆new
i (k) holds with probability 1−2δ. Plug in ρ =

NC(τ−∆new
i (k))

|| fre f ||2
and

re-organize gives:

Bi ≥ wmax
k
{

CN log(1/δ)
NC(τ−∆new

i (k))2

2|| fre f ||2
− (1 + a) Nd2

C(αi(k))2 (log(d/δ))2
}

Since L( f new
i (2k−1)) ≤ L( f ∗new) +∆new

i (k), it implies that L( f new
i (2k−1)) ≤ L( fre f ) +τ holds with

probability 1−2δ.

Lemma 12. Let f privOpt
i = argmin f O( f ,Di) + εT f and f opt

i = argmin f O( f ,Di) be outputs at itera-

tion 2k−1, then O( f privOpt
i ,Di)−O( f opt

i ,Di) ≤ Nd2

ρ(αi(k))2 (log(d/δ))2 holds with probability 1−δ.

Proof. There is O( f privOpt
i ,Di) ≤ O( f opt

i ,Di) + εT ( f opt
i − f privOpt

i ). By Lemma 13, since O( f ,Di)
and O( f ,Di)+ εT f are ρ

N -strongly convex, || f opt
i − f privOpt

i || ≤ N
ρ ||ε || holds. By Lemma 14, with prob-

ability 1− δ, ||ε || ≤ d
αi(k) log(d/δ). Therefore, O( f privOpt

i ,Di)−O( f opt
i ,Di) ≤ ||ε |||| f

opt
i − f privOpt

i || ≤

Nd2

ρ(αi(k))2 (log(d/δ))2 holds with probability 1−δ.
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Lemma 13. [24] Let G( f ), g( f ) be two vector-valued functions, which are continuous and

differentiable at all points. Moreover, let G( f ) and G( f ) + g( f ) be λ-strongly convex. If f1 =

argmin f G( f ) and f2 = argmin f G( f ) + g( f ), then || f1− f2|| ≤ 1
λ max f ||∇g( f )||.

Lemma 14. [24] Let X be a random variable drawn from distribution Γ(k, θ), where k is an integer,

then Pr(X < kθ log(k/δ)) ≥ 1−δ.
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APPENDIX B

Real-Time Release of Sequential Data with
Differential Privacy

B.1 Proof of Propositions

The proofs are straightforward but we provide them in details for the completeness of chapter.
Finding the MMSE estimate of Zt+1 given Zt = zt is equivalent to finding the mapping

f ∗ = argmin
f

E((Zt+1− f (Zt))2|Zt = zt) = argmin
f

∫ ∞

−∞

p(zt+1|zt)(zt+1− f (zt))2dzt+1

Differentiating with respect to f and equating the result to zero gives:∫ ∞

−∞

p(zt+1|zt) f ∗(zt)dzt+1 = f ∗(zt) =

∫ ∞

−∞

p(zt+1|zt)zt+1dzt+1 = E(Zt+1|Zt = zt)

Therefore, the MMSE estimate of Zt+1 given Zt = zt is E(Zt+1|Zt = zt).
(1) Proposition 1: Gaussian AR(1) Process
(i) Since (Zt,Zt+1) is jointly Gaussian: Zt

Zt+1

 ∼N (

µ
µ

 ,  σ2
z ρσ2

z

ρσ2
z σ2

z

)
implies that Zt+1|Zt ∼ N (µ(1− ρ) + ρZt,σ

2
z (1− ρ2)), combine with the above result implies the

MMSE estimate of Zt+1 given Zt = zt is E(Zt+1|Zt = zt) = µ(1−ρ) +ρzt
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The corresponding MSE is:

E((Zt+1−E(Zt+1|Zt = zt))2|Zt = zt) = Var(Zt+1|Zt = zt) = σ2
z (1−ρ2)

(ii) Since Zi ∼N (µ,σ2
z ), Ni ∼N (0,σ2

n), there is Xi = Zi + Ni ∼N (µ,σ2
z +σ2

n) and Corr(XiZt+1) =

ρt+1−i σz√
σ2

z +σ2
n
.

(Xi,Zt+1) is jointly Gaussian: Xi

Zt+1

 ∼N (

µ
µ

 , σ2
z +σ2

n ρt+1−iσ2
z

ρt+1−iσ2
z σ2

z

)
implies the MMSE estimate of Zt+1 given Xi = xi is

E(Zt+1|Xi = xi) = µ(1−ρt+1−i σ2
z

σ2
z +σ2

n
) +ρt+1−i σ2

z

σ2
z +σ2

n
xi

The corresponding MSE is:

σ2
z (1− (ρt+1−i)2 σ2

z

σ2
z +σ2

n
)

(2) Proposition 2: Binomial AR(1) Process
The MMSE estimate of Zt+1 given Zt = zt is E(Zt+1|Zt = zt). Since the thinning is performed
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independently, given Zt = zt, the probability generating function satisfies the following:

G(s) = EZt+1|Zt=zt(sZt+1 |Zt = zt) = E(sα◦Zt |Zt = zt)E(sβ◦(n−Zt)|Zt = zt)

= (1−β+βs)n(
1−α+αs
1−β+βs

)zt

G′(s) = nβ(1−β+βs)n−1(
1−α+αs
1−β+βs

)zt + (1−β+βs)nzt(
1−α+αs
1−β+βs

)zt−1α

β

1
β −

1
α

(1
β −1 + s)2

G′′(s) = nβ2(n−1)(1−β+βs)n−2(
1−α+αs
1−β+βs

)zt

+2nβ(1−β+βs)n−1zt(
1−α+αs
1−β+βs

)zt−1α

β

1
β −

1
α

(1
β −1 + s)2

+(1−β+βs)nzt((z1−1)(
1−α+αs
1−β+βs

)zt−2(
α

β

1
β −

1
α

(1
β −1 + s)2

)2

+(
1−α+αs
1−β+βs

)zt−1α

β
2

1
α −

1
β

(1
β −1 + s)3

)

Since β= π(1−ρ), α= β+ρ, E(Zt+1|Zt = zt) = lims→1 G′(s) and Var(Zt+1|Zt = zt) = lims→1 G′′(s)+

G′(s)− (G′(s))2 gives:

E(Zt+1|Zt = zt) = ρzt + nπ(1−ρ) ;

Var(Zt+1|Zt = zt) = ρ(1−ρ)(1−2π)zt + nβ(1−β).

The corresponding MSE is:

E((Zt+1−E(Zt+1|Zt = zt))2|Zt = zt) = Var(Zt+1|Zt = zt)
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B.2 Proof of Lemma 4

Consider any d, d̂ ∈ D, and with them the binomial mechanism outputs the same results b. Let
b̄ = b−Q(d)

Pr(b = Q(d) + noise)

Pr(b = Q(d̂) + ˆnoise)
=

FN(b−Q(d))

FN(b−Q(d̂))
=

(
2m

m+b−Q(d)

)(
2m

m+b−Q(d̂)

) =

(
2m

m+b̄

)(
2m

m+b̄+∆Q
) =

∆Q∏
i=1

m + b̄ + i
m− b̄ + 1− i

(B.1)

A sufficient condition for (B.1) being bounded by exp(ε) is:

∀i ∈ {1,2, · · · ,∆Q}, m + b̄ + i
m− b̄ + 1− i

≤ exp(
ε

∆Q )
b̃=b̄+i
⇐⇒

m + b̃
m− b̃ + 1

≤ exp(
ε

∆Q ) (B.2)

from (B.2), we have:

b̄ ≤ min
i∈[∆Q]

m + 1−
2m + 1

exp( ε
∆Q ) + 1

− i = m + 1−
2m + 1

exp( ε
∆Q ) + 1

−∆Q

Let B̄ be the random variable of shifted Binomial(2m, 1
2 ) with zero mean and realization b̄. According

to Chernoff bound, ∀t ∈ [0,
√

2m], there is Pr(B̄ ≥ t
√

2m
2 ) ≤ e−t2/2.

Then if 1 ≤ ∆Q+ 2m+1
exp( ε

∆Q )+1 ≤ m + 1, there is:

Pr(B̄ ≥ m + 1−
2m + 1

exp( ε
∆Q ) + 1

−∆Q) ≤ exp(−
1
m

(m−∆Q+ 1−
2m + 1

exp( ε
∆Q ) + 1

)2) = δ

Similarly, given δ ∈ [0,1], the corresponding ε is:

ε = ∆Q log(
2m + 1

m−∆Q+ 1−
√

m log 1
δ

−1)
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B.3 Proof of Theorem 8

According to [4], for a mechanism M outputs o, with inputs d and d̂, let a random variable
c(o;M ,d, d̂) = log Pr(M (d)=o)

Pr(M (d̂)=o)
denote the privacy loss at o, and

αM (λ) = max
d,d̂

logEo∼M (d){exp(λc(o;M ,d, d̂))}

There is:

c(x1:T ;M ,z1:T , ẑ1:T ) = log
FX1:T |Z1:T (x1:T |z1:T )
FX1:T |Z1:T (x1:T |z1:T )

=

T∑
t=2

log
FXt |Zt,X1:t−1(xt|zt, x1:t−1)
FXt |Zt,X1:t−1(xt|ẑt, x1:t−1)

+ log
FX1|Z1(x1|z1)
FX1|Z1(x1|ẑ1)

=

T∑
t=1

c(xt;Mt,zt, ẑt)

and for any pair of sequences z1:T , ẑ1:T , the following holds

logEX1:T∼M (Z1:T ){exp(λc(x1:T ;M ,z1:T , ẑ1:T ))}

= logEX1:T∼M (Z1:T ){exp(λ
T∑

t=1

c(xt;Mt,zt, ẑt)}

≤

T∑
t=1

logEXt∼M (Zt){exp(λc(xt;Mt,zt, ẑt)} (B.3)

Therefore, αM (λ) ≤
∑T

t=1αMt(λ) also holds.
Consider αMt(λ) first.
For t ≤ 2−T0, Xt = Zt + Nt with Nt ∼N (0,σ2

n)

c(xt;Mt,zt, ẑt) = log
FXt |Zt,X1:t−1(xt|zt, x1:t−1)
FXt |Zt,X1:t−1(xt|ẑt, x1:t−1)

= log
FNt(nt)
FNt(n̂t)

≤
1

2σ2
n
∆(2nt +∆) .

αMt(λ) = logENt∼N (0,σ2
n){exp(λ

1
2σ2

n
∆(2nt +∆))}

= log
∫ ∞

−∞

1
√

2πσn
exp(−

1
2σ2

n
(nt −λ∆)2) · exp(

1
2σ2

n
(λ2 +λ)∆2)dnt =

λ(λ+ 1)∆2

2σ2
n

.
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For t > 2,
Xt = (1−wt)(µ̂t−1(1− rt) + rtXt−1) + wtZt + Nt

with Nt ∼N (0,σ2
n).

c(xt;Mt,zt, ẑt) = log
FXt |Zt,X1:t−1(xt|zt, x1:t−1)
FXt |Zt,X1:t−1(xt|ẑt, x1:t−1)

= log
FNt(nt)
FNt(n̂t)

≤
1

2σ2
n

wt∆(2nt + wt∆) .

αMt(λ) = logE{exp(λ
1

2σ2
n

wt∆(2nt + wt∆))}

= log
∫ ∞

−∞

1
√

2πσn
exp(−

1
2σ2

n
(nt −λwt∆)2) · exp(

1
2σ2

n
(λ2 +λ)w2

t ∆2)dnt

=
λ(λ+ 1)w2

t ∆2

2σ2
n

.

If let wt = 1 for t ≤ 2, there is: αM (λ) ≤ λ(λ+ 1) ∆2

2σ2
n

∑T
t=1 w2

t . Use the tail bound [Theorem

2, [4]], for any εT ≥
∆2

2σ2
n

∑T
t=1 w2

t , the algorithm is (εT , δT )-differentially private for

δT = min
λ:λ≥0

h(λ) = min
λ:λ≥0

exp(λ(λ+ 1)
∆2

2σ2
n

T∑
t=1

w2
t −λεT ) (B.4)

To find λ∗ = argmin
λ:λ≥0

h(λ), take derivative of h(λ) and assign 0 gives the solution λ̄ =
εT

∆2

σ2
n

∑T
t=1 w2

t

− 1
2 ≥ 0,

and h′′(λ̄) > 0, implies λ∗ = λ̄. Plug into (B.4) gives:

δT = exp((
∆2

σ2
n

∑T
t=1 w2

t

4
−
εT

2
)(

εT
∆2

σ2
n

∑T
t=1 w2

t

−
1
2

)) (B.5)

Similarly, for any δT ∈ [0,1], the algorithm is (εT , δT )-differentially private for

εT = min
λ:λ≥0

h1(λ) = min
λ:λ≥0

(λ+ 1)
∆2

2σ2
n

T∑
t=1

w2
t +

1
λ

log(
1
δT

) (B.6)
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with λ∗ = argmin
λ:λ≥0

h1(λ) =

√
log 1

δT
∆2

2σ2
n

∑T
t=1 w2

t

. Plug into (B.6) gives:

εT = 2

√√√
∆2

2σ2
n

T∑
t=1

w2
t log(

1
δT

) +
∆2

2σ2
n

T∑
t=1

w2
t (B.7)

B.4 Proof of Corollary 1

Let φ =
∆2 ∑T

t=1 w2
t

σ2
n

, then according to Theorem 8,

lnδT = (
φ

4
−
εT

2
)(
εT

φ
−

1
2

)

reorganize gives:

φ2 + (8 lnδT −4εT )φ+ 4ε2
T = 0

φ = 2εT −4lnδT ±4
√

(lnδT )2− εT lnδT

Since εT ≥
φ
2 must hold, only one case is possible.

φ =
∆2 ∑T

t=1 w2
t

σ2
n

= 2εT −4lnδT −4
√

(lnδT )2− εT lnδT

Therefore,

σ2
n =

∆2 ∑T
t=1 w2

t

2εT + 4ln 1
δT
−4

√
(ln 1

δT
)2 + εT ln 1

δT
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B.5 Proof of Theorem 9

The data of each individual here spans over T time steps, the total privacy loss is the accumulation
of privacy loss from T time steps:

FX1:T |Z1:T (x1:T |z1:T )
FX1:T |Z1:T (x1:T |ẑ1:T )

=
FX1|Z1(x1|z1)
FX1|Z1(x1|ẑ1)

·

T∏
t=2

FXt |Zt,X1:t−1(xt|zt, x1:t−1)
FXt |Zt,X1:t−1(xt|ẑt, x1:t−1)

If xt is released under (εt, δt)-differential privacy at time t, then the total privacy loss can be calculated
using advanced composition theorem below:

Theorem 28. (Advanced composition theorem for differential privacy [76]) For any εk > 0, δk ∈ [0,1]
for k ∈ {1,2, · · · ,T }, and δ̃ ∈ [0,1], the class of (εk, δk)-differentially private mechanisms satisfy

(ε̃δ̃,1− (1− δ̃)
∏T

k=1(1−δk))-differential privacy under T-fold adaptive composition, for

ε̃δ̃ = min
{ T∑

k=1

(eεk −1)εk

eεk + 1
+

√√√√√ T∑
k=1

2ε2
k log(e +

√∑T
k=1 ε

2
k

δ̃
),

T∑
k=1

εk,

T∑
k=1

(eεk −1)εk

eεk + 1
+

√√√ T∑
k=1

2ε2
k log(

1
δ̃

)
}

First calculate the (εt, δt) at each stage by Lemma 4. Since Nt + m ∼ Binomial(2m, 1
2), for t ≤ 2,

Xt = Zt + Nt so that the sensitivity ∆Qt = ∆; for t > 2, Xt = [(1−wt)(µ̂t−1(1− rt)+ rtXt−1)+wtZt + Nt]
and the sensitivity is ∆Qt = wt∆. Let wt = 1 for t ≤ 2. Then ∀εt > 0,

δt = exp(−
1
m

(m−wt∆+ 1−
2m + 1

exp( εt
wt∆

) + 1
)2)

or ∀δt ∈ (0,1),

εt = wt∆ log(
2m + 1

m−wt∆+ 1−
√

m log 1
δt

−1)

Apply Theorem 28 directly, Theorem 9 is proved.
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B.6 Proof of Theorem 10

EX1:T (||x1:T − z1:T ||
2) = EX1:T (

T∑
t=1

(xt − zt)2)

= EX1:T−1{

T−1∑
t=1

(xt − zt)2 +EXT |X1:T−1[(xT − zT )2]︸ ︷︷ ︸
term 1

} (B.8)

Replacing xT = (1−wT )ẑT (xT−1) + wT zT + nT into term 1 gives:

term 1 = EXT |X1:T−1[((1−wt)(ẑT (xT−1)− zT ) + nT )2]

= (1−wT )2(ẑT (xT−1)− zT )2 +σ2
n

Plug into Eqn. (B.8):

(B.8) = EX1:T−1{

T−1∑
t=1

(xt − zt)2 + (1−wT )2(ẑT (xT−1)− zT )2 +σ2
n}

= EX1:T−2{

T−2∑
t=1

(xt − zt)2 +σ2
n + term 2}

with

term 2 = EXT−1|X1:T−2{(xT−1− zT−1)2 + (1−wT )2(ẑT (xT−1)− zT )2}

= (1−wT−1)2(ẑT−1(xT−2)− zT−1)2 +σ2
n + (1−wT )2EXT−1{(ẑT (xT−1)− zT )2}︸ ︷︷ ︸

term 3

Since ẑT (xT−1) is the LMMSE estimator of ZT given XT−1, term 3 is just the corresponding MSE.
For a Gaussian AR(1) process Z1:T with Zt ∼N (µ,σ2

z ) and Corr(ZtZt−1) = ρ. There is:

term 3 = σ2
z (1−ρ2 σ2

z

σ2
z +σ2

n
)
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Therefore,

(B.8) = EX1:T−2{

T−2∑
t=1

(xt − zt)2 + (1−wT−1)2(ẑT−1(xT−2)− zT−1)2}

+(1−wT )2σ2
z (1−ρ2 σ2

z

σ2
z +σ2

n
) + 2σ2

n

= · · ·

= EX1{(x1− z1)2 + (1−w2)2(ẑ2(x1)− z2)2}

+σ2
z (1−ρ2 σ2

z

σ2
z +σ2

n
)

T∑
t=3

(1−wt)2 + (T −1)σ2
n

= σ2
z (1−ρ2 σ2

z

σ2
z +σ2

n
)

T∑
t=2

(1−wt)2 + Tσ2
n

Since w1 = 1,

EX1:T (||x1:T − z1:T ||
2) = σ2

z (1−ρ2 σ2
z

σ2
z +σ2

n
)

T∑
t=1

(1−wt)2 + Tσ2
n

B.7 Proof of Theorem 11

Since both satisfy (εT , δT )-differential privacy, according to Corollary 1, (σ2
n)A, (σ2

n)B should satisfy:

T
(σ2

n)B
=

∑T
t=1 w2

t

(σ2
n)A

=
2εT + 4ln 1

δT
−4

√
(ln 1

δT
)2 + εT ln 1

δT

∆2

By Theorem 10,

EXA
1:T

(||x1:T − z1:T ||
2) = σ2

z (1−ρ2 σ2
z

σ2
z + (σ2

n)A
)

T∑
t=1

(1−wt)2 + T (σ2
n)A

EXB
1:T

(||x1:T − z1:T ||
2) = T (σ2

n)B = T (σ2
n)A T∑T

t=1 w2
t
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If EXA
1:T

(||x1:T − z1:T ||
2) < EXB

1:T
(||x1:T − z1:T ||

2), then ∃t s.t. wt 6= 1 and

σ2
z (1−ρ2 σ2

z

σ2
z + (σ2

n)A
)

T∑
t=1

(1−wt)2 < T (σ2
n)A(

T∑T
t=1 w2

t
−1)

Reorganize it implies:

(σ2
n)A/σ2

z

1− ρ2

1+(σ2
n)A/σ2

z

>

∑T
t=1(1−wt)2

T ( T∑T
t=1 w2

t
−1)

(B.9)

Therefore, if ∃ {wt}
T
t=1,wt ∈ (0,1) and (σ2

n)A satisfy both (B.9) and (B.9), then xA
1:T will be more

accurate than xB
1:T .

Consider the case when wt = w ∈ (0,1),∀t.
Then the right hand side of (B.9) is reduced to h1(w) =

(1−w)2

1
w2−1

, since

lim
w→1

h1(w) = 0

lim
w→0

h1(w) = 0

h′1(w) =
−2w(w2 + w−1)

(1 + w)2

∃ only one w̄ over (0,1) such that w̄2 + w̄−1 = 0. Therefore, h1(w) is strictly increasing from 0 to
h1(w̄) > 0 over (0, w̄) and strictly decreasing over from h1(w̄) > 0 to 0 over (w̄,1).

Let ξ = (σ2
n)A/σ2

z ≥ 0, then the left hand side of (B.9) can be re-written as h2(ξ) =
ξ

1− ρ2
1+ξ

, we

have:

h′2(ξ) =
ξ2 + 2ξ(1−ρ2) + (1−ρ2)

(1 + ξ−ρ2)2

Since h2(0) = 0 and h′2(ξ)> 0 over ξ ∈ [0,∞), h2(ξ) is strictly increasing from 0 to +∞ over ξ ∈ [0,∞).
For all pairs of (w, (σ2

n)A) satisfying (B.9), w and (σ2
n)A is bijective and we can write ξ = h3(w) for

some strictly increasing function h3.
Since both h2, h3 are strictly increasing functions, h2(h3(w)) is strictly increasing from 0 over

w ∈ (0,1). Therefore, ∃w ∈ (0,1), such that h2(h3(w)) > h1(w) and xA
1:T released by our method is

more accurate than xB
1:T .
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Moreover, if w >
1−(σ2

n)B/σ2
z

1+(σ2
n)B/σ2

z
, then re-organize it implies

w2 (σ2
n)B

σ2
z

> h1(w).

Since h2(h3(w)) =
w2 (σ2

n)B

σ2
z

1− ρ2

1+w2 (σ2
n)B

σ2
z

> w2 (σ2
n)B

σ2
z

, it further implies h2(h3(w)) > h1(w).

Therefore, if

w >
1− (σ2

n)B/σ2
z

1 + (σ2
n)B/σ2

z
,

then xA
1:T will be more accurate than xB

1:T .
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APPENDIX C

Long-Term Impact of Fairness Interventions on
Group Representation

C.1 Proof of Theorem 12

Theorem 12 is proved based on the following Lemma.

Lemma 15. Let a,b,za,zb be real constants, where a,b ∈ R+ and za,zb ∈ [0,1]. If b ≥ a > 1,

zb− za >
1
a −

1
b and b < 1

1−zb
are satisfied, then the following holds:

1 + za + az2
a

1 + zb + bz2
b

≤
1 + aza

1 + bzb
(C.1)

Proof. Re-organizing (C.1) gives the following:

(1 + za + az2
a)(1 + bzb) ≤ (1 + zb + bz2

b)(1 + aza)

bzb + bzazb + za + abz2
azb + az2

a ≤ aza + zb + azazb + bz2
b + abz2

bza

Proving (C.1) is equivalent to showing the following:

0 ≤ (a−1)
1
zb

+ (1−b)
1
za

+ b
zb

za
−a

za

zb
+ a−b + ab(zb− za)︸ ︷︷ ︸

term 1

Since zb − za >
1
a −

1
b , term 1 > a− b + b− a = 0 holds. Therefore, proving (C.1) is equivalent to
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showing:

az2
a + (1−a)za ≤ bz2

b + (1−b)zb (C.2)

Since b < 1
1−zb

holds, implying zb > 1− 1
b .

Define a function g(z) = cz2 + (1− c)z, z ∈ [0,1] under any constant c > 1. The following holds:

g(1−
1
c

) = 0; g(1) = 1

g′(z) = 2cz + 1− c; g′(1− 1
c ) = c−1; g′′(z) = 2c

Since g′′(z) is a positive constant over z ∈ [0,1], g′(z) is strictly increasing and g′(z) > 0 when
z ∈ (1− 1

c ,1], thus g(z) is increasing over z ∈ (1− 1
c ,1] from 0 to 1.

Now consider two functions ga(z) = az2 + (1− a)z and gb(z) = bz2 + (1− b)z with z ∈ [0,1].
From the above analysis, ga(z) is increasing over (1− 1

a ,1] from 0 to 1 and gb(z) is increasing over
(1− 1

b ,1] from 0 to 1. Moreover, 1− 1
b ≥ 1− 1

a and g′′b (z) = 2b ≥ 2a = g′′a (z), i.e., the speed that gb(z)
increases over (1− 1

b ,1] is NOT slower than the speed that ga(z) increases over (1− 1
a ,1]. Since

zb− za >
1
a −

1
b = (1− 1

b )− (1− 1
a ) and zb > 1− 1

b , ga(za) ≤ gb(zb) must hold.
Therefore, (C.2) is satisfied. Inequality (C.1) is proved.

To simplify the notation, denote λk,t := λk,t(θk(t)). We will only present the case when � := “ < ”,
cases when � := “ > ” and � := “ = ” can be derived similarly and are omitted.

To prove Theorem 12, we prove the following statement using induction: If λa,1 < λb,1, then
∀t, na(t+1)

nb(t+1) <
na(t)
nb(t) and λa,t+1 < λa,t < λb,t < λb,t+1 hold under monotonicity condition. Moreover,

Nb(t) < βb
1−λb,t

,∀t.
Base Case:
Since Na(1)

Nb(1) =
βa
βb

. If λa,1 < λb,1, then na(2)
nb(2) =

Na(1)λa,1+βa
Nb(1)λb,1+βb

< Na(1)
Nb(1) =

na(1)
nb(1) . Under monotonicity

condition, it results in λa,2 < λa,1 < λb,1 < λb,2. Moreover, since Nb(2) = Nb(1)λb,1 + βb > Nb(1),
implying Nb(1) < βb

1−λb,1
.

Induction Step:
Suppose na(t+1)

nb(t+1) <
na(t)
nb(t) ≤

βa
βb

, λa,t+1 < λa,t < λb,t < λb,t+1 and Nb(t)< βb
1−λb,t

hold at time t ≥ 1. Show

that for time step t + 1, na(t+2)
nb(t+2) <

na(t+1)
nb(t+1) ≤

βa
βb

, λa,t+2 < λa,t+1 < λb,t+1 < λb,t+2 and Nb(t + 1) < βb
1−λb,t+1

also hold.
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Denote Na(t) = caβa and Nb(t) = cbβb. Since Nk(t) = Nk(t−1)λk,t−1 +βk > βk,∀t, it holds that
ca,cb > 1.

By hypothesis, na(t)
nb(t) ≤

βa
βb

implies that cb ≥ ca > 1, and Nb(t) < βb
1−λb,t

implies that cb <
1

1−λb,t
.

Since Na(t+1)
Nb(t+1) =

Na(t)λa,t+βa
Nb(t)λb,t+βb

=
βa
βb

caλa,t+1
cbλb,t+1 <

Na(t)
Nb(t) =

βa
βb

ca
cb

, re-organizing it gives λb,t −λa,t >
1
ca
− 1

cb
.

By Lemma 15, the following holds:

Na(t)λ2
a,t +βa(1 +λa,t)

Nb(t)λ2
b,t +βb(1 +λb,t)

=
βa

βb

1 +λa,t + caλ
2
a,t

1 +λb,t + cbλ
2
b,t

≤
βa

βb

1 + caλa,t

1 + cbλb,t
=

Na(t + 1)
Nb(t + 1)

=
na(t + 1)
nb(t + 1)

Since we suppose λa,t+1 < λa,t < λb,t < λb,t+1, we have:

Na(t)λ2
a,t +βa(1 +λa,t)

Nb(t)λ2
b,t +βb(1 +λb,t)

>
(Na(t)λa,t +βa)λa,t+1 +βa

(Nb(t)λb,t +βb)λb,t+1 +βb
=

na(t + 2)
nb(t + 2)

It implies that na(t+2)
nb(t+2) <

na(t+1)
nb(t+1) .

By motonoticity condition, it results in λa,t+2 < λa,t+1 < λb,t+1 < λb,t+2.
Moreover, Nb(t + 1) = Nb(t)λb,t +βb <

βbλb,t
1−λb,t

+βb =
βb

1−λb,t
<

βb
1−λb,t+1

.
The statement holds for time t + 1. This completes the proof.

C.2 Proof of Theorem 13

Without loss of generality, let n̂a
n̂b
< ña

ñb
. Since λk(θk) = hk(Ok(θk)) with hk(·) being a decreasing

function, showing that Õ and Ô satisfy Monotonicity condition is equivalent to showing that
Oa(̂θa) >Oa(̃θa), Ob(̂θb) <Ob(̃θb). Under the condition that Ok (̂θk) 6= Ok (̃θk) for any possible n̂a 6= ña

, prove by contradiction: suppose Oa(̂θa) < Oa(̃θa) holds, then Ob(̂θb) > Ob(̃θb) must also hold
otherwise (̂θa, θ̂b) will be the solution to Õ.

Because (̂θa, θ̂b) is the optimal solution to Ô and (̃θa, θ̃b) is the optimal solution to Õ, and
Ob(̂θb) > Ob(̃θb), the following holds:

n̂aOa(̂θa) + n̂bOb(̂θb) ≤ n̂aOa(̃θa) + n̂bOb(̃θb)→
Oa(̂θa)−Oa(̃θa)

Ob(̃θb)−Ob(̂θb)
≥

n̂b

n̂a

ñaOa(̃θa) + ñbOb(̃θb) ≤ ñaOa(̂θa) + ñbOb(̂θb)→
Oa(̂θa)−Oa(̃θa)

Ob(̃θb)−Ob(̂θb)
≤

ñb

ña
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It implies that n̂a
n̂b
≥

ña
ñb

, which is a contradiction.

C.3 Proof of Lemma 5

Starting from Appendix C.3 until Appendix C.6, we simplify the notations by removing t from
subscript, i.e., Ls,t(θs) := Ls(θs), αs,t := αs, fs,t(x) := fs(x), f y

s,t(x) := f y
s (x), sy

t := sy, sy
t := sy, ηCt := ηC ,

ΓC,t := ΓC , δs,t := δs, Ts,t := Ts.
The loss for group s can be written as

Ls(θs) =

∫ θs

−∞

αs f 1
s (x)dx +

∫ ∞

θs

(1−αs) f 0
s (x)dx

=


∫ s0

θs
(1−αs) f 0

s (x)dx, if θs ∈ [s0, s1]∫ s0

θs
(1−αs) f 0

s (x)dx +
∫ θs

s1 αs f 1
s (x)dx, if θs ∈ [s1, s0]∫ θs

s1 αs f 1
s (x)dx, if θs ∈ [s0, s1]

which is decreasing in θs over [s0, s1] and increasing over [s0, s1], the optimal solution θ∗s ∈
[s1, s0]. Taking derivative of Ls(θs) w.r.t. θs gives dLs(θs)

dθs
= αs f 1

s (θs)− (1−αs) f 0
s (θs), which is strictly

increasing over [s1, s0] under Assumption 7.
The optimal solution θ∗s = argminθs Ls(θs) ∈ {s1, δs, s0

} can be thus found easily. Moreover,
Ls(θs) is decreasing in θs over [s0, θ∗s] and increasing over [θ∗s , s

1].

C.4 Proof of Lemma 6

Some notations are simplified by removing subscript t as mentioned in Appendix C.3.
We proof this Lemma by contradiction.
Let V = {(θa, θb)|θa ∈ [ηC(δb), δa], θb ∈ [δb, (ηC)−1(δa)],ΓC(θa, θb) = 0}.
Note that for Simple, EqOpt, DP fairness, for any (θa, θb) and (θ′a, θ

′
b) that satisfy constraints

ΓC(θa, θb) = 0 and ΓC(θ′a, θ
′
b) = 0, θa ≥ θ

′
a if and only if θb ≥ θ

′
b. Suppose that (θ̌a, θ̌b) satisfies

ΓC(θ̌a, θ̌b) = 0 and (θ̌a, θ̌b) = argminθa,θb naLa(θa) + nbLb(θb) /∈ V , then one of the following must
hold: (1) θ̌a < η

C(δb), θ̌b < δb; (2) θ̌a > δa, θ̌b > (ηC)−1(δa). Consider two cases separately.
(1) θ̌a < η

C(δb), θ̌b < δb
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Since Lb(θ̌b)> Lb(δb), ∀na,nb, to satisfy naLa(θ̌a)+nbLb(θ̌b)< naLa(ηC(δb))+nbLb(δb), La(θ̌a)<
La(ηC(δb)) must hold. However, by Lemma 5, La(θa) is strictly decreasing on [a0, δa] and strictly
increasing on [δa,a1]. Since θ̌a < η

C(δb) < δa, this implies La(θ̌a) > La(ηC(δb)). Therefore, (θ̌a, θ̌b)
cannot be the optimal pair.

(2) θ̌a > δa, θ̌b > (ηC)−1(δa)
Since La(θ̌a) > La(δa), ∀na,nb, to satisfy naLa(θ̌a) + nbLb(θ̌b) < naLa(δa) + nbLb((ηC)−1(δa)),

Lb(θ̌b) < Lb((ηC)−1(δa)) must hold. However, by Lemma 5, Lb(θb) is strictly decreasing on [b0, δb]
and strictly increasing on [δb,b

1
]. Since θ̌b > (ηC)−1(δa) > δb, this implies Lb(θ̌b) > Lb((ηC)−1(δa)).

Therefore, (θ̌a, θ̌b) cannot be the optimal pair.

C.5 Proof of Theorem 14

Some notations are simplified by removing subscript t as mentioned in Appendix C.3.
Proof of Theorem 14 is based on the following Lemma.

Lemma 16. Consider the one-shot problem (4.1) at some time step t, with group proportions given

by na(t),nb(t). Under Assumption 7 the one-shot decision (θa(t), θb(t)) for this time step is unique

and satisfies the following:

(1) Under EqOpt fairness:

• If θa(t) ∈ [a0,a1], θb(t) ∈ [b1,b
0
], then na(t)

nb(t) = ( αb
1−αb

f 1
b (θb(t))

f 0
b (θb(t))

−1)1−αb
1−αa

.

• If θa(t) ∈ [a1,a0], θb(t) ∈ [b1,b
0
], then na(t)

nb(t) =

αb
1−αb

f 1
b (θb(t))

f 0
b (θb(t))

−1

1− αa
1−αa

f 1
a (θa(t))

f 0
a (θa(t))

1−αb
1−αa

.

(2) Under DP fairness:

• If θa(t) ∈ [a0,a1], θb(t) ∈ [b1,b
0
], then na(t)

nb(t) = 1− 2
αb

1−αb

f 1
b (θb(t))

f 0
b (θb(t))

+1
.

• If θa(t) ∈ [a1,a0], θb(t) ∈ [b1,b
0
], then na(t)

nb(t) = (1− 2
αb

1−αb

f 1
b (θb(t))

f 0
b (θb(t))

+1
)( 2

1− αa
1−αa

f 1
a (θa(t))

f 0
a (θa(t))

−1) .

• If θa(t) ∈ [a1,a0], θb(t) ∈ [b
0
,b

1
] , then na(t)

nb(t) = 2

1− αa
1−αa

f 1
a (θa(t))

f 0
a (θa(t))

−1.

(3) Under Simple fairness:

• If we further assume δa, δb ∈ Ta ∩ Tb, then θa(t) = θb(t) ∈ [a1,b
0
] and na(t)

nb(t) =

αb f 1
b (θb(t))−(1−αb) f 0

b (θb(t))

(1−αa) f 0
a (θa(t))−αa f 1

a (θa(t))
.
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Proof. We focus on the case when αa f 1
a (a1) < (1−αa) f 0

a (a1) & αa f 1
a (a0) > (1−αa) f 0

a (a0) and
αb f 1

b (b1) < (1−αb) f 0
b (b1) & αb f 1

b (b
0
) > (1−αb) f 0

b (b
0
). That is, θ∗s = argminθLs(θ) = δs holds for

s ∈ {a,b}.
Constraint ΓC(θa, θb) = 0 can be rewritten as θa = ηC(θb) for some strictly increasing function ηC .

The following holds:

dηC(θb)
dθb

= −

∂ΓC(θa,θb)
∂θb

∂ΓC(θa,θb)
∂θa

∣∣∣∣
θa=ηC(θb)

=


f 0
b (θb)

f 0
a (ηC(θb))

, C := EqOpt

(1−αb) f 0
b (θb)+αb f 1

b (θb)

(1−αa) f 0
a (ηC(θb))+αa f 1

a (ηC(θb))
, C := DP

1, C := Simple

The one-shot problem can be expressed with only one variable, either θa or θb. Here we express
it in terms of θb. At each round, decision maker finds θb(t) = argminθb na(t)La(ηC(θb)) + nb(t)Lb(θb)
and θa(t) = ηC(θb(t)). Since ηC(δb) < δa ( (ηC)−1(δa) > δb), when C := DP, solution (θa(t), θb(t))
can be in one of the following three forms: (1) θa(t) ∈ [a0,a1], θb(t) ∈ [b1,b

0
]; (2) θa(t) ∈ [a1,a0],

θb(t) ∈ [b1,b
0
]; (3) θa(t) ∈ [a1,a0], θb(t) ∈ [b

0
,b

1
]. When C := EqOpt, solution (θa(t), θb(t)) can be

either (1) or (2) listed above. In the following analysis, we simplify the notation ηC as η when
fairness criterion C is explicitly stated. For EqOpt and DP criteria, we consider each case separately.

Case 1: θa(t) ∈ [a0,a1], θb(t) ∈ [b1,b
0
]

Let θmax
b = min{b

0
, (ηC)−1(a1)} be the maximum value θb can take.

Lt(θb) = nb(t)
∫ θb

b1 αb f 1
b (x) − (1 − αb) f 0

b (x)dx − na(t)
∫ ηC(θb)

a0 (1 − αa) f 0
a (x)dx + na(t)(1 − αa) +

nb(t)
∫ b

0

b1 (1−αb) f 0
b (x)dx

Taking derivative w.r.t. θb gives

dLt(θb)
dθb

= nb(t)(αb f 1
b (θb)− (1−αb) f 0

b (θb))−na(t)(1−αa) f 0
a (ηC(θb))

dηC(θb)
dθb

.

1. C := EqOpt
dLt(θb)

dθb
= nb(t)(αb f 1

b (θb)− (1−αb) f 0
b (θb))−na(t)(1−αa) f 0

b (θb), since αb f 1
b (θb)− (1−αb) f 0

b (θb)

is increasing from negative to positive and f 0
b (θb) is decreasing over [b1,b

0
], implying dLt(θb)

dθb
is

increasing over [b1,b
0
]. Based on the value of na(t)

nb(t) ,

• If dLt(θb)
dθb
|θb=θmax

b
≥ 0, then one-shot decision θb(t) satisfies na(t)

nb(t) = ( αb
1−αb

f 1
b (θb(t))

f 0
b (θb(t))

−1)1−αb
1−αa

and is
unique.
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• If dLt(θb)
dθb

< 0,∀θb ∈ [b1, θmax
b ], then θb(t) > θmax

b and (θa(t), θb(t)) does not satisfy Case 1.
2. C := DP
dLt(θb)

dθb
= nb(t)(αb f 1

b (θb)− (1−αb) f 0
b (θb))− na(t)

αb f 1
b (θb)+(1−αb) f 0

b (θb)

1+
αa f 1

a (η(θb))

(1−αa) f 0
a (η(θb))

= (nb(t)− na(t))αb f 1
b (θb)−

(nb(t) + na(t))(1−αb) f 0
b (θb), where the last equality holds since f 1

a (η(θb)) = 0 over [a0,a1]. Since
dLt(θb)

dθb
|θb=b1 < 0, based on the value of na(t)

nb(t) ,

• If ∃θ′b such that dLt(θb)
dθb
|θb=θ′b

≥ 0, then one-shot decision θb(t) satisfies na(t)
nb(t) = 1− 2

αb
1−αb

f 1
b (θb(t))

f 0
b (θb(t))

+1

and is unique.
• If dLt(θb)

dθb
< 0,∀θb ∈ [b1, θmax

b ], then θb(t) > θmax
b and (θa(t), θb(t)) does not satisfy Case 1.

Case 2: θa(t) ∈ [a1,a0], θb(t) ∈ [b1,b
0
]

Let θmax
b = min{b

0
, (ηC)−1(a0)} and θmin

b = max{b1, (ηC)−1(a1)} be the maximum and min-
imum value that θb can take respectively. Lt(θb) = nb(t)

∫ θb

b1 αb f 1
b (x) − (1 − αb) f 0

b (x)dx +

na(t)
∫ ηC(θb)

a1 αa f 1
a (x)− (1−αa) f 0

a (x)dx + nb(t)
∫ b

0

b1 (1−αb) f 0
b (x)dx + na(t)

∫ a0

a1 (1−αa) f 0
a (x)dx

Taking derivative w.r.t. θb gives

dLt(θb)
dθb

= nb(t)(αb f 1
b (θb)− (1−αb) f 0

b (θb)) + na(t)(αa f 1
a (ηC(θb))− (1−αa) f 0

a (ηC(θb)))
dηC(θb)

dθb
.

1. C := EqOpt
dLt(θb)

dθb
= ((αa

f 1
a (η(θb))

f 0
a (η(θb))

−(1−αa))na(t)−(1−αb)nb(t)) f 0
b (θb)+αb f 1

b (θb)nb(t). Since dLt(θb)
dθb
|θb=θmax

b
>

0, based on na(t)
nb(t) ,

• If ∃θ′b such that dLt(θb)
dθb
|θb=θ′b

≤ 0, then one-shot decision θb(t) satisfies na(t)
nb(t) =

1− αb
1−αb

f 1
b (θb(t))

f 0
b (θb(t))

αa
1−αa

f 1
a (η(θb(t)))

f 0
a (η(θb(t)))

−1

1−αb
1−αa

and is unique.
• If dLt(θb)

dθb
> 0,∀θb ∈ [θmin

b , θmax
b ], then θb(t) < θmin

b and (θa(t), θb(t)) does not satisfy Case 2.
2. C := DP
dLt(θb)

dθb
= nb(t)(αb f 1

b (θb) − (1 − αb) f 0
b (θb)) + na(t)((1 − αb) f 0

b (θb) +

αb f 1
b (θb))αa f 1

a (η(θb))−(1−αa) f 0
a (η(θb))

αa f 1
a (η(θb))+(1−αa) f 0

a (η(θb))
.

• If ∃θb(t) such that dLt(θb)
dθb
|θb=θb(t) = 0, then it satisfies na(t)

nb(t) = (1− 2
αb

1−αb

f 1
b (θb(t))

f 0
b (θb(t))

+1
)( 2

1− αa f 1
a (η(θb(t)))

(1−αa) f 0
a (η(θb(t)))

−

1) and is unique.
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• If dLt(θb)
dθb

> 0,∀θb ∈ [θmin
b , θmax

b ], then θb(t) < θmin
b and (θa(t), θb(t)) does not satisfy Case 2.

• If dLt(θb)
dθb

< 0,∀θb ∈ [θmin
b , θmax

b ], then θb(t) > θmax
b and (θa(t), θb(t)) does not satisfy Case 2.

Case 3: θa(t) ∈ [a1,a0], θb(t) ∈ [b
0
,b

1
]

Express Lt(θa, θb) as function of θa, the analysis will be similar to Case 1.
Let θmin

a = max{a1,ηC(b
0
)} be the minimum value θa can take.

Lt(θa) = na(t)
∫ θa

a1 αa f 1
a (x) − (1 − αa) f 0

a (x)dx + nb(t)
∫ (ηC)−1(θa)

b1 αb f 1
b (x)dx + na(t)

∫ a0

a1 (1 −

αa) f 0
a (x)dx

Taking derivative w.r.t. θa gives

dLt(θa)
dθa

= na(t)(αa f 1
a (θa)− (1−αa) f 0

a (θa)) + nb(t)αb f 1
b ((ηC)−1(θa))

d(ηC)−1(θa)
dθa

,

where C := DP.
dLt(θa)

dθa
= na(t)(αa f 1

a (θa) − (1 − αa) f 0
a (θa)) + nb(t)αa f 1

a (θa)+(1−αa) f 0
a (θa)

1+
(1−αb) f 0

b (η−1(θa))

(1−αb) f 0
b (η−1(θa))

= na(t)(αa f 1
a (θa) − (1 −

αa) f 0
a (θa)) + nb(t)(αa f 1

a (θa) + (1−αa) f 0
a (θa)), where the last equality holds since f 0

b (η−1(θa)) = 0

over [b
0
,b

1
]. Since dLt(θb)

dθb
|θb=a0 > 0, based on the value of na(t)

nb(t) ,

• If ∃θ′a such that dLt(θa)
dθa
|θa=θ′a ≤ 0, then one-shot decision θa(t) satisfies na(t)

nb(t) = 2

1− αa f 1
a (θa(t))

(1−αa) f 0
a (θa(t))

−1

and is unique.
• If dLt(θa)

dθa
> 0,∀θa ∈ [b1, θmin

a ], then θa(t) < θmin
a and (θa(t), θb(t)) does not satisfy Case 3.

Now consider the case when C := Simple, where θa(t) = θb(t) = θ(t). Since δa > δb, suppose
that both δa, δb ∈ Ta∩Tb and according to Lemma 6, there could be only one case: θ(t) ∈ [a1,b

0
].

Taking derivative w.r.t. θ gives

dLt(θ)
dθ

= nb(t)(αb f 1
b (θ)− (1−αb) f 0

b (θ)) + na(t)(αa f 1
a (θ)− (1−αa) f 0

a (θ)).

dLt(θ)
dθ is increasing from negative to positive over [δb, δa], ∃θ(t) such that dLt(θ)

dθ |θ=θ(t) = 0, and it

satisfies na(t)
nb(t) =

αb f 1
b (θ(t))−(1−αb) f 0

b (θ(t))

(1−αa) f 0
a (θ(t))−αa f 1

a (θ(t))
.

By Lemma 6, θa(t) ∈ [ηC(δb), δa], θb(t) ∈ [δb, (ηC)−1(δa)] hold. Under Assumption 7, αb f 1
b (θb) ≥

(1− αb) f 0
b (θb) for θb ∈ [δb,b

0
], αa f 1

a (θa) ≤ (1− αa) f 0
a (θa) for θa ∈ [a1, δa]. Moreover, f 1

s (x) is
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increasing and f 0
s (x) is decreasing over Ts. According to Lemma 16, for each case, function

ΨC(θa(t), θb(t)) is increasing in θa(t) and θb(t).

C.6 Proof of Theorem 15

Some notations are simplified by removing subscript t as mentioned in Appendix C.3.
Note that fs,t(x) = fs(x) is fixed. Consider two one-shot problems under the same distributions

at two consecutive time steps with group representation disparity ña
ñb

and n̂a
n̂b

respectively. Let (̃θa, θ̃b)
and (̂θa, θ̂b) be the corresponding solutions.

According to Lemma 6, θ̃a, θ̂a ∈ [ηC(δb), δa], θ̃b, θ̂b ∈ [δb, (ηC)−1(δa)] hold. Suppose ña(t)
ñb(t) >

n̂a
n̂b

.
By Theorem 14, it implies that θ̃a > θ̂a, θ̃b > θ̂b.

Consider the dynamics with λs(θs) = ν(Ls(θs)), since Ls(θs) is decreasing over [s0, δs] and
increasing over [δs, s1], the larger one-shot decisions θa, θb would result in the larger retention
rate λa(θa) and the smaller λb(θb) as ν(·) is strictly decreasing. Therefore, λa(̃θa) > λa(̂θa) and
λb(̃θb) < λb(̂θb). Hence, Monotonicity condition is satisfied.

Consider the dynamics with λs(θs) = w(Ds(θs)) where Ds(θs) =
∫ ∞
θs
αs f 1

s (x)− (1−αs) f 0
s (x)dx.

The following holds for Ga and Gb:

Da(θa) =

∫ ∞

δa

αa f 1
a (x)− (1−αa) f 0

a (x)dx +

∫ δa

θa

αa f 1
a (x)− (1−αa) f 0

a (x)dx

Db(θb) =

∫ ∞

δb

g1
b f 1

b (x)− (1−αb) f 0
b (x)dx−

∫ θb

δb

g1
b f 1

b (x)− (1−αb) f 0
b (x)dx

Since αs f 1
a (x) ≤ (1−αs) f 0

a (x) for x ≤ δa and g1
b f 1

b (x) ≥ (1−αb) f 0
b (x) for x ≥ δb, the larger θa, θb

will thus result in the larger λa(θa) and smaller λb(θb) as w(·) is strictly increasing. Therefore,
λa(̃θa) > λa(̂θa) and λb(̃θb) < λb(̂θb). Hence, Monotonicity condition is satisfied.

Combine with Theorem 12, na(t)
na(t) changes monotonically. By Theorem 14, the corresponding

one-shot fair decision (θa(t), θb(t)) also converges monotonically.
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C.7 Proof of Theorem 16

C.7.1 Lemmas

To begin, we first introduce some lemmas for two cases. Lemma 17 and 19 show that under the
same group representation na, nb, the impact of reshaping distributions on the resulting one-shot
decisions. Lemma 18 and 20 demonstrate a sufficient condition on feature distributions and one-shot
decisions of two problems such that their expected losses satisfy certain conditions. The proof of
these lemmas are presented in Appendix C.8.

Case (i): fs,t(x) = αs,t f 1
s (x) + (1−αs,t) f 0

s (x):
Fraction of subgroup Gy

s over Gs changes according to change of their own perceived loss Ly
s,

i.e., for i ∈ {0,1} such that Li
s,t(θs(t)) < Li

s,t−1(θs(t−1)), αs,t > αs,t−1 if i = 1 and αs,t < αs,t−1 if i = 0.

Lemma 17. Let (̂θa, θ̂b), (̃θa, θ̃b) be two pairs of decisions under any of EqOpt,DP,Simple

fairness criteria such that Ψ̂C (̂θa, θ̂b) = Ψ̃C (̃θa, θ̃b), where functions Ψ̂C , Ψ̃C have the form given

in Table 4.1 and are defined under feature distributions f̂s(x) = α̂s f 1
s (x) + (1− α̂s) f 0

s (x), f̃s(x) =

α̃s f 1
s (x) + (1− α̃s) f 0

s (x) respectively ∀s ∈ {a,b}. If α̂s < α̃s, then θ̂s > θ̃s will hold ∀s ∈ {a,b}.

Lemma 18. Consider two one-shot problems defined in (4.1) with objectives ÕOO(θa, θb; ña, ñb) and

ÔOO(θa, θb; n̂a, n̂b), where ÕOO is defined over distributions f̃s(x) = (1− α̃s) f 0
s (x) + α̃s f 1

s (x) and ÔOO is

defined over distributions f̂s(x) = (1− α̂s) f 0
s (x) + α̂s f 1

s (x), s ∈ {a,b}. Let (̃θa, θ̃b), (̂θa, θ̂b) be the

corresponding one-shot decisions under any of Simple, EqOpt or DP fairness criteria. For any

α̂, α̃s) such that α̂s < α̃s, ∀s ∈ {a,b}, if θ̂a > θ̃a and θ̂b > θ̃b, then L̂a(̂θa) < L̃a(̃θa) and L̂b(̂θb) > L̃b(̃θb)
can be satisfied under the following condition:

∣∣∣∣∆gs(L̃0
s (̃θs)− L̃1

s (̃θs))| < |
∫ θ̂s

θ̃s

(1− α̂s) f 0
s (x)− α̂s f 1

s (x)dx
∣∣∣∣, ∀s ∈ {a,b} (C.3)

where ∆gs = |̂αs− α̃s|.

Note that Condition (C.3) can be satisfied when: (1) ∆gs is sufficiently small; and (2) the
difference in the decision θ̂s− θ̃s is sufficiently large, which can be achieved if n̂s and ñs are quite
different.

Case (ii): fs,t(x) = αs f 1
s,t(x) + (1−αs) f 0

s,t(x)
Suppose L1

s,t(θs(t)) > L1
s,t−1(θs(t − 1)), i.e., G1

s is less and less favored by the decision over
time, then users from G1

s will make additional effort to improve their features so that f 1
s,t(x) will
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skew toward the direction of higher feature value, i.e., f 1
s,t+1(x) < f 1

s,t(x) for x with smaller value
(x ∈ Ts) while G0

s is assumed to be unaffected, i.e., f 0
s,t+1(x) = f 0

s,t(x). Similar statements hold when
θs(t) < θs(t−1) and G0

s is less and less favored. Moreover, assume that Assumption 7 holds for any
reshaped distributions and the support of f 1

s,t(x) and f 0
s,t(x) do not change over time.

∀t, let f 0
s,t(x) and f 1

s,t(x) overlap over Ts := [s1, s0].

Lemma 19. Let (̂θa, θ̂b), (̃θa, θ̃b) be two pairs of decisions under any of EqOpt,DP,Simple

fairness criteria such that Ψ̂C (̂θa, θ̂b) = Ψ̃C (̃θa, θ̃b), where functions Ψ̂C , Ψ̃C have the form given

in Table 4.1 and are defined under feature distributions f̂s(x) = αs f̂ 1
s (x) + (1−αs) f̂ 0

s (x), f̃s(x) =

αs f̃ 1
s (x) + (1−αs) f̃ 0

s (x) respectively ∀s ∈ {a,b}. If f̂ 0
s (x) = f̃ 0

s (x) and f̂ 1
s (x) < f̃ 1

s (x), ∀x ∈ Ts, then

θ̂s > θ̃s will hold ∀s ∈ {a,b}.

Lemma 20. Consider two one-shot problems defined in (4.1) with objectives ÕOO(θa, θb; ña, ñb) and

ÔOO(θa, θb; n̂a, n̂b), where ÕOO is defined over distributions f̃s(x) = (1−αs) f̃ 0
s (x) +αs f̃ 1

s (x) and ÔOO is

defined over distributions f̂s(x) = (1−αs) f̂ 0
s (x) +αs f̂ 1

s (x), s ∈ {a,b}. Let (̃θa, θ̃b), (̂θa, θ̂b) be the

corresponding one-shot decisions under any of Simple, EqOpt or DP fairness criteria. For any

distributions f̃ 1
s , f̂ 1

s increasing over Ts and f̃ 0
s , f̂ 0

s decreasing over Ts such that f̂ 1
s (x) < f̃ 1

s (x) over

Ts and f̂ 0
s (x) = f̃ 0

s (x) = f 0
s (x),∀x, ∀s ∈ {a,b}. if θ̂a > θ̃a and θ̂b > θ̃b, then L̂a(̂θa) < L̃a(̃θa) holds.

Moreover, L̂b(̂θb) > L̃b(̃θb) can be satisfied under the following condition:

∆ f 1
b αb(max{̃θb, δ̂b}−b1) <

∫ θ̂b

max{̃θb ,̂δb}

αb f̂ 1
b (x)− (1−αb) f̂ 0

b (x)dx (C.4)

where ∆ f 1
b = maxx∈[b1,max{̃θb ,̂δb}]

| f̂ 1
b (x)− f̃ 1

b (x)| and δ̂b is defined such that g0
b f̂ 0

b (̂δb) = g1
b f̂ 1

b (̂δb).

Note that Condition (C.4) can be satisfied when: (1) ∆ f 1
b is sufficiently small, which makes δ̂b

close to δ̃b and θ̃b = max{̃θb, δ̂b} is more likely to hold; and (2) the difference in the decision θ̂b− θ̃b

is sufficiently large, which can be achieved if n̂s and ñs are quite different.

C.7.2 Sufficient conditions

Below we formally state the sufficient condition under which Theorem 16 can hold.

Condition 3. [Sufficient condition for exacerbation] Condition 3 is satisfied if the following holds:
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• under Case (i): Condition (C.3) is satisfied for objectives OOOt and OOOt+1, ∀t ≥ 2, i.e.,

|∆gs,t+1(L0
s,t(θs(t))−L1

s,t(θs(t)))| < |
∫ θs(t+1)

θs(t)
(1−αs,t+1) f 0

s (x)−αs,t+1 f 1
s (x)dx|, s ∈ {a,b}

with ∆gs,t+1 = |αs,t+1−αs,t|.

• under Case (ii): Condition (C.4) is satisfied for objectives OOOt and OOOt+1, ∀t ≥ 2, i.e.,

∆ f 1
b,t+1αb(max{θb(t), δb,t+1}−b1) <

∫ θb(t+1)

max{θb(t),δb,t+1}

αb f 1
b,t+1(x)− (1−αb) f 0

b,t+1(x)dx

with ∆ f 1
b,t+1 = maxx∈[b1,max{θb(t),δb,t+1}] | f

1
b,t+1(x)− f 1

b,t(x)|.

Condition 4. [Sufficient condition for acceleration of exacerbation]

Let OOOo
t := OOOo

t (θa, θb;no
a(t),no

b(t)) be the objective of the one-shot problem at time t for the case

when distributions are fixed over time. Condition 4 is satisfied if the following holds:

• under Case (i): Condition (C.3) is satisfied for objectives OOOt and OOOo
t , ∀t ≥ 2, i.e.,

|∆gs,t(L0
s,t(θ

o
s (t))−L1

s,t(θ
o
s (t)))| < |

∫ θs(t)

θo
s (t)

(1−αs,t) f 0
s (x)−αs,t f 1

s (x)dx|, s ∈ {a,b}

with ∆gs,t = αs,t −αs,1.

• under Case (ii): Condition (C.4) is satisfied for objectives OOOt and OOOo
t , ∀t ≥ 2, i.e.,

∆ f 1
b,tαb(max{θo

b(t), δb,t}−b1) <
∫ θb(t)

max{θo
b(t),δb,t}

αb f 1
b,t(x)− (1−αb) f 0

b,t(x)dx

with ∆ f 1
b,t = maxx∈[b1,max{θo

b(t),δb,t}] | f
1
b,t(x)− f 1

b,1(x)|.

Note that Condition 3 is likely to be satisfied when changing the decision from θs(t) to θs(t + 1)
results in: (i) a minor change of fs,t+1(x) from fs,t(x); or/and (ii) a significant change of representation
disparity na(t+1)

nb(t+1) from na(t)
nb(t) so that |θs(t + 1)− θs(t)| is sufficiently large.

Condition 4 is likely to be satisfied if for any time step, (i) the change of fs,t(x) is minor as
compared to the fixed distribution, i.e., fs,1(x) at time t = 1; or/and (ii) the resulting decisions at
same time under two schemes are quite different, i.e., |θo

s (t)− θs(t)| is sufficiently large.
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In other words, both requires that fs,t(x) is relatively insensitive to the change of one-shot
decisions, and this applies to scenarios where the impact of reshaping distributions is considered as
a slow process, e.g., change of credit score takes time and is a slow process.

C.7.3 Proof of main theorem

If fs,t(x) = fs(x) is fixed ∀t, then the relationship between no
a(t)

no
b(t) and one-shot solutions (θo

a(t), θo
b(t))

follows no
a(t)

no
b(t) = ΨC,1(θo

a(t), θo
b(t)),∀t. If fs,t(x) varies over time, then na(t)

nb(t) = ΨC,t(θa(t), θb(t)),∀t. We
consider that distributions start to change after individuals feel the change of perceived decisions, i.e.,
fs,t(x) begins to change at time t = 3. In the following, ∀s ∈ {a,b}, θo

s (t) = θs(t), λo
s,t(θ

o
s (t)) = λs,t(θs(t))

for t = 1,2 and no
a(t)

no
b(t) =

na(t)
nb(t) for t = 1,2,3.

Start from t = 1, if (θa(1), θb(1)) satisfies λa,1(θa(1)) > λb,1(θb(1)), then na(2)
nb(2) >

na(1)
nb(1) and θs(2) >

θs(1) holds ∀s ∈ {a,b}, implying λa,2(θa(2)) > λa,1(θa(1)) > λb,1(θb(1)) > λb,2(θb(2)) (OOO1 and OOO2

satisfy monotonicity condition) and na(3)
nb(3) >

na(2)
nb(2) . Moreover, the change of decisions begins to

reshape the feature distributions in the next time step.
Consider two ways of reshaping distributions: Case (i) and Case (ii). For both cases, show that

as long as the change of distribution from fs,t−1(x) to fs,t(x) is relatively small w.r.t. the change of
decision from θs(t−2) to θs(t−1) (formally stated in Condition 3 and Condition 4), the following
can hold for any time step t ≥ 3: (i) OOOt and OOOt+1 satisfy monotonicity condition: λa,t+1(θa(t + 1)) >
λa,t(θa(t)), λb,t(θb(t)) > λb,t+1(θb(t + 1)) hold when na(t+1)

nb(t+1) >
na(t)
nb(t) ; (ii) group representation disparity

changes faster than case when distributions are fixed, i.e., na(t)
nb(t) ≥

no
a(t)

no
b(t) ,∀t.

Since θs(2) > θs(1), within the same group Gs, subgroup G1
s (resp. G0

s ) experiences the higher
(resp. lower) loss at time t = 2 than t = 1. Consider two types of change ∀s ∈ {a,b}:
• Case (i): αs,3 < αs,2 = αs,1.
• Case (ii): f 0

s,3(x) = f 0
s,2(x) = f 0

s,1(x),∀x and f 1
s,3(x) < f 1

s,2(x) = f 1
s,1(x),∀x ∈ Ts.

Prove the following by induction under Condition 3 and 4 (on the sensitivity of fs,t(x) w.r.t. the
change of decisions): For t > 3, na(t+1)

nb(t+1) >
no

a(t+1)
no

b(t+1) and na(t+1)
nb(t+1) >

na(t)
nb(t) hold, and ∀s ∈ {a,b}:

• Case (i): αs,t+1 < αs,t < αs,1 is satisfied.
• Case (ii): f 0

s,t+1(x) = f 0
s,t(x) = f 0

s,1(x),∀x and f 1
s,t+1(x) < f 1

s,t(x) < f 1
s,1(x),∀x ∈ Ts.

Base case:
ΨC,t is defined under feature distributions fs,t(x) = αs,t f 1

s,t(x)+ (1−αs,t) f 0
s,t(x), ∀s ∈ {a,b}. Define

a pair (θ̃a, θ̃b) such that the following holds:
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na(3)
nb(3) = ΨC,1(θo

a(3), θo
b(3)) = ΨC,3(θa(3), θb(3)) = ΨC,2(θ̃a, θ̃b) > ΨC,2(θa(2), θb(2)) =

na(2)
nb(2) .

Then, we have ∀s ∈ {a,b}:
• Case (i): As αs,3 < α

1
s,2 = αs,1, by Lemma 17, θs(3) > θo

s (3) = θ̃s holds.
• Case (ii): As f 0

s,3(x) = f 0
s,2(x) = f 0

s,1(x),∀x and f 1
s,3(x) < f 1

s,2(x) < f 1
s,1(x),∀x ∈ Ts, by Lemma

19, θs(3) > θo
s (3) = θ̃s holds.

By Theorem 14, θ̃s > θs(2) holds. It implies that θs(3) > θo
s (3) and θs(3) > θs(2).

Consider dynamics with λs,t(θs(t)) = ν(Ls,t(θs(t))). The following statements hold:
(1) Under Condition 3, La,3(θa(3)) < La,2(θa(2)) and Lb,3(θb(3)) > Lb,2(θb(2)) hold, implying

λa,3(θa(3)) > λa,2(θa(2)) > λb,2(θb(2)) > λb,3(θb(3)) and na(4)
nb(4) >

na(3)
nb(3) .

(2) Under Condition 4, La,3(θa(3)) < La,3(θo
a(3)) and Lb,3(θb(3)) > Lb,3(θo

b(3)) hold, implying
λa,3(θa(3)) > λo

a,3(θo
a(3)) > λo

b,3(θo
b(3)) > λb,3(θb(3)) and na(4)

nb(4) >
no

a(4)
no

b(4) .

(3) G1
s (resp. G0

s ) experiences the higher (resp. lower) loss at t = 3 than t = 2, i.e., L1
s,3(θs(3)) >

L1
s,2(θs(2)) and L0

s,3(θs(3)) < L0
s,2(θs(2)),

• Case (i): αs,4 < αs,3 < αs,1 holds.
• Case (ii): f 0

s,4(x) = f 0
s,3(x) = f 0

s,1(x),∀x and f 1
s,4(x) < f 1

s,3(x) < f 1
s,1(x),∀x ∈ Ts hold.

Induction step:
Suppose at time t > 3, na(t+1)

nb(t+1) >
no

a(t+1)
no

b(t+1) and na(t+1)
nb(t+1) >

na(t)
nb(t) hold, and ∀s ∈ {a,b}:

• Case (i): αs,t+1 < αs,t < αs,1 is satisfied.
• Case (ii): f 0

s,t+1(x) = f 0
s,t(x) = f 0

s,1(x),∀x and f 1
s,t+1(x) < f 1

s,t(x) < f 1
s,1(x),∀x ∈ Ts.

Then consider time step t + 1.
Define pairs (θ̃a, θ̃b) and (θ̂a, θ̂b) such that the following holds:

na(t + 1)
nb(t + 1)

= ΨC,t+1(θa(t + 1), θb(t + 1)) >


no

a(t+1)
no

b(t+1) = ΨC,1(θo
a(t + 1), θo

b(t + 1)) = ΨC,t+1(θ̃a, θ̃b)
na(t)
nb(t) = ΨC,t(θa(t), θb(t)) = ΨC,t+1(θ̂a, θ̂b)

According to the hypothesis, Under Case (i), θ̃s > θ
o
s (t + 1) and θ̂s > θs(t) hold by Lemma 17. Under

Case (ii), θ̃s > θ
o
s(t + 1) and θ̂s > θs(t) hold by Lemma 19. By Theorem 14, θs(t + 1) > θ̃s and

θs(t + 1) > θ̂s hold. It implies that θs(t + 1) > θo
s (t + 1) and θs(t + 1) > θs(t).

(1) Under Condition 3, La,t+1(θa(t + 1)) < La,t(θa(t)) and Lb,t+1(θb(t + 1)) > Lb,t(θb(t))hold, im-
plying λa,t+1(θa(t + 1)) > λa,t(θa(t)) > λb,t(θb(t)) > λb,t+1(θb(t + 1)) and na(t+1)

nb(t+1) >
na(t)
nb(t) : OOOt and OOOt+1

satisfy monotonicity condition and representation disparity get exacerbated.
(2) Under Condition 4, La,t+1(θa(t + 1)) < La,t+1(θo

a(t + 1)) and Lb,t+1(θb(t + 1)) > Lb,t+1(θo
b(t + 1))
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hold, implying λa,t+1(θa(t + 1)) > λo
a,t+1(θo

a(t + 1)) > λo
b,t+1(θo

b(t + 1)) > λb,t+1(θb(t + 1)) and thus
na(t+1)
nb(t+1) >

no
a(t+1)

no
b(t+1) : the discrepancy between retention rates of two demographic groups is larger at

each time compared to the case when distributions are fixed, and if the disparity get exacerbated,
this exacerbation is accelerated under the reshaping.

(3) G1
s (resp. G0

s ) experiences the higher (resp. lower) loss at t + 1 than t, i.e., L1
s,t+1(θs(t + 1)) >

L1
s,t(θs(t)) and L0

s,t+1(θs(t + 1)) < L0
s,t(θs(t)). Therefore,

• Case (i): αs,t+2 < αs,t+1 < αs,1 holds.
• Case (ii): f 0

s,t+2(x) = f 0
s,t+1(x) = f 0

s,1(x),∀x and f 1
s,t+2(x) < f 1

s,t+1(x) < f 1
s,1(x),∀x ∈ Ts hold.

Proof is completed.
The case if λa,1(θa(1)) < λb,1(θb(1)) can be proved similarly and is omitted.

C.8 Proof of Lemmas for Theorem 16

C.8.1 Proof of Lemma 17

f 0
s (x) and f 1

s (x) overlap over Ts := [s1, s0].
1. C := DP

To satisfy Ψ̂DP(̂θa, θ̂b) = Ψ̃DP(̃θa, θ̃b), α̂s f 1
s (̂θs)

(1−α̂s) f 0
s (̂θs)

=
α̃s f 1

s (̃θs)
(1−α̃s) f 0

s (̃θs)
should hold. Under Assumption 7,

both α̂s f 1
s (·)

(1−α̂s) f 0
s (·)

and α̃s f 1
s (·)

(1−α̃s) f 0
s (·)

are strictly increasing over Ts. Since ∀s ∈ {a,b}, there is α̂s f 1
s (θs)

(1−α̂s) f 0
s (θs)

<

α̃s f 1
s (θs)

(1−α̃s) f 0
s (θs)

, ∀θs ∈ Ts. For all three possibilities in Table 4.1, θ̂s > θ̃s holds ∀s ∈ {a,b}.
2. C := EqOpt

Since L̃0
a(θa) = L̃0

b(θb) and L̂0
a(θa) = L̂0

b(θb) always hold for any (θa, θb) satisfying EqOpt criterion,
when change of α̂s (or α̃s) is determined by θs only via L̂0

s(θs) (or L̃0
s(θs)), both α̂b

α̂a
= 1 and α̃b

α̃a
= 1 are

satisfied. To satisfy Ψ̂EqOpt(̂θa, θ̂b) = Ψ̃EqOpt(̃θa, θ̃b), α̂s f 1
s (̂θs)

(1−α̂s) f 0
s (̂θs)

=
α̃s f 1

s (̃θs)
(1−α̃s) f 0

s (̃θs)
should hold, which is

same as the condition that should be satisfied in case when C := DP. Rest of the proof is thus same
as DP case and is omitted.

3. C := Simple

Simple fairness criterion requires that θ̂a = θ̂b = θ̂ and θ̃a = θ̃b = θ̃. In order to satisfy

Ψ̂Simple(̂θa, θ̂b) = Ψ̃Simple(̃θa, θ̃b),
α̂b f 1

b (̂θ)−(1−α̂b) f 0
b (̂θ)

(1−α̂a) f 0
a (̂θ)−α̂a f 1

a (̂θ)
=

α̃b f 1
b (̃θ)−(1−α̃b) f 0

b (̃θ)

(1−α̃a) f 0
a (̃θ)−α̃a f 1

a (̃θ)
should hold. Under As-

sumption 7, both
α̂b f 1

b (·)−(1−α̂b) f 0
b (·)

(1−α̂a) f 0
a (·)−α̂a f 1

a (·)
and

α̃b f 1
b (·)−(1−α̃b) f 0

b (·)

(1−α̃a) f 0
a (·)−α̃a f 1

a (·)
are strictly increasing over Ts. Since
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∀s ∈ {a,b}, there is
α̂b f 1

b (θ)−(1−α̂b) f 0
b (θ)

(1−α̂a) f 0
a (θ)−α̂a f 1

a (θ)
<

α̃b f 1
b (θ)−(1−α̃b) f 0

b (θ)

(1−α̃a) f 0
a (θ)−α̃a f 1

a (θ)
, ∀θ ∈ Ta∩Tb, implying that θ̂ > θ̃.

C.8.2 Proof of Lemma 18

Define ∆L j
s = |L̂ j

s(̂θs)− L̃ j
s(̃θs)|, j ∈ {0,1}. Rewrite α̂s = α̃s−∆gs. For s ∈ {a,b}, θ̂s > θ̃s holds, which

implies that L̂1
s (̂θs) = L̃1

s (̃θs) +∆L1
s and L̂0

s (̂θs) = L̃0
s (̃θs)−∆L0

s . Therefore,

L̂s(̂θs)− L̃s(̃θs) = ∆gs(L̃0
s (̃θs)− L̃1

s (̃θs))− ((1− α̂s)∆L0
s − α̂s∆L1

s), s ∈ {a,b}

since

∆L1
s =

∫ θ̂s

θ̃s

f 1
s (x)dx; ∆L0

s =

∫ θ̂s

θ̃s

f 0
s (x)dx

Define δ̂s such that (1 − α̂s) f 0
s (̂δs) = α̂s f 1

s (̂δs), then (1 − α̂a) f 0
a (x) > α̂a f 1

a (x) when x < δ̂a and
(1− α̂b) f 0

b (x) < α̂b f 1
b (x) when x > δ̂b. By Lemma 6, θ̂a < δ̂a and θ̂b > δ̂b hold, implying

(1− α̂s)∆L0
s − α̂s∆L1

s =

∫ θ̂s

θ̃s

(1− α̂s) f 0
s (x)− α̂s f 1

s (x)dx

> 0, s = a

< 0, s = b

If |∆gs(L̃0
s (̃θs)− L̃1

s (̃θs))| < |
∫ θ̂s

θ̃s
(1− α̂s) f 0

s (x)− α̂s f 1
s (x)dx| holds, then the sign of L̂s(̂θs)− L̃s(̃θs) is

determined by the sign of α̂s∆L1
s − (1− α̂s)∆L0

s . We have L̂a(̂θa) < L̃a(̃θa) and L̂b(̂θb) > L̃b(̃θb).

C.8.3 Proof of Lemma 19

1. C := DP or C := EqOpt

To satisfy Ψ̂DP(̂θa, θ̂b) = Ψ̃DP(̃θa, θ̃b) or Ψ̂EqOpt(̂θa, θ̂b) = Ψ̃EqOpt(̃θa, θ̃b), αs f̃ 1
s (̃θs)

(1−αs) f̃ 0
s (̃θs)

=

αs f̂ 1
s (̂θs)

(1−αs) f̂ 0
s (̂θs)

<
αs f̃ 1

s (̂θs)
(1−αs) f̃ 0

s (̂θs)
should hold. Under Assumption 7, αs f̃ 1

s (·)
(1−αs) f̃ 0

s (·)
is strictly increasing over Ts.

θ̂s > θ̃s has to be satisfied.
2. C := Simple

Simple fairness criterion requires that θ̂a = θ̂b = θ̂ and θ̃a = θ̃b = θ̃. In order to satisfy

Ψ̂Simple(̂θa, θ̂b) = Ψ̃Simple(̃θa, θ̃b),
g1

b f̃ 1
b (̃θ)−g0

b f̃ 0
b (̃θ)

g0
a f̃ 0

a (̃θ)−g1
a f̃ 1

a (̃θ)
=

g1
b f̂ 1

b (̂θ)−g0
b f̂ 0

b (̂θ)

g0
a f̂ 0

a (̂θ)−g1
a f̂ 1

a (̂θ)
<

g1
b f̃ 1

b (̂θ)−g0
b f̃ 0

b (̂θ)

g0
a f̃ 0

a (̂θ)−g1
a f̃ 1

a (̂θ)
should hold. Un-
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der Assumption 7,
g1

b f̃ 1
b (·)−g0

b f̃ 0
b (·)

g0
a f̃ 0

a (·)−g1
a f̃ 1

a (·)
is strictly increasing over Ts. For θ̂, θ̃ ∈ Ta ∩Tb, θ̂ > θ̃ has to be

satisfied.

C.8.4 Proof of Lemma 20

Define δ̂s such that (1−αs) f̂ 0
s (̂δs) = αs f̂ 1

s (̂δs). Then, (1−αa) f̂ 0
a (x) > α1

a f̂ 1
a (x) when x < δ̂a and

(1−αb) f̂ 0
b (x) < αb f̂ 1

b (x) when x > δ̂b.
Since θ̂s > θ̃s, we have

L̂0
s (̂θs)− L̃0

s (̃θs) = −

∫ θ̂s

θ̃s

f̃ 0
s (x)dx = −

∫ θ̂s

θ̃s

f̂ 0
s (x)dx

L̂1
s (̂θs)− L̃1

s (̃θs) =

∫ θ̂s

θ̃s

f̂ 1
s (x)dx−

∫ θ̃s

s1
( f̃ 1

s (x)− f̂ 1
s (x))dx

Therefore,

L̂s(̂θs)− L̃s(̃θs) =

∫ θ̂s

θ̃s

αs f̂ 1
s (x)− (1−αs) f̂ 0

s (x)dx−αs

∫ θ̃s

s1
( f̃ 1

s (x)− f̂ 1
s (x))dx

since θ̃a < θ̂a < δ̂a,
∫ θ̂a

θ̃a
αa f̂ 1

a (x)−g0
a f̂ 0

a (x)dx < 0 holds. Since f̃ 1
a (x) > f̂ 1

a (x) for x ∈ Ta, we have

αa
∫ θ̃a

a1 ( f̃ 1
a (x)− f̂ 1

a (x))dx > 0. Therefore, L̂a(̂θa) < L̃a(̃θa).

When s = b, there are two possibilities: (i) θ̃b < δ̂b < θ̂b; (ii) δ̂b < θ̃b < θ̂b.
For case (i),

L̂b(̂θb)− L̃b(̃θb) =

∫ θ̂b

δ̂b

αb f̂ 1
b (x)− (1−αb) f̂ 0

b (x)dx︸ ︷︷ ︸
term 1

+

∫ δ̂b

θ̃b

αb f̂ 1
b (x)− (1−αb) f̂ 0

b (x)dx︸ ︷︷ ︸
term 2

+ αb

∫ θ̃b

b1
( f̂ 1

b (x)− f̃ 1
b (x))dx︸ ︷︷ ︸

term 3

Since δ̃b < θ̃b < δ̂b and f̂ 0
b (x) = f̃ 0

b (x), for x ∈ [̃θb, δ̂b], αb f̂ 1
b (x)−αb f̃ 1

b (x)<αb f̂ 1
b (x)−(1−αb) f̂ 0

b (x)< 0,

we have 0 > term 2 + term 3 > αb
∫ δ̂b

b1 ( f̂ 1
b (x)− f̃ 1

b (x))dx.
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Define ∆1 = maxx∈[b1 ,̂δb] | f̂
1
b (x)− f̃ 1

b (x)|. Since term 1 > 0, L̂b(̂θb) > L̃b(̃θb) holds only if the
following condition is satisfied:

∆1αb(̂δb−b1) <
∫ θ̂b

δ̂b

αb f̂ 1
b (x)− (1−αb) f̂ 0

b (x)dx

For case (ii),

L̂b(̂θb)− L̃b(̃θb) =

∫ θ̂b

θ̃b

αb f̂ 1
b (x)− (1−αb) f̂ 0

b (x)dx︸ ︷︷ ︸
term 1

+αb

∫ θ̃b

b1
( f̂ 1

b (x)− f̃ 1
b (x))dx︸ ︷︷ ︸

term 2

Define ∆2 = maxx∈[b1 ,̃θb] | f̂
1
b (x) − f̃ 1

b (x)|. Similar to case (i), L̂b(̂θb) > L̃b(̃θb) holds only if the
following condition is satisfied:

∆2αb(̃θb−b1) <
∫ θ̂b

θ̃b

αb f̂ 1
b (x)− (1−αb) f̂ 0

b (x)dx

Combine two cases, let ∆ f 1
b = maxx∈[b1,max{̃θb ,̂δb}]

| f̂ 1
b (x)− f̃ 1

b (x)|, L̂b(̂θb) > L̃b(̃θb) holds only if the
following condition is satisfied:

∆ f 1
b αb(max{̃θb, δ̂b}−b1) <

∫ θ̂b

max{̃θb ,̂δb}

αb f̂ 1
b (x)− (1−αb) f̂ 0

b (x)dx
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APPENDIX D

Long-Term Impact of Fairness Interventions on
Group Qualification

D.1 Derivations

Qualification profile of a group.

γs,t(x) = PYt |Xt,S (1|x, s) =
1

PXt ,Yt ,S (x,0,s)
PXt ,Yt ,S (x,1,s) + 1

=
1

PXt |Yt ,S (x|0,s)PYt |S (0|s)
PXt |Yt ,S (x|1,s)PYt |S (1|s) + 1

=
1

PXt |Yt ,S (x|0,s)
PXt |Yt ,S (x|1,s) (

1
PYt |S (1|s) −1) + 1

=
1

f 0
s (x)

f 1
s (x)

( 1
αs(t)
−1) + 1

.

Utility of an institute.

U(Dt,Yt) = E[Rt(Dt,Yt)] = naE[Rt(Dt,Yt)|S = a] + nbE[Rt(Dt,Yt)|S = b]
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Under policy πs, we have

E[Rt(Dt,Yt)|S = s] = PDt,Yt |S (1,1|s)u+−PDt,Yt |S (1,0|S = s)u−

=

∫
x

(
PDt,Yt,Xt |S (1,1, x|s)u+−PDt,Yt,Xt |S (1,0, x|s)u−

)
dx

=

∫
x

PXt |S (x|s)
(
PDt |Xt,S (1|x, s)PYt |Xt,S (1|x, s)u+−PDt |Xt |S (1|x, s)PYt |Xt,S (0|x, s)u−

)
dx

=

∫
x

PXt |S (x|s)
(
πs(x)γs,t(x)u+−πs(x)(1−γs,t(x))u−

)
dx

= EXt |S =s[πs(Xt)(γs,t(Xt)(u+ + u−)−u−)].

Therefore,

U(Dt,Yt) = naEXt |S =a[πa(Xt)(γa,t(Xt)(u+ + u−)−u−)]

+nbEXt |S =b[πb(Xt)(γb,t(Xt)(u+ + u−)−u−)]

Dynamics of qualification rate.

αs(t + 1) = PYt+1|S (1|s) =

∫
x

∑
y,a

PYt+1,Yt,Dt,Xt |S (1,y,d, x|s)dx

=

∫
x

∑
y,a

PYt+1|Yt,Dt,Xt,S (1|y,d, x, s)PDt |Xt,S (d|x, s)PXt |Yt,S (x|y, s)PYt |S (y|s)dx

=

∫
x

∑
a

{
PYt+1|Yt,Dt,Xt,S (1|0,d, x, s)PDt |Xt,S (d|x, s)PXt |Yt,S (x|0, s)

}
PYt |S (0|s)dx

+

∫
x

∑
d

{
PYt+1|Yt,Xt,Dt,S (1|1, x,d, s)PDt |Xt,S (d|x, s)PXt |Yt,S (x|1, s)

}
PYt |S (1|s)dx

= EXt |Yt=0,S =s
[
(1−πs,t(Xt))T 00

s +πs,t(Xt)T 01
s

]
(1−αs(t))

+ EXt |Yt=1,S =s
[
(1−πs,t(Xt))T s

10 +πs,t(Xt)T s
11

]
αs(t)

= g0
s(αa(t),αb(t)) · (1−αs(t)) + g1

s(αa(t),αb(t)) ·αs(t)

D.2 Proof that the threshold policies are optimal

In the following proof, we focus on optimal policy at t and omit the subscript t.
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First consider unconstrained optimal policy, noted as πUNs , we have,

πUNs = argmax
πs

EX|S =s[πs(X)(γs(X)(u+ + u−)−u−)]

Therefore, the optimal policy satisfies πUNs (x) = 1(γs(x) ≥ u−
u++u−

). Since γs(x) is monotonically
increasing in x under Assumption 9, πUNs (x) = 1(x ≥ (γs)−1( u−

u++u−
)) is threshold policy where

(γs)−1(·) denotes the inverse function of γs(·).
Now consider optimal fair policy under some fairness constraint C satisfying Assumption 10.

Consider any pair of policies (πa,πb) that satisfies fairness constraint C, and define fairness constant
c = EX∼PC

a
[πa(X)] = EX∼PC

b
[πb(X)] ∈ [0,1]. To show the optimal fair policy is threshold policy, we

will show that there always exists a pair of threshold policies (πd
a,π

d
b) such that EX∼PC

a
[πd

a(X)] =

EX∼PC
b

[πd
b(X)] = c, i.e., the fairness constant is the same as (πa,πb), and the utility of (πd

a,π
d
b) is no

less than the utility attained under (πa,πb).
∀s ∈ {a,b}, let threshold policy πd

s be defined such that πd
s (x) = 1(x ≥ θd

s ) and EX∼PC
s

[πd
s (X)] = c

are satisfied. Such policy must exist and the threshold is given by θd
s = (FC

s )−1(1− c), where
FC

s (θs) =
∫ θs

−∞
PC

s (x)dx is CDF of PC
s and (FC

s )−1(·) is the inverse of it.
Let Rπd

s
(D,Y), Rπs(D,Y) denote the utility attained under policies πd

s , πs respectively. Next we
will show that ∀s ∈ {a,b}, E[Rπd

s
(D,Y) | S = s] ≥ E[Rπs(D,Y) | S = s] holds, i.e.,

EX|S =s[πd
s (X)(γs(X)(u+ + u−)−u−)] ≥ EX|S =s[πs(X)(γs(X)(u+ + u−)−u−)]

Since πd
s (x) = 1(x ≥ θd

s ), we have the followings,

EX|S =s[πd
s (X)(γs(X)(u+ + u−)−u−)] =

∫ ∞
θd

s
(γs(x)(u+ + u−)−u−)PX|S (x|s)dx

EX|S =s[πs(X)(γs(X)(u+ + u−)−u−)] =

∫ ∞
θd

s
(γs(x)(u+ + u−)−u−)PX|S (x|s)dx

+
∫ θd

s
−∞

πs(x)(γs(x)(u+ + u−)−u−)PX|S (x|s)dx

−
∫ ∞
θd

s
(1−πs(x))(γs(x)(u+ + u−)−u−)PX|S (x|s)dx
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Since EX∼PC
s

[πs(X)] = c = EX∼PC
s

[πd
s (X)], we have

∫ ∞

θd
s

(1−πs(x))PC
s (x)dx =

∫ θd
s

−∞

πs(x)PC
s (x)dx (D.1)

Under Assumption 10, PX|S (x|s)
PC

s (x)
is non-decreasing. Since γs(x) = αs

f 1
s (x)

PX|S (x|s) is non-decreasing

and 1−γs(x) = (1−αs)
f 0
s (x)

PX|S (x|s) is non-increasing, we have f 1
s (x)

PX|S (x|s) is non-decreasing and f 0
s (x)

PX|S (x|s) is
non-increasing. Therefore,

(γs(x)(u+ + u−)−u−)
PX|S (x|s)

PC
s (x)

= αs f 1
s (x)

PC
s (x)

u+− (1−αs)
f 0
s (x)

PC
s (x)

u−

= αs f 1
s (x)

PX|S (x|s)
PX|S (x|s)

PC
s (x)

u+− (1−αs)
f 0
s (x)

PX|S (x|s)
PX|S (x|s)

PC
s (x)

u−

is non-decreasing in x. Combine with Eqn. (D.1), we have the followings,

∫ θd
s

−∞

πs(x)(γs(x)(u+ + u−)−u−)PX|S (x|s)dx

≤

∫ θd
s

−∞

πs(x)(γs(θd
s )(u+ + u−)−u−)

PX|S (θd
s |s)

PC
s (θd

s )
PC

s (x)dx

=

∫ ∞

θd
s

(1−πs(x))(γs(θd
s )(u+ + u−)−u−)

PX|S (θd
s |s)

PC
s (θd

s )
PC

s (x)dx

≤

∫ ∞

θd
s

(1−πs(x))(γs(x)(u+ + u−)−u−)
PX|S (x|s)

PC
s (x)

PC
s (x)dx

=

∫ ∞

θd
s

(1−πs(x))(γs(x)(u+ + u−)−u−)PX|S (x|s)dx.

Therefore, the following holds ∀s ∈ {a,b},

EX|S =s[πd
s (X)(γs(X)(u+ + u−)−u−)] ≥ EX|S =s[πs(X)(γs(X)(u+ + u−)−u−)].

It shows that the utility attained under threshold policy (πd
a,π

d
b) is no less than the utility of

(πa,πb), which concludes that the optimal fair policy (πCa ,π
C
b ) must be threshold policies.

Lemma 21 below further shows that the optimal threshold policy θs(αa,αb) is continuous and
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non-increasing in αa and αb.

Lemma 21. Let
(
θa(αa,αb), θb(αa,αb)

)
be a pair of solutions to Eqn. (5.3) under αa,αb. ∀s ∈ {a,b},

if f 1
s (x)

PC
s (x)

and f 0
s (x)

PC
s (x)

are continuous everywhere in x, then θs(αa,αb) is continuous in both αa and αb.

Moreover, under Assumption 10, θs(αa,αb) is non-increasing in αa and αb.

Proof. To prove that a sufficient condition under which θs(αa,αb) is continuous in αa,αb ∈ [0,1] is

that f 1
s (x)

PC
s (x)

and f 0
s (x)

PC
s (x)

are continuous everywhere in x, we define a function fs(θs,αa,αb):

fs(θs,αa,αb) = (γs(θs)−
u−

u+ + u−
)
P(X = θs | S = s)

PC
s (θs)

= [αsu+ f 1
s (θs) +αsu− f 0

s (θs)−u− f 0
s (θs)]

1
PC

s (θs)

= [αs
f 1
s (θs)

PC
s (θs)

u+ + (αs−1)
f 0
s (θs)

PC
s (θs)

u−].

According to Equation (5.3), we have na fa(θa,αa,αb) + nb fb(θb,αa,αb) = 0.
Given any αa and αb, and any constant k, let θ̃i

s be one solution to fs(θs,αa,αb) = k, where
i = 1, ...,N and N is the number of solutions. Firstly, we show that θ̃i

s(αa,αb) is continuous in αa

and αb, for any i ∈ {1, ...,N}. Because f 1
s (x)

PC
s (x)

and f 0
s (x)

PC
s (x)

are continuous, fs(θs,αa,αb) is continuous
in αa, αb, and θs. Therefore, ∀ε > 0, ∃δ > 0 such that for all |αa′ −αa| < δ and |αb′ −αb| < δ =⇒

|θ̃i
s′ − θ̃

i
s| < ε. Thus, θ̃i

s(αa,αb) is continuous in αa and αb, ∀i ∈ {1, ...,N}.
Next, we show that given αa and αb, the solutions to na fa(θa,αa,αb) + nb fb(θb,αa,αb) = 0

under fairness constraint C are continuous in αa and αb ∈ [0,1]. Under fairness constraints in
Equation (5.1), θa = ηC(θb) holds for some continuous function ηC(·). Consequently, we have
na fa(ηC(θb),αa,αb) + nb fb(θb,αa,αb) = 0. Because fs(·, ·, ·) and ηC(·) are continuous functions, with
the same reasoning, given αa and αb, the solutions to na fa(ηC(θb),αa,αb) + nb fb(θb,αa,αb) = 0 are
continuous in αa and αb. In other words, θi

s(αa,αb) is continuous.
Under Assumption 10, fs(θs,αa,αb) and θs(αa,αb) are continuous. We then prove that if f 1

s (x)
PC

s (x)

is non-decreasing and f 0
s (x)

PC
s (x)

is non-increasing in x, then θs(αa,αb) is non-increasing in αa and αb.

Let (ηC(θb), θb) be a pair that satisfies fairness constraint, where ηC(·) is some continuous and
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strictly increasing function, then the optimal one is the pair that satisfies Equation (5.3) as follows:

na(γa(ηC(θb))− u−
u++u−

) PX|S (ηC(θb)|a)
PC

a (ηC(θb))
+ nb(γb(θb)− u−

u++u−
) PX|S (θb|b)

PC
b (θb)

= na
[
αa

f 1
a (ηC(θb))

PC
a (ηC(θb))

u+ + (αa−1) f 0
a (ηC(θb))

PC
a (ηC(θb))

u−
]
+ nb

[
αb

f 1
b (θb)

PC
b (θb)

u+ + (αb−1)
f 0
b (θb)

PC
b (θb)

u−
]

= 0.

Note that ∀s ∈ {a,b}, LHS of above equation is strictly increasing in αs because the coefficient
of αs is positive. Because f 1

s (x)
PC

s (x)
is non-decreasing and f 0

s (x)
PC

s (x)
is non-increasing in x, f 1

s (x)
PC

s (x)
−

f 0
s (x)

PC
s (x)

is non-decreasing in x. As αs increases, both f 1
a (ηC(θb))

PC
a (ηC(θb))

−
f 0
a (ηC(θb))

PC
a (ηC(θb))

and
f 1
b (θb)

PC
b (θb)
−

f 0
b (θb)

PC
b (θb)

must not

increase so that the optimal fair equation can be maintained. It requires that both θb and θa = ηC(θb)
must not increase. In other words, ∀s ∈ {a,b}, θs(αa,αb) must be non-increasing in αa and αb.

D.3 Proof of Lemma 7

In the following proof, we focus on optimal policy at t and omit the subscript t.
First consider unconstrained optimal policy. Under threshold policy,

θUNs = argmax
θs

EX|S =s[πs(X)(γs(X)(u+ + u−)−u−)]

= argmax
θs

∫ ∞

θs
(γs(x)(u+ + u−)−u−)PX|S (x|s)dx

Since γs(x) is monotonically increasing in x under Assumption 9, θUNs satisfies γs(θUNs ) =
u−

u++u−
.

Now consider optimal policy under fairness constraint, to satisfy constraint C,
∫ ∞
θa

PC
a (x)dx =∫ ∞

θb
PC

b (x)dx should hold. Denote CDF FC
s (θs) =

∫ θs

−∞
P s
C(x)dx, then for any pair (θa, θb) that is

fair, we have θa = (FC
a )−1FC

b (θb) = ηC(θb) hold for some strictly increasing function ηC(·). Denote
u = FC

b (θb) and θa = (FC
a )−1(u), the following holds,

dηC(θb)
dθb

=
d(FC

a )−1FCb (θb)
dθb

=
d(FC

a )−1(u)
du

du
dθb

= 1
(FC

a )′((FCa )−1(u))
du
dθb

=
(FCb )′(θb)
(FCa )′(θa)

=
PC

b (θb)
PC

a (θa)
.
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Denote fs(x) = (γs(x)(u+ + u−)−u−)PX|S (x|s), then we have

θCb = argmax
θb

U(D,Y) = argmax
θb

(
na

∫ ∞

ηC(θb)
f a(x)dx + nb

∫ ∞

θb

f b(x)dx
)
.

Let F(θb) = na
∫ ∞
ηC(θb) fa(x)dx + nb

∫ ∞
θb

fb(x)dx. Because γs(x) is monotonically increasing in x

under Assumption 9, the optimal θCb satisfies

dF(θb)
dθb

∣∣∣∣
θb=θCb

= −na f a(ηC(θb))
dηC(θb)

dθb
−nb f b(θb)

∣∣∣∣
θb=θCb

= −na(γa(ηC(θCb ))(u+ + u−)−u−)P(X = ηC(θCb ) | S = a)
Pb
C(θCb )

Pa
C(ηC(θCb ))

−nb(γb(θCb )(u+ + u−)−u−)PX|S (θCb |b) = 0.

Therefore,

na(γa(θCa )(u+ + u−)−u−)
PX|S (θCa |a)

PC(θCa )
+ nb(γb(θCb )(u+ + u−)−u−)

PX|S (θCb |b)

PC(θCb )
= 0.

D.4 Proof of Theorem 17

We define balanced equations and functions for the rest proofs. The dynamics system (5.4) can
reach equilibrium if αs(t) = αs(t−1) holds. Therefore, the system has equilibrium if there exists
solution to the balanced equations defined as (D.2).

1
αa
−1 =

1−g1
a(θa(αa,αb))

g0
a(θa(αa,αb))

;
1
αb
−1 =

1−g1
b(θb(αa,αb))

g0
b(θb(αa,αb))

. (D.2)

By removing subscript t and writing threshold θs as a function of αa,αb, we have gy
s(θs(αa,αb)) =

T y0
s Fy

s(θs(αa,αb)) + T y1
s

(
1−Fy

s(θs(αa,αb))
)
, denote CDF of f y

s (x) as Fy
s(θ) =

∫ θ
−∞

f y
s (x)dx.

∀s ∈ {a,b}, let −s = {a,b} \ s. ∀α−s ∈ [0,1], define balanced set w.r.t. dynamics as Ψs(α−s) =

{αs : 1
αs
−1 =

1−g1s(θs(αs,α−s))
g0s(θs(αs,α−s))

}. If the set size |Ψs(α−s)| = 1 holds ∀α−s ∈ [0,1], we define balanced

functions w.r.t. dynamics as Ψs : [0,1]→ [0,1] with Ψs(α−s) ∈ Ψs(α−s),∀α−s ∈ [0,1].
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∀s ∈ {a,b}, define function ls(αs) = 1
αs
−1 and hs(θs(αa,αb)) =

1−g1
s (θs(αa,αb))

g0
s (θs(αa,αb))

,

hs(θs(αa,αb)) =
1− (T 10

s F1
s(θs(αa,αb)) + T 11

s
(
1−F1

s(θs(αa,αb))
)
)

T 00
s F0

s(θs(αa,αb)) + T 01
s

(
1−F0

s(θs(αa,αb))
) .

Firstly, we prove that given a fixed α−s ∈ [0,1] there must exist at least one αs ∈ (0,1) such that
hs(θs(α−s,αs)) = ls(αs), s ∈ {a,b}, −s = {a,b} \ s.

Since Fy
s(x) is continuous in x, and θs(αa,αb) is continuous in αa and αb, Fy

s(θs(αa,αb)) is
continuous in αa and αb. Therefore, hs(θs(αa,αb)) is continuous in αa and αb.

Moreover, g1
s(θs(αa,αb)) is the convex combination of T 11

s and T 10
s , and g0

s(θs(αa,αb)) is the
convex combination of T 01

s and T 00
s , the following holds ∀αa ∈ [0,1],αb ∈ [0,1],

min{T 10
s ,T 11

s } ≤ g1
s(θs(αa,αb)) ≤max{T 10

s ,T 11
s } ;

min{T 00
s ,T 01

s } ≤ g0
s(θs(αa,αb)) ≤max{T 00

s ,T 01
s } ,

which implies 0 < 1−max{T 10
s ,T 11

s }

max{T 00
s ,T 01

s }
≤ hs(θs(αa,αb)) ≤ 1−min{T 10

s ,T 11
s }

min{T 00
s ,T 01

s }
< +∞.

Furthermore, ls(αs) = 1
αs
−1 is continuous and strictly decreasing in αs, and

lim
αs→0

ls(αs) = +∞; lim
αs→1

ls(αs) = 0,

Given a fixed αa ∈ [0,1], because hb(θb(αa,αb)) is continuous over αb ∈ [0,1] and with value varying

between
1−max{T 10

b ,T 11
b }

max{T 00
b ,T 01

b }
and

1−min{T 10
b ,T 11

b }

min{T 00
b ,T 01

b }
, and lb(αb) is continuous with value varying from +∞ to 0,

there must exist at least one αb ∈ (0,1) such that hb(θb(αa,αb)) = lb(αb). Similarly, given a fixed
αb ∈ [0,1], there must exist at least one αa ∈ (0,1) such that ha(θa(αa,αb)) = la(αa).

Secondly, we prove that all the solutions (αa,αb) and (αa,αb) are on continuous curves in the
2D plane {(αa,αb) : αa ∈ [0,1],αb ∈ [0,1]}.

According to the continuity of ls(·) and hs(·), we have ∀αa ∈ [0,1], limαa′→αa la(αa′) = la(αa);
furthermore, ∀αa ∈ [0,1] and ∀θi

a ∈ {θa : la(αa) = ha(θa)}, limθi
a′→θ

i
a
ha(θi

a′) = ha(θi
a). Thus, ∀ε > 0,

∃δ > 0, such that ∀αa ∈ [0,1], |αa′ −αa| < δ =⇒ |θi
a′ − θ

i
a| < ε. Consequently, ∀ε > 0, ∃δ′ > 0 and

∃δ > 0, such that ∀αa ∈ [0,1], |αa′ −αa| < δ =⇒ |θi
a′ − θ

i
a| < δ

′ =⇒ |αi
b′ −α

i
b| < ε, the last statement

is because of the continuity of θa(αa,αb); in other words, ∀αa ∈ [0,1], limαa′→αa α
i
b′ = αi

b, where
i = 1, ...,N. Therefore, (αa,αb) is on a set of continuous curves with αb varying from 0 to 1. Similarly,
one can prove that (αa,αb) is also on a set of continuous curves with αa varying from 0 to 1.
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Finally, we show the existence of equilibrium (α̂a, α̂b).
Consider a 2D plane {(αa,αb) : αa ∈ [0,1],αb ∈ [0,1]}, and C1 = {(αa,αb)} and C2 = {(αa,αb)}

that are two sets of continuous curves in the plane defined earlier. It is straightforward to see that
there is at least one curve among C1 whose αb varies from 0 to 1 and at least one curve among
C2 whose αa varies from 0 to 1. These two continuous curves must have at least one intersection.
Moreover, this intersection (α̂a, α̂b) satisfies hb(θb(α̂a, α̂b)) = lb(α̂b) and ha(θa(α̂a, α̂b)) = la(α̂a), is
an equilibrium of system.

Moreover, we also realized that the proof can also be done by using Brouwer’s Fixed Point
Theorem in topology.

D.5 Proof of Theorem 18

Following the proof of Theorem 17,

hs(θs(αa,αb)) =
1−g1

s(θs(αa,αb))

g0
s(θs(αa,αb))

=
1− (T 10

s F1
s(θs(αa,αb)) + T 11

s
(
1−F1

s(θs(αa,αb))
)
)

T 00
s F0

s(θs(αa,αb)) + T 01
s

(
1−F0

s(θs(αa,αb))
) .

Note that ∀y ∈ {0,1}, T y0
s Fy

s(θs(αa,αb)) + T y1
s

(
1−Fy

s(θs(αa,αb))
)

is the convex combination of
T y0

s and T y1
s with CDF Fy

s(θs(αa,αb)) as the weight. Because Fy
s(θs(αa,αb)) is continuous and

non-decreasing in θs(αa,αb), under Condition 1a), hs(θs(αa,αb)) is non-decreasing in θs(αa,αb);
while under Condition 1b), hs(θs(αa,αb)) is non-increasing in θs(αa,αb).

Under unconstrained optimal policy or optimal fair policy with constraint C satisfying Assump-
tion 9 and 10, θs(αa,αb) is non-increasing in αa,αb. Therefore, under Condition 1a), hs(θs(αa,αb))
is non-decreasing in αa,αb, while under Condition 1b), hs(θs(αa,αb)) is non-increasing in αa,αb.
Moreover,

Under Condition 1a): 0 <
1−T 10

s

T 00
s
≤ hs(θs(αa,αb)) ≤

1−T 11
s

T 01
s

< +∞

Under Condition 1b): 0 <
1−T 11

s

T 01
s
≤ hs(θs(αa,αb)) ≤

1−T 10
s

T 00
s

< +∞

First consider the case when Condition 1a) is satisfied.
Because function ls(αs) = 1

αs
− 1 is continuous and strictly decreasing from +∞ to 0 over
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αs ∈ [0,1], ∀s ∈ {a,b}. Thus, given any fixed αb ∈ [0,1], strictly decreasing function la(αa) and
non-decreasing function ha(θa(αa,αb)) has exactly one intersection, i.e., ∃ only one αa such that
ha(θa(αa,αb)) = la(αa). ∀αb, the set Ψa(αb) = {αa : ha(θa(αa,αb)) = la(αa)} has only one element,
and they constitute continuous function αa = Ψa(αb) (balanced function). Similarly, ∀αa, set
Ψb(αa) = {αb : hb(θb(αa,αb)) = lb(αb)} also has only one element, which forms continuous function
αb = Ψb(αa).

Because given any αa, ha(θa(αa,αb)) is non-decreasing in αb, as αb increases, the intersection
with la(αa) is non-increasing. Therefore, Ψa(αb) is non-increasing in αb. Similarly, Ψb(αa) is also
non-increasing in αa.

On the 2D plane {(αa,αb) : αa ∈ [0,1],αb ∈ [0,1]}, two curves C1 = {(αa,αb) : αa = Ψa(αb),αb ∈

[0,1]} and C2 = {(αa,αb) : αb = Ψb(αa),αa ∈ [0,1]} are both continuous and non-increasing. One
sufficient condition to guarantee C1 and C2 have exact one intersection, is that |dΨa(αb)

dαb
| < 1,∀αb ∈

[0,1] and |dΨb(αa)
dαa

| < 1,∀αa ∈ [0,1]. In the followings, we show these sufficient conditions will hold
if |∂ha(θa(αa,αb))

∂αb
| < 1 and |∂hb(θb(αa,αb))

∂αa
| < 1,∀αa,αb.

Denote u = ha(θa(Ψa(αb),αb)), because la(Ψa(αb)) = ha(θa(Ψa(αb),αb)),∀αb,

dΨa(αb)
dαb

=
d(la)−1(u)

dαb
=

d(la)−1(u)
du

du
dαb

=
1

(la)′((la)−1(u))
du

dαb
= −((la)−1(u))2 du

dαb
.

Because (la)−1(u) = Ψa(αb) ∈ [0,1], −((la)−1(u))2 ∈ [−1,0]. Moreover, because of the condition
|
dha(θa(αa,αb))

dαb
| < 1, we have ∣∣∣∣dΨa(αb)

dαb

∣∣∣∣ < 1.

Similarly, we can show that |dΨb(αa)
dαa

| < 1 holds ∀αa if |∂hb(θb(αa,αb))
∂αa

| < 1. Therefore, C1, C2 have
only one intersection, the equilibrium (α̂a, α̂b) is unique.

Now consider the case when Condition 1b) is satisfied.
Because dls(αs)

dαs
= − 1

(αs)2 < −1,∀αs ∈ (0,1), and −1 ≤ ∂hs(θs(αa,αb))
∂αs

≤ 0 for any fixed α−s ∈ [0,1].
Strictly decreasing function ls(αs) and non-increasing function hs(θs(αa,αb)) has exactly one
intersection. Therefore, ∀αb, balanced set Ψa(αb) = {αa : ha(θa(αa,αb)) = la(αa)} has only one
element, and they constitute continuous function αa = Ψa(αb) (balanced function). Similarly, ∀αb,
set Ψa(αb) = {αa : ha(θa(αa,αb)) = la(αa)} also has only one element, which forms continuous
function αa = Ψa(αb).

Because given any αa, ha(θa(αa,αb)) is non-increasing in αb. As αb increases, the intersection
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with la(αa) is non-decreasing. Therefore, Ψa(αb) is non-decreasing in αb. Similarly, Ψb(αa) is also
non-decreasing in αa.

On the 2D plane {(αa,αb) : αa ∈ [0,1],αb ∈ [0,1]}, two curves C1 = {(αa,αb) : αa = Ψa(αb),αb ∈

[0,1]} and C2 = {(αa,αb) : αb = Ψb(αa),αa ∈ [0,1]} are both continuous and non-decreasing. One
sufficient condition to guarantee C1 and C2 have exact one intersection, is that dΨa(αb)

dαb
< 1,∀αb ∈ [0,1]

and dΨb(αa)
dαa

< 1,∀αa ∈ [0,1]. Using the same analysis as the case under Condition 1a), we can show
these sufficient conditions will hold if | ∂ha(θa(αa,αb))

∂αb
|< 1 and | ∂hb(θb(αa,αb))

∂αa
|< 1,∀αa,αb.

Therefore, C1, C2 have only one intersection, the equilibrium (α̂a, α̂b) is unique.

D.6 Proof of Corollary 2.

Define notations Fy
s = Fy

s(θs(αa,αb)), ∆T 0
s = T 01

s −T 00
s and ∆T 1

s = T 11
s −T 10

s .

hs(θs(αa,αb)) =
(1−T 10

s )F1
s + (1−T 11

s )
(
1−F1

s
)

T 00
s F0

s + T 01
s

(
1−F0

s
) =

(1−T 11
s ) +∆T 1

sF1
s

T 00
s +∆T 0

s
(
1−F0

s
)

Take derivative w.r.t. αu, ∀u ∈ {a,b},

∂hs(θs(αa,αb))
∂αu

=
∆T 1

s
∂F1

s
∂αu

(T 00
s +∆T 0

s
(
1−F0

s
)
) +∆T 0

s
∂F0

s
∂αu

((1−T 11
s ) +∆T 1

sF1
s)

(T 00
s +∆T 0

s
(
1−F0

s
)
)2

Consider case under Condition 1a). Since ∆T 0
s < 0, ∆T 1

s < 0, T 00
s + ∆T 0

s
(
1−F0

s
)
> 0, and

(1−T 11
s ) +∆T 1

sF1
s > 0 , we have |∂hs(θs(αa,αb))

∂αu
| ≤|

∆T 1
s M1T 00

s +∆T 0
s M0(1−T 11

s )
(T 01

s )2 |.

Take ε1
s = ε0

s =
(T 01

s )2

M1T 00
s +M0(1−T 11

s )
, if |∆T 1

s | < ε
1
s and |∆T 0

s | < ε
0
s , then |∂hs(θs(αa,αb))

∂αu
| < 1 holds. From

Theorem 18, the equilibrium of dynamics 5.4 is unique.
Consider case under Condition 1b).
Since ∆T 0

s > 0 and ∆T 1
s > 0, we have |∂hs(θs(αa,αb))

∂αu
| ≤

∆T 1
s M1T 01

s +∆T 0
s M0(1−T 10

s )
(T 00

s )2 .

Take ε1
s = ε0

s =
(T 00

s )2

M1T 01
s +M0(1−T 10

s )
, if ∆T 1

s < ε
1
s and ∆T 0

s < ε
0
s , then |∂hs(θs(αa,αb))

∂αu
| < 1 holds. From

Theorem 18, the equilibrium of dynamics 5.4 is unique.
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D.7 The proof of Theorem 19

∀s ∈ {a,b}, an equilibrium α̂UNs satisfies:

1−g1
s(θUNs (α̂UNs ))

g0
s(θUNs (α̂UNs ))

=
1−

(
T 11

s (1−F1
s(θUNs (α̂UNs ))) + T 10

s F1
s(θUNs (α̂UNs ))

)
T 01

s (1−F0
s(θUNs (α̂UNs ))) + T 00

s F0
s(θUNs (α̂UNs ))

=
1
α̂UNs
−1.

One solution to the above equation is:

α̂UNs = T 11
s (1−F1

s(θUNs (α̂UNs ))) + T 10
s F1

s(θUNs (α̂UNs )) = T 01
s (1−F0

s(θUNs (α̂UNs ))) + T 00
s F0

s(θUNs (α̂UNs ))

It shows that α̂UNs is a convex combination of T 00
s , T 01

s , and also a convex combination of T 10
s , T 11

s .
∀αUN and F0

s(x), F1
s(x), there is a set of transitions with T 00

s < αUN < T 01
s and T 10

s < αUN < T 11
s

(satisfy Condition 1b)), or T 01
s < αUN < T 00

s and T 11
s < αUN < T 10

s (satisfy Condition 1a)), such that
the above equation holds with α̂UNs = αUN, ∀s ∈ {a,b}, i.e., equitable equilibrium is attained.

Next we show that if f y
a (x) 6= f y

b (x), then α̂Cb 6= α̂Ca under these sets of transitions. Under the
conditions of Theorem 18, (α̂Ca , α̂

C
b ) is the intersection of two curves C1 = {(αa,αb) : αa =ψCa (αb),αb ∈

[0,1]} and C2 = {(αa,αb) : αb = ψCb (αa),αa ∈ [0,1]}; furthermore, let α̃Ca , α̃Cb be defined such that
α̃Ca = ψCa (α̃Ca ), α̃Cb = ψCb (α̃Cb ), which are the intersections of αa = ψCa (αb) and αa = αb, as well as
αb = ψCb (αa) and αa = αb, respectively. Then in order to prove α̂Cb 6= α̂Ca , it is sufficient to show
α̃Ca 6= α̃Cb .

Given αa = αb = αUN, because f y
a (x) 6= f y

b (x), we have θUNs (αUN) 6= θCs (αUN,αUN) and to satisfy
Eqn. (5.3), there are only two possibilities: (1) θUNa (αUN) > θCa (αUN,αUN), θUNb (αUN) < θCb (αUN,αUN);
(2) θUNa (αUN) < θCa (αUN,αUN), θUNb (αUN) > θCb (αUN,αUN).

WLOG, suppose the first case holds. Under Condition 1b),

1−g1
b(θUNb (αUN))

g0
b(θUNb (αUN))

<
1−g1

b(θCb (αUN,αUN))

g0
b(θCb (αUN,αUN))

;
1−g1

a(θUNa (αUN))

g0
a(θUNa (αUN))

>
1−g1

a(θCa (αUN,αUN))

g0
a(θCa (αUN,αUN))

It implies that α̃Cb < α̂
UN
b = α̂UNa < α̃Ca . Similarly, under Condition 1a), α̃Cb > α̂

UN
b = α̂UNa > α̃Ca . Therefore,

α̂Ca 6= α̂Cb .
In contrast, if f y

a (x) = f y
b (x), we have θUNs (α) = θCs (α,α) and α̃Cb = α̃Ca . Therefore, α̂Ca = α̂Cb .
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D.8 Proof of Theorem 20

WLOG, suppose that α̂UNa > α̂UNb in the proof. Let ψCa (·),ψCb (·) be balanced functions as defined in

Theorem 18 under constraint C. Firstly, we show that α̂UNb and α̂UNa are solutions to

αb = ψCb (αa)

αa = αb

and

αa = ψCa (αb)

αa = αb

, respectively, i.e., α̂UNb = ψCb (α̂UNb ) and α̂UNa = ψCa (α̂UNa ).

Because f y
a (x) = f y

b (x), ∀y ∈ {0,1},∀x, when αa = αb = α, we have γa(x) = γb(x), PEqOpt
a (x) =

PEqOpt
b (x) and PDP

a (x) = PDP
b (x), which implies θCa (α,α) = θCb (α,α); furthermore, the optimal fair

policies of DP and EqOpt satisfy γa(θCa (α,α)) = γb(θCb (α,α)) =
u−

u++u−
according to the optimal fair

policy equation:

naαa

γa(θEqOpta )
+

nbαb

γb(θEqOptb )
=

naαa
u−

u++u−

+
nbαb

u−
u++u−

; naγa(θDPa ) + nbγb(θDPb ) =
u−

u+ + u−
.

Because γa(θUNa (α)) = γb(θUNb (α)) =
u−

u++u−
we have γa(θUNa (α)) = γa(θCa (α,α)) = γb(θUNb (α)) =

γb(θCb (α,α)) so that θCa (α,α) = θUNa (α) = θCb (α,α) = θUNb (α) holds under any α. ∀s ∈ {a,b}, because α̂UNs

is the solution to balanced equation, i.e., ls(α̂UNs ) = hs(θUNs (α̂UNs )). We have ls(α̂UNs ) = hs(θCs (α̂UNs , α̂UNs )),
which further implies α̂UNs = ψCs (α̂UNs ).

Under Condition 1b), according to the proof of Theorem 18, we know that 0 ≤
dψCb (αa)

dαa
< 1

and 0 ≤ dψCa (αb)
dαb

< 1. Because α̂UNb = ψCb (α̂UNb ) < α̂UNa = ψCa (α̂UNa ), we have α̂UNb < ψCb (αa) < αa, ∀αa ∈

[α̂UNb , α̂UNa ]. Similarly, we have αb < ψ
C
a (αb) < α̂UNa , ∀αb ∈ [α̂UNb , α̂UNa ]. Therefore, after representing

the two balanced functions as two curves C1 = {(αa,αb) : αa = ψCa (αb),αb ∈ [0,1]} and C2 = {(αa,αb) :
αb = ψCb (αa),αa ∈ [0,1]} on the 2D plane {(αa,αb) : αa ∈ [0,1],αb ∈ [0,1]}, the intersection (α̂Ca , α̂

C
b )

of C1 and C2 satisfies: 1) α̂Ca > α̂
C
b ; 2) α̂UNb < α̂Ca < α̂

UN
a ; 3) α̂UNb < α̂Cb < α̂

UN
a . Therefore, |̂αCa − α̂

C
b | ≤

|̂αUNa − α̂
UN
b |.

Under Condition 1a), according to the proof of Theorem 18, we know that −1 <
dψCb (αa)

dαa
≤ 0

and −1 < dψCa (αb)
dαb

≤ 0. Because α̂UNb = ψCb (α̂UNb ) < α̂UNa = ψCa (α̂UNa ), we have ψCb (αa) < α̂UNb , ∀αa > α̂
UN
b .

Similarly, we have ψCa (αb) > α̂UNa , ∀αb < α̂
UN
a . Due to the existence of equilibrium, the intersection

(α̂Ca , α̂
C
b ) of C1 and C2 must satisfy: 1) α̂Ca > α̂

C
b ; 2) α̂UNa < α̂Ca ; 3) α̂Cb < α̂

UN
b . Therefore, |̂αCa − α̂

C
b | ≥

|̂αUNa − α̂
UN
b |.
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D.9 Proof of Theorem 21

The proof is under the conditions of Theorem 18 such that there is unique equilibrium of qualification
rate. Under fairness constraint C =EqOpt or DP, consider 2D plane {(αa,αb) :αa ∈ [0,1],αb ∈ [0,1]},
and note that equilibrium (α̂Ca , α̂

C
b ) is the intersection of two curves C1 = {(αa,αb) : αa = ψCa (αb),αb ∈

[0,1]} and C2 = {(αa,αb) :αb =ψCb (αa),αa ∈ [0,1]}. Consider a line {(αa,αb) :αa =αb,αa ∈ [0,1],αb ∈

[0,1]}, which has unique intersection α̃Ca with C1, and unique intersection α̃Cb with C2. That is,
α̃Ca = ψCa (α̃Ca ), α̃Cb = ψCb (α̃Cb ).

First of all, we show that if u+

u−
≥ 1−T 10

T 00 β(x̂), under Condition 1b), α̂UNb < α̂UNa .

By Condition 2, given any αa = αb = α, the corresponding qualification profiles of Ga, Gb satisfy
the followings: γb(x̂) = γa(x̂); γb(x) < γa(x),∀x < x̂; γb(x) > γa(x),∀x > x̂. Let α be qualification

rate such that γa(x̂) = γb(x̂) =
u−

u++u−
=⇒

u+

u−
= β(x̂)( 1

α
− 1), where β(x̂) =

f 0
a (x̂)

f 1
a (x̂)

=
f 0
b (x̂)

f 1
b (x̂)

, then ∀α ∈

[α,1], γa(θUNa (α)) = γb(θUNb (α)) =
u−

u++u−
< 1

β(x̂)( 1
α−1)+1

= γa(x̂) = γb(x̂). Thus, ∀α ∈ [α,1], θUNa (α) <

θUNb (α) < x̂, which implies F1
a(θUNa (α)) < F1

b(θUNb (α)) and F0
a(θUNa (α)) < F0

b(θUNb (α)); furthermore,
under Condition 1b), we have

1−T 11

T 01 <
1−g1

a(θUNa (α))

g0
a(θUNa (α))

<
1−g1

b(θUNb (α))

g0
b(θUNb (α))

<
1−T 10

T 00 , ∀α ∈ [α,1].

Because α̂UNa and α̂UNb are solutions to balance equations, i.e., 1
α̂UNa
− 1 =

1−g1
a(θUNa (α̂UNa ))

g0
a(θUNa (α̂UNa ))

, 1
α̂UNb
− 1 =

1−g1
b(θUNb (α̂UNb ))

g0
b(θUNb (α̂UNb ))

. If α ≤ α̂UNb , the α̂UNb < α̂UNa must hold under Condition 1b). Next, we show that a

sufficient condition of α ≤ α̂UNb is u+

u−
≥ 1−T 10

T 00 β(x̂).
u+

u−
≥ 1−T 10

T 00 β(x̂) =⇒ 1
α
−1 ≥ 1−T 10

T 00 . Since 1
α̂UNb
−1 < 1−T 10

T 00 , we have 1
α̂UNb
−1 < 1

α
−1. Thus, α ≤ α̂UNb .

Therefore, if u+

u−
≥ 1−T 10

T 00 β(x̂), under Condition 1b), α̂UNb < α̂UNa .

Fairness constraint EqOpt. Secondly, we show that for EqOpt fair policy, if u+

u−
≥ 1−T 10

T 00 β(x̂),
under Condition 1b), α̂UNa − α̂

UN
b > α̂EqOpta − α̂EqOptb ≥ 0. Because two curves C1,C2 are monotonic

increasing. It’s sufficient to show two parts: (1) α̃EqOpta < α̂UNa , α̃EqOptb > α̂UNb ; (2) α̃EqOpta ≥ α̃EqOptb .
Under EqOpt constraint, ∀αa,αb, F1

a(θEqOpta (αa,αb)) = F1
b(θEqOptb (αa,αb)) must hold so that

θEqOpta (αa,αb) = θEqOptb (αa,αb). Consider the case αa = αb = α, ∀α ≥ α, we have θEqOpta (α,α) =

θEqOptb (α,α) and θUNa (α) < θUNb (α). It implies that θUNa (α) < θEqOpta (α,α) = θEqOptb (α,α) < θUNb (α) < x̂,
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otherwise Equation (5.3) will be violated. Therefore, the followings hold ∀α ∈ [α,1],

1−g1
a(θEqOpta (α,α))

g0
a(θEqOpta (α,α))

>
1−g1

a(θUNa (α))

g0
a(θUNa (α))

;
1−g1

b(θEqOptb (α,α))

g0
b(θEqOptb (α,α))

<
1−g1

b(θUNb (α))

g0
b(θUNb (α))

.

∀s ∈ {a,b}, α̃EqOpts is the solution to 1−g1
s (θEqOpts (α,α))

g0
s (θEqOpts (α,α))

= 1
α −1 while α̂UNs is the solution to 1−g1

s (θUNs (α))
g0

s (θUNs (α))
=

1
α −1. Since α ≤ α̂UNb < α̂UNa , it implies α̃EqOpta < α̂UNa , α̃EqOptb > α̂UNb .

Next, show that α̃EqOpta ≥ α̃EqOptb . ∀α ≥ α, θEqOpta (α,α) = θEqOptb (α,α) implies
F1

a(θEqOpta (α,α)) = F1
b(θEqOptb (α,α)) and F0

a(θEqOpta (α,α)) ≤ F0
b(θEqOptb (α,α)). Therefore,

1−g1
a(θEqOpta (α,α))

g0
a(θEqOpta (α,α))

≤
1−g1

b(θEqOptb (α,α))

g0
b(θEqOptb (α,α))

.

Intersections with function 1
α −1 satisfies α̃EqOpta ≥ α̃EqOptb .

It thus concludes that α̂UNa − α̂
UN
b > α̂EqOpta − α̂EqOptb ≥ 0.

Fairness constraint DP. Finally, consider DP fair policy, where ∀αa,αb,
(1−αa)F0

a(θDPa (αa,αb)) +αaF1
a(θDPa (αa,αb)) = (1−αb)F0

b(θDPb (αa,αb)) +αbF1
b(θDPb (αa,αb)) must

hold.
We first show that under Condition 1b), α̃DPa < α̂UNa , α̃DPb > α̂UNb . Consider the case αa =

αb = α, ∀α ≥ α. Since ∀x, (1−α)F0
b(x) +αF1

b(x) ≥ (1−α)F0
a(x) +αF1

a(x), (1−α)F0
a(θDPa (α,α)) +

αF1
a(θDPa (α,α)) = (1 − α)F0

b(θDPb (α,α)) + αF1
b(θDPb (α,α)) implies θDPa (α,α) ≥ θDPb (α,α). Because

θUNa (α) < θUNb (α), ∀α ≥ α. It implies that θDPa (α,α) > θUNa (α) and x̂ > θUNb (α) > θDPb (α,α) must hold.
Therefore, ∀α ∈ [α,1],

1−g1
a(θDPa (α,α))

g0
a(θDPa (α,α))

>
1−g1

a(θUNa (α))

g0
a(θUNa (α))

;
1−g1

b(θDPb (α,α))

g0
b(θDPb (α,α))

<
1−g1

b(θUNb (α))

g0
b(θUNb (α))

Similar to reasoning in EqOpt case, we have α̃DPa < α̂UNa , α̃DPb > α̂UNb .
Different from EqOpt fairness where α̃EqOpta ≥ α̃EqOptb , both α̃DPa ≥ α̃

DP
b and α̃DPa ≤ α̃

DP
b are likely

to occur, depending on distributions f 0
a (x), f 0

b (x), f 1
a (x) and f 1

b (x). It is because θDPa (α,α) > θDPb (α,α)
can result in either F0

a(θDPa (α,α)) ≤ F0
b(θDPb (α,α)) or F0

a(θDPa (α,α)) ≥ F0
b(θDPb (α,α)).

For these two outcomes, if α̃DPa ≥ α̃
DP
b , then DP fair policy results in a more equitable equilibrium
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than unconstrained policy; if α̃DPa ≤ α̃
DP
b , it means the disadvantaged group is flipped from Gb to Ga.

D.10 Proof of Proposition 3

In the proof, we simplify the notations by removing subscript C.
Let ψs(·), ψs′(·) be balanced function of policies (θa, θb) and (θa′ , θb′), respectively.
According to the balanced equation (D.2),

1
αs
−1 =

1−g1
s(θs(αa,αb))

g0
s(θs(αa,αb))

=
1− (T 11

s (1−F1
s(θs(αa,αb))) + T 10

s F1
s(θs(αa,αb)))

T 01
s (1−F0

s(θs(αa,αb))) + T 00
s F0

s(θs(αa,αb))
.

Under Condition b), ∀αa,αb ∈ [0,1], θa′(αa,αb) < θa(αa,αb) and θb′(αa,αb) < θb(αa,αb).
Under Condition a), ∀αa,αb ∈ [0,1], θa′(αa,αb) > θa(αa,αb) and θb′(αa,αb) > θb(αa,αb).
Both imply that 1−g1

s (θs(αa,αb))
g0

s (θs(αa,αb))
>

1−g1
s (θs′ (αa,αb))

g0
s (θs′ (αa,αb))

, and ∀αa,αb ∈ [0,1], ψa(αb) < ψa′(αb) and
ψb(αa) < ψb′(αa) hold. As a consequence, α̂a′ > α̂a and α̂b′ > α̂b.

Now consider the long-run average utility of institute U(θa, θb) = limT→∞
1
T
∑T

t=1Ut(θa, θb),
where the instantaneous utility at t under threshold policies θa, θb is

Ut(θa, θb) =
∑
s=a,b

nsEXt |S =s[1(Xt ≥ θs)(γs,t(Xt)(u+ + u−)−u−)]

=
∑
s=a,b

ns

∫ ∞

θs

(γs,t(x)(u+ + u−)−u−)PXt |S (x|s)dx

=
∑
s=a,b

ns

∫ ∞

θs

αs(t)
(
f 1
s (x)u+ + f 0

s (x)u−
)
− f 0

s (x)u−dx

In the followings, we use a special case (C = EqOpt, f y
a (x) = f y

b (x),∀x,y = 0,1, under Condition
1b)) to show that U(θa′ , θb′) >U(θa, θb) can be attained, i.e., the long-run average utility under policy
(θa′ , θb′) can be higher than myopic optimal policy (θa, θb).

Since the qualification rates of two groups converge to equilibrium, U(θa, θb) = U∞(θa, θb)
is the same as instantaneous expected utility of institute at the equilibrium state. To show that
U(θa′ , θb′) > U(θa, θb), we prove the following holds,

∑
s=a,b

ns

∫ ∞

θs′ (α̂a′ ,̂αb′ )
f (x; α̂s′)dx >

∑
s=a,b

ns

∫ ∞

θs(α̂a ,̂αb)
f (x; α̂s)dx (D.3)
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where f (x; α̂s) = α̂s
(
f 1
s (x)u+ + f 0

s (x)u−
)
− f 0

s (x)u−.
Because α̂s′ > α̂s, θs′(α̂a′ , α̂b′) < θs(α̂a′ , α̂b′) < θs(α̂a, α̂b) holds under Condition b). LHS of

above inequality can be written as

∑
s=a,b

ns
(∫ θs(α̂a ,̂αb)

θs′ (α̂a′ ,̂αb′ )
f (x; α̂s′)dx +

∫ ∞

θs(α̂a ,̂αb)
f (x; α̂s′)dx

)
.

Inequality (D.3) can further be re-organized,

∑
s=a,b

ns

∫ θs(α̂a ,̂αb)

θs′ (α̂a′ ,̂αb′ )
f (x; α̂s′)dx >

∑
s=a,b

ns

∫ ∞

θs(α̂a ,̂αb)

(
f (x; α̂s)− f (x; α̂s′)

)
dx (D.4)

Consider a special case where C = EqOpt and f y
a (x) = f y

b (x) = f y(x),∀x, ∀y ∈ {0,1}. Then ∀αa,αb,
we have θa(αa,αb) = θb(αa,αb) and θa′(αa,αb) = θb′(αa,αb). Inequality (D.4) can be reduced to the
following, ∀s ∈ {a,b}, simplify notations and let θ̂ = θs(α̂a, α̂b), θ̂′ = θs′(α̂a′ , α̂b′).(

naα̂a′ + nbα̂b′
)(
F1(̂θ)−F1(̂θ′)

)
u+

+
(
u+(1−F1(̂θ)) + u−(1−F0(̂θ))

)(
na(α̂a′ − α̂a) + nb(α̂b′ − α̂b)

)︸ ︷︷ ︸
term 1

>
(
na(1− α̂a′) + nb(1− α̂b′)

)(
F0(̂θ)−F0(̂θ′)

)
u− (D.5)

Because 1
α̂s′
−1 =

1−g1
s (θ̂′)

g0
s (θ̂′)

and 1
α̂s
−1 =

1−g1
s (̂θ)

g0
s (̂θ)

.

α̂s′ − α̂s >
T 01

s −T 00
s

1−T 10
s + T 01

s
(F0(̂θ)−F0(̂θ′))

We have term 1 >

(u+

u−
(1−F1(̂θ)) + (1−F0(̂θ))

)(
na

T 01
a −T 00

a

1−T 10
a + T 01

a
+ nb

T 01
b −T 00

b

1−T 10
b + T 01

b

)
︸ ︷︷ ︸

=h(̂θ)>0

(
F0(̂θ)−F0(̂θ′)

)
u−
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For the optimal EqOpt fair threshold θ(α̂a′ , α̂b′), the following holds(
naα̂a′ + nbα̂b′

)
f 1(θ(α̂a′ , α̂b′))u+ =

(
na(1− α̂a′) + nb(1− α̂b′)

)
f 0(θ(α̂a′ , α̂b′))u−(

naα̂a′ + nbα̂b′
)

f 1(x)u+ >
(
na(1− α̂a′) + nb(1− α̂b′)

)
f 0(x)u−,∀x > θ(α̂a′ , α̂b′)(

naα̂a′ + nbα̂b′
)

f 1(x)u+ <
(
na(1− α̂a′) + nb(1− α̂b′)

)
f 0(x)u−,∀x < θ(α̂a′ , α̂b′)

It implies that ∃ some δ > 0 s.t. ∀x ∈ (θ(α̂a′ , α̂b′)−δ,θ(α̂a′ , α̂b′) +δ) = B(θ(α̂a′ , α̂b′), δ),(
naα̂a′ + nbα̂b′

)
f 1(x)u+ + h(̂θ) f 0(x)u− >

(
na(1− α̂a′) + nb(1− α̂b′)

)
f 0(x)u−.

θ̂, θ̂′ ∈ B(θ(α̂a′ , α̂b′), δ) can be satisfied as long as |θs(αa,αb)− θs′(αa,αb)| ≤ ε for some sufficiently
small ε > 0.

Using the mean value theorem, ∃ f y(x) and x̃ ∈ (̂θ′, θ̂) ⊂ B(θ(α̂a′ , α̂b′), δ) s.t.(
naα̂a′ + nbα̂b′

)
(F1(̂θ)−F1(̂θ′))u+ + h(̂θ)(F0(̂θ)−F0(̂θ′))u−

=
((

naα̂a′ + nbα̂b′
)

f 1(x̃)u+ + h(̂θ) f 0(x̃)u−
)
(̂θ− θ̂′)

>
((

na(1− α̂a′) + nb(1− α̂b′)
)

f 0(x̃)u−
)
(̂θ− θ̂′)

≥
(
na(1− α̂a′) + nb(1− α̂b′)

)
(F0(̂θ)−F0(̂θ′))u−.

Therefore, inequality (D.5) holds and U(θa′ , θb′) > U(θa, θb).

D.11 Proof of Proposition 4

To ensure αs(t)→ α̂, threshold policy θs(αs) as a function of αs ∈ [0,1] should be designed such that
1−g1

s (θs(αs))
g0

s (θs(αs))
= 1
αs
−1 has a unique solution α̂. Let Is =

[1−max{T 11
s ,T 10

s }

max{T 01
s ,T 00

s }
,

1−min{T 11
s ,T 10

s }

min{T 01
s ,T 00

s }

]
, then 1−g1

s (θs(αs))
g0

s (θs(αs))
∈

Is for any threshold policy θs(αs).

If Ia∩Ib = ∅, then 1−g1
a(θa(α))

g0
a(θa(α))

=
1−g1

b(θb(α))
g0

b(θb(α))
can never be attained, i.e., no threshold policy can

result in equitable equilibrium.
If Ia∩Ib 6= ∅, then ∀α̂ ∈ Ia∩Ib and ∀s ∈ {a,b}, there exists threshold policy θs(αs) such that
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1−g1
s (θs(α̂))

g0
s (θs(α̂))

= 1
α̂
−1. Specifically, under Condition 1b) (resp. 1a)), function

hs(x) =
1−g1

s(x)

g0
s(x)

=
1− (T 11

s (1−F1
s(x)) + T 10

s F1
s(x))

T 01
s (1−F0

s(x)) + T 00
s F0

s(x)

is strictly increasing (resp. decreasing) in x ∈ (−∞,+∞) from 1−T 11
s

T 01
s

(resp. 1−T 10
s

T 00
s

) to 1−T 10
s

T 00
s

(resp.
1−T 11

s
T 01

s
) and any non-increasing function θs(αs) that satisfies θs(α̂) = (hs)−1( 1

α̂
− 1) can result in

αs(t)→ α̂, where (hs)−1(·) is the inverse function of hs(·).

D.12 Proof of Proposition 5

According to the balanced equation (D.2),

1
αs
−1 =

1−g1
s(θs(αa,αb))

g0
s(θs(αa,αb))

=
1− (T 11

s (1−F1
s(θs(αa,αb))) + T 10

s F1
s(θs(αa,αb)))

T 01
s (1−F0

s(θs(αa,αb))) + T 00
s F0

s(θs(αa,αb))
.

∀αa,αb ∈ [0,1], increasing any T yd
s decreases 1−g1

s (θs(αa,αb))
g0

s (θs(αa,αb))
. Let ψs′(·) be the consequent balanced

function after increasing T yd
s , and α̂s′ be corresponding equilibrium. Given any αa,αb ∈ [0,1], we

have ψa(αb) < ψa′(αb) and ψb(αa) < ψb′(αa). Therefore, α̂a′ > α̂a and α̂b′ > α̂b.
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APPENDIX E

Impact of Fairness Interventions on Strategic
Manipulation

E.1 Generalization to high dimensional feature space

All analysis and conclusions can be generalized to high dimensional feature space X ∈ Rd. In
this case, high dimensional features are first mapped to one dimensional qualification profile
γs(x) = PY |X,S (1|x, s), based on which the decision maker makes decisions about individuals. A
threshold policy is in the form of πs(x) = 1(γs(x) ≥ φs) with threshold φs ∈ [0,1].

Let γ−1
s (ls)⊂Rb be defined as the preimage of ls under qualification profile γs, then we can adjust

all analysis using γ−1
s (·). For example, the strict monotone likelihood ratio property in Assumption 11

can be adjusted as follows: for any two likelihoods 0 ≤ ls < ls ≤ 1, we have γ−1
s ([ls,1]) ⊂ γ−1

s ([ls,1]),
i.e., any individual who can get accepted under threshold ls can also be accepted under any lower
threshold ls.

Because γs(x) = PY |X,S (1|x, s) = 1

1+
f 0
s (x)

f 0
s (1)

(1−αs)
αs

, (non-)strategic (fair) threshold φs in the space of

qualification profile can be found based on f 1
s (θs)

f 0
s (θs)

given in Lemmas 8-11. Specifically, replace f 1
s (θs)

f 0
s (θs)

with 1−αs
αs

φs
1−φs

, and ∆s(θs) with
∫

x∈γ−1
s ([φs,1]) f 0

s (1)− f 0
s (x)dx in Lemmas 8-11. Then the consequent

policy πs(x) = 1(γs(x) ≥ φs) is the optimal policy.
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E.2 Proof that non-strategic policy is threshold policy

The non-strategic optimal policy π̂UNs = argmaxπs Ûs(πs) is given by

π̂UNs (x) =

1, if f 0
s (1)

f 0
s (x)
≥

u−(1−αs)
u+αs

0, o.w.
(E.1)

Re-writing based on qualification the profile γs(x) =
1

f 0
s (x)

f 0
s (1)

(1−αs)
αs

+ 1
, (E.1) is reduced to

π̂UNs (x) = 1
(
γs(x) ≥

u−
u+ + u−

)
.

E.3 Proof of Lemma 8

Let πs(x) = 1(x ≥ θ), then Ûs(πs) := Ûs(θ) can be written as

Ûs(θ) = u+αs(1−F1
s(θ))−u−(1−αs)(1−F0

s(θ))

= u+αs−u−(1−αs) + u−(1−αs)F0
s(θ)−u+αsF1

s(θ)

∂Ûs(θ)
∂θ

= u−(1−αs) f 0
s (θ)−u+αs f 1

s (θ)

Under Assumption 11, Ûs(θ) increases over θ ≤ θ̂UNs and decreases over θ ≥ θ̂UNs . θ̂UNs is the optimal
threshold and is the unique extreme point of Ûs(θ).

E.4 Deviation of Manipulation Probability

When πs(x) = 1(x ≥ θ) is a threshold policy, we have

PD|Y,M,S (1|y,m, s) =

∫
X

PD,X|Y,M,S (1, x|y,m, s)dx

=

∫
X

PD|X,Y,M,S (1|x,y,m, s)PX|Y,M,S (x|y,m, s)dx

=

∫
X
πs(x)PX|Y,M,S (x|y,m, s)dx = 1−FX|Y,M,S (θ|y,m, s)
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Therefore,

p0
s(πs) = FCs

(
PD|Y,M,S (1|0,1, s)−PD|Y,M,S (1|0,0, s)

)
= FCs

(
FX|Y,M,S (θ|0,0, s)−FX|Y,M,S (θ|0,1, s)

)
= FCs

(
F0

s(θ)−F1
s(θ)

)
.

E.5 Proof of Lemma 10

Take derivative of Us(θ) w.r.t. θ, we have

∂Us(θ)
∂θ

=
(

f 0
s (θ)

(
u−(1−αs)−Ψ′s(∆s(θ))

)
+ f 1

s (θ)Ψ′s(∆s(θ))
)
−u+αs f 1

s (θ)

∝
( f 0

s (θ)
f 1
s (θ)

(
u−(1−αs)−Ψ′s(∆s(θ))

)
+Ψ′s(∆s(θ))

)
−u+αs

As θ→±∞, ∆s(θ)→ 0, Ψ′s(∆s(θ))→ 0 and ∂Us(θ)
∂θ ∝ u−(1−αs)

f 0
s (θ)

f 1
s (θ)
−u+αs. Therefore, ∂Us(θ)

∂θ > 0 as

θ→−∞ and ∂Us(θ)
∂θ < 0 as θ→ +∞.

The strategic optimal threshold θUNs satisfies

f 0
s (θUNs )

f 1
s (θUNs )

=
u+αs−Ψ′s(∆s(θUNs ))

u−(1−αs)−Ψ′s(∆s(θUNs ))
.

E.6 Proof of Lemma 11

To satisfy fairness constraint C,
∫ ∞
θa

PC
a (x)dx =

∫ ∞
θb

PC
b (x)dx should hold. Denote CDF FC

s (θs) =∫ θs

−∞
PC

s (x)dx, then for any pair (θa, θb) that is fair, we have θa = (FC
a )−1FC

b (θb) = ηC(θb) hold for
some strictly increasing function ηC(·). Denote u = FC

b (θb) and θa = (FC
a )−1(u), the following holds:

dηC(θb)
dθb

=
d(FC

a )−1FC
b (θb)

dθb
=

d(FC
a )−1(u)
du

du
dθb

=
1

(FC
a )′((FC

a )−1(θb))
du
dθb

=
(FC

b )′(θb)

(FC
a )′(θa)

=
PC

b (θb)

PC
a (θa)

The total utility can be written as a function of θb, take the derivative of naUa(ηC(θb))+nbUb(θb)
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w.r.t. θb, the optimal θCb satisfies the following,

na
dUa(ηC(θb))

dθb

∣∣∣∣
θb=θCb

dηC(θb)
dθb

∣∣∣∣
θb=θCb

+ nb
dUb(θb)

dθb

∣∣∣∣
θb=θCb

= 0

⇐⇒ na
dUa(ηC(θb))

dθb

∣∣∣∣
θb=θCb

PC
b (θCb )

PC
a (ηC(θCb ))

+ nb
dUb(θb)

dθb

∣∣∣∣
θb=θCb

= 0

Simplifying above equation gives the result.

E.7 Proof of Theorem 22

According to Lemma ??, (θUNa , θUNb ) satisfies

f 0
s (θUNs )

f 1
s (θUNs )

=
u+αs−Ψ′s(∆s(θUNs ))

u−(1−αs)−Ψ′s(∆s(θUNs ))
:= Ωs(θUNs )

Under Assumption 11, ∆s(θ) is single-peaked with maximum occurring at x∗s. Define function
Ωs(θ) := u+αs−Ψ′s(∆s(θ))

u−(1−αs)−Ψ′s(∆s(θ))
.

1. If αs = δu, then

∂Us(θ)
∂θ

∝
( f 0

s (θ)
f 1
s (θ)
−1

)
(u+αs−Ψ′s(∆s(θ)))

consider two cases:

• Ψ′s ≤ u−(1−αs)

θUNs = θ̂UNs = x∗s is unique optimal solution.

• Ψ′s > u−(1−αs)

Us(θ) has three extreme points where both θUNs = xs, θUNs = xs are optimal, and x∗s is the other
extreme point that is not optimal.

2. If αs < δu, then consider two cases:

• Ψ′s ≤ u−(1−αs)
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Ωs(θ) decreases over θ < x∗s and increases over θ > x∗s. Ωs(θ)→
u+αs

u−(1−αs)
< 1 as θ→±∞. Under

Assumption 11, f 0
s (θ)

f 1
s (θ)

intersects with Ωs(θ) at one unique point, i.e., θUNs is unique and satisfies

θUNs > θ̂UNs > x∗s.

• Ψ′s > u−(1−αs)

Ωs(θ) decreases from u+αs
u−(1−αs)

to −∞ over θ < xs; increases from −∞ to u+αs
u−(1−αs)

over θ > xs;
decreases over θ ∈ (xs, x∗s) and increases over θ ∈ (x∗s, xs).

Because f 0
s (x∗s)

f 1
s (x∗s)

= 1 and Ωs(x∗s) = 1 +
u−(1−αs)−u+αs

Ψ′s−u−(1−αs)
> 1, under Assumption 11, there exists a

unique θUNs > θ̂UNs > x∗s at which f 0
s (θ)

f 1
s (θ)

intersects with Ωs(θ), and θUNs > xs.

Moreover, if ∃ θ s.t. f 0
s (θ)

f 1
s (θ)

>Ωs(θ), then f 0
s (θ)

f 1
s (θ)

will also intersects with Ωs(θ) at least two more
points over (xs, x∗s).

Next, we show that among all the extreme points, the one satisfying θUNs > x∗s is the optimal.

Re-organize Us(θ), we have

argmax
θ

Us(θ) = argmax
θ

∆s(θ)
(
1−FCs(∆s(θ))

)︸ ︷︷ ︸
:=h1(θ)

+F1
s(θ)

(
1−

u+αs

u−(1−αs)

)
︸ ︷︷ ︸

:=h2(θ)

For any extreme point θ′ ∈ (xs, x∗s), always there exists a point x′ > x∗s satisfying ∆s(x′) = ∆s(θ′),
so that h1(x′) = h1(θ′). Since x′ > θ′, h2(x′) > h2(θ′) holds so that Us(x′) > Us(θ′). In other
words, ∃ a point over (x∗s, xs) whose utility is higher than those of extreme points in (xs, x∗s).
Since θUNs is the optimal over (x∗s, xs). It implies that θUNs is optimal.

3. If αs > δu, then consider two cases:

• Ψ′s ≤ u+αs

1
Ωs(θ)

decreases over θ < x∗s and increases over θ > x∗s. 1
Ωs(θ)

→
u−(1−αs)

u+αs
< 1 as θ→±∞. Under

Assumption 11, f 1
s (θ)

f 0
s (θ)

intersects with 1
Ωs(θ)

at one unique point, i.e., θUNs is unique and satisfies

θUNs < θ̂UNs < x∗s.

• Ψ′s > u+αs

1
Ωs(θ)

decreases from u−(1−αs)
u+αs

to −∞ over θ < zs; increases from −∞ to u−(1−αs)
u+αs

over θ > zs;
decreases over θ ∈ (zs, x∗s) and increases over θ ∈ (x∗s,zs).
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Because f 1
s (x∗s)

f 0
s (x∗s)

= 1 and 1
Ωs(θ)

= 1+
u+αs−u−(1−αs)

Ψ′s−u+αs
> 1, under Assumption 11, there exists a unique

θUNs < θ̂UNs < x∗s at which f 0
s (θ)

f 1
s (θ)

intersects with Ωs(θ), and θUNs < zs.

Moreover, if ∃ θ s.t. f 0
s (θ)

f 1
s (θ)

<Ωs(θ), then f 0
s (θ)

f 1
s (θ)

will also intersect with Ωs(θ) at least two more
points over (x∗s,zs).

We show that among all the extreme points, the one satisfying θUNs < x∗s is the optimal.

For any extreme point θ′ ∈ (x∗s,zs), always there exists a point x′ < x∗s satisfying ∆s(x′) = ∆s(θ′),
so that h1(x′) = h1(θ′). Since x′ < θ′ and 1 < u+αs

u−(1−αs)
, h2(x′) > h2(θ′) holds so that Us(x′) >

Us(θ′). In other words, ∃ a point over (zs, x∗s) whose utility is higher than those of extreme
points in (x∗s,zs). Since θUNs is optimal over (zs, x∗s), it implies that θUNs is optimal.

E.8 Proof of Theorem 23

WLOG, let s := a and −s := b.
Because αa > δu > αb, according to Theorem 22, we have x∗b < θ̂

UN
b < θUNb and x∗a > θ̂

UN
a > θUNa . It

implies that FC
a (x∗a) > FC

a (̂θUNa ) > FC
a (θUNa ) and FC

b (x∗b) < FC
b (̂θUNb ) < FC

b (θUNb ).
Since FC

a (x∗a) ≤ FC
b (x∗b), we have FC

a (θUNa ) < FC
a (̂θUNa ) < FC

b (̂θUNb ) < FC
b (θUNb ), so that EC(θUNa , θUNb ) >

EC (̂θUNa , θ̂UNb ) > 0.

E.9 Proof of Theorem 24

WLOG, let s := a and −s := b.
By Theorem 22, θUNa > θ̂UNa always hold. If marginal manipulation gain of Ga is sufficiently small

such that Ψ′a(∆a(̂θUNa ))→ 0, then θUNa → θ̂UNa ; If marginal manipulation gain of Ga is sufficiently large
such that Ψ′a(∆a(̂θUNa ))→ u−(1−αa), then θUNa � θ̂UNa .

For any given Gb, FC
b (θUNb ) > FC

b (̂θUNb ) > FC
a (̂θUNa ), since any FC

a (θUNa ) ∈ (FC
a (̂θUNa ),1) is attainable by

controlling manipulation cost Ca, it implies that there exists Ca s.t.
∣∣∣EC(θUNa , θUNb )

∣∣∣ < ∣∣∣EC (̂θUNa , θ̂UNb )
∣∣∣

or FC
b (θUNb ) < FC

a (θUNa ).
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E.10 Proof of Theorem 25

WLOG, let s := a and −s := b.
1. αa < δu < αb and FC

a (̂θUNa ) < FC
b (̂θUNb ).

Since αa < δu < αb, we have θ̂UNa > x∗a and θ̂UNb < x∗b.

Under Assumption 11, Ûs(θ) is non-decreasing over (−∞, θ̂UNs ) and non-increasing over (̂θUNs ,+∞).
One of the followings must hold: (1) θ̂Ca > θ̂

UN
a , θ̂Cb < θ̂

UN
b (2) θ̂Ca < θ̂

UN
a , θ̂Cb > θ̂

UN
b . Because if

θ̂Ca > θ̂
UN
a , θ̂Cb > θ̂

UN
b or θ̂Ca < θ̂

UN
a , θ̂Cb < θ̂

UN
b holds, we can always find another pair of thresholds

satisfying fairness C but achieves a higher utility
∑

s=a,b nsÛs(θs) so that (̂θCa , θ̂
C
b ) cannot be

non-strategic optimal fair policy.

Because FC
a (̂θUNa ) < FC

b (̂θUNb ) and FC
a (̂θCa ) = FC

b (̂θCb ), θ̂Ca > θ̂
UN
a > x∗a, θ̂

C
b < θ̂

UN
b < x∗b must hold.

If Ψ′a(∆a(̂θCa )) > u−(1−αa) and Ψ′b(∆b(̂θCb )) > u+αb, then we have θ̂Ca < xa and θ̂Cb > zb, where
xa,zb are defined s.t. Ψ′a(∆a(xa)) = u−(1−αa) and Ψ′b(∆b(zb)) = u+αb. By Theorem 22, Ua(θ) is
increasing over (x∗a, xa) and Ub(θ) is decreasing over (zb, x∗b). It implies that Ua(̂θCa ) > Ua(̂θUNa )
and Ub(̂θCb ) > Ub(̂θUNb ).

2. αa,αb > δu, FC
a (̂θUNa ) < FC

b (̂θUNb ), and αa→ δu.

Since αa,αb > δu, we have θ̂UNa < x∗a and θ̂UNb < x∗b.

Because FC
a (̂θUNa ) < FC

b (̂θUNb ) and FC
a (̂θCa ) = FC

b (̂θCb ), θ̂Ca > θ̂
UN
a , θ̂Cb < θ̂

UN
b must hold.

If αa→ δu, then θ̂UNa → x∗a and θ̂UNa < x∗a < θ̂
C
a hold.

If Ψ′a(∆a(̂θCa )) > u+αa, Ψ′b(∆b(̂θCb )) > u+αb, then we have θ̂Ca < za and θ̂Cb > zb. By Theorem 22,
Ub(θ) is decreasing over (zb, x∗b) implying Ub(̂θCb ) > Ub(̂θUNb ), and Ua(θ) may have additional
extreme points over (x∗a,za). Specifically, as αa → δu, there are two extreme points x1, x2

with x1→ x∗a, x2→ za (by Theorem 22), Because Ua(θ) is increasing over [x1, x2], Ua(x2)→
Ua(θUNa ) = maxθUa(θ), and Ua(x1)→ Ua(x∗a),Ua(̂θUNa )→ Ua(x∗a), we have Ua(̂θCa ) > Ua(̂θUNa ).

3. αa,αb < δu, FC
a (̂θUNa ) < FC

b (̂θUNb ), and αb→ δu.

It can be proved similarly as case 2 and is omitted.
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E.11 Proof of Theorem 26

For any pair (θa, θb) satisfying fairness C, FC
a (θa) = FC

b (θb) should hold. We have θa = (FC
a )−1FC

b (θb) =

ηC(θb) for some strictly increasing function ηC(·).

1. Both Ua(θ) and Ub(θ) have unique extreme points.

Prove θUNa > θCa , θ
UN
b < θCb or θUNa < θCa , θ

UN
b > θCb by contradiction. Suppose θUNa > θCa , θ

UN
b > θCb ,

then we can always find another pair of thresholds (θ′a, θ
′
b) that satisfies C with θCa < θ

′
a ≤ θ

UN
a

and θCb < θ
′
b ≤ θ

UN
b . Because Us(θ) has unique extreme point and it increases over θ < θUNs ,

Us(θCs ) < Us(θ′s),∀s ∈ {a,b} holds, i.e., (θCa , θ
C
b ) can not be the optimal pair that satisfies the

fairness. Similarly, we can show that θUNa < θCa , θ
UN
b < θCb cannot hold.

Let xUNs be defined s.t. ∆s(xUNs ) = ∆s(θUNs ) and xUNs 6= θUNs when θUNs 6= x∗s. Note that xUNs is the
point at which p0

s(xUNs ) = p0
s(θUNs ). WLOG, let s := a and −s := b.

Let xCa := ηC(xUNb ), i.e., (xCa , x
UN
b ) satisfies fairness constraint C. Given any fixed αb, as αa

changes, xUNa , xCa , and θUNa also change. Rewrite them as functions of αa, i.e., xUNa (αa), xCa (αa) :=
ηC(xUNb ;αa), and θUNa (αa).

• αa > δu > αb

xUNa (αa) increases in αa ∈ (δu,1)

lim
αa→δu

xUNa (αa) = x∗a, lim
αa→1

xUNa (αa) = +∞

θUNa (αa) decreases in αa ∈ (δu,1)

lim
αa→δu

θUNa (αa) = x∗a, lim
αa→1

θUNa (αa) = −∞

xCa (αa) is non-decreasing in αa

lim
αa→δu

xCa (αa) = ηC(xUNb ;δu) < +∞, lim
αa→1

xCa (αa) = ηC(xUNb ;1) < +∞

Therefore, ∃ κ > δu s.t. for any αa > κ, xCa (αa) ∈ (θUNa (αa), xUNa (αa)).
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As na → 1, θCa → θUNa . Therefore, ∀αa ∈ (κ,1), there exists τ ∈ (0,1) s.t. ∀na > τ, we have
θCa ∈ (θUNa , xCa ) and θCb < xUNb . It implies that ∆a(θCa ) > ∆a(θUNa ) and ∆b(θCb ) < ∆a(θUNb ) so that
pCa > pUNa and pCb < pUNb .

• αa,αb > δu

From the above, ∃κ > δu s.t. ∀αa > κ, xCa (αa) ∈ (θUNa (αa), xUNa (αa)).

Since Ua(θ), Ub(θ) have unique extreme points, neither θCa > θ
UN
a , θCb > θ

UN
b nor θCa < θ

UN
a , θCb <

θUNb hold. When αa > κ, either of the followings holds: (1) θCa < θ
UN
a , θCb ∈ (θUNb , xUNb ); (2)

θCb < θ
UN
b , θCa ∈ (θUNa , xCa ). It implies pCb > pUNb , pCa < pUNa , or pCa > pUNa , pCb < pUNb .

• αa,αb < δu

Prove in the similar way. ∃κ < δu s.t. ∀αa < κ, xCa (αa) ∈ (xUNa (αa), θUNa (αa)).

Since Ua(θ), Ub(θ) have unique extreme points, either of the followings holds when αa < κ:
(1) θCa > θ

UN
a , θCb ∈ (xUNb , θUNb ); (2) θCb > θ

UN
b , θCa ∈ (xCa , θ

UN
a ). It implies pCa < pUNa , pCb > pUNb , or

pCb < pUNb , pCa > pUNa .

2. At least one of Ua(θ), Ub(θ) has multiple extreme points. WLOG, let s := a and −s := b.

• αa > δu > αb

(i) Ua(θ) has multiple extreme points while Ub(θ) has a unique extreme point.
Let x1, x2 be two extreme points over (x∗a,za) with x2 being the optimal extreme point over
(x∗a,za) and x1 the largest extreme point satisfying x1 < x2. By Theorem 22, θUNa < x∗a.
As nb→ 1, θCb → θUNb and θCa → ηC(θUNb ). If ηC(θUNb ) ∈ (x1, x2) happens to be satisfied under
groups’ feature distributions and manipulation costs, then it’s possible that there exists
a sufficiently large nb such that the a fair threshold pair (θCa , θ

C
b ) results in a higher total

utility than that of (ηC(θUNb ), θUNb ). In this case, θCa > θ
UN
a , θCb > θ

UN
b and θCa ∈ (ηC(θUNb ), x2)

must hold.
Because θUNa < zs, θCa < za, we have ∆a(θUNa ) < ∆a(θCa ) and pCa > pUNa .
Because αb < δu, we have θUNb > x∗b. Since θCb > θ

UN
b , it holds that pCb < pUNb .

(ii) Ua(θ) has a unique extreme point while Ub(θ) has multiple extreme points.
Similar to the reasoning in (i), let x1, x2 be two extreme points over (xb, x∗b) with x1

being the optimal extreme point over (xb, x∗b) and x2 the smallest extreme point satisfying
x1 < x2.
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If (ηC)−1(θUNa ) ∈ (x1, x2) happens to be satisfied, then it’s possible to find a sufficiently large
na such that the fair pair (θCa , θ

C
b ) results in a higher utility than that of (θUNa , (ηC)−1(θUNa )).

In this case, θCa < θ
UN
a , θCb < θ

UN
b and θCb ∈ (x1, (ηC)−1(θUNa )) must hold.

Because θCa < θ
UN
a < x∗a and θUNb > xb, θCb > xb, we have ∆a(θUNa ) > ∆a(θCa ) and ∆b(θUNb ) <

∆b(θCb ). As such, pCa < pUNa , pCb > pUNb .

(iii) Both Ua(θ), Ub(θ) have multiple extreme points.
In this case, θUNa < x∗a and all other extreme points of Ua(θ) fall in (x∗a,za) with za > θ

UN
a ;

θUNb > x∗b and all other extreme points of Ub(θ) fall in (xb, x∗b) with xb < θ
UN
b .

If θCa < θ
UN
a , θCb < θ

UN
b happens to be satisfied, then θCb ∈ (xb, x∗b) must hold. It implies that

∆a(θUNa ) > ∆a(θCa ) and ∆b(θUNb ) < ∆b(θCb ). As such, pCa < pUNa , pCb > pUNb .
Similarly, if θCa > θ

UN
a , θCb > θ

UN
b happens to be satisfied, then θCa ∈ (x∗a,za) must hold. It

implies that pCa > pUNa , pCb < pUNb .

• αa,αb > δu

In this case, θUNa < x∗a, θ
UN
b < x∗b and Ua(θ) (or Ub(θ)) increases over θ < θUNa (or θ < θUNb ). WLOG,

let Ga has multiple extreme points, while Gb may or may not have multiple extreme points.

Note that θCa < θ
UN
a , θCb < θ

UN
b cannot hold, otherwise always there exists a fair threshold pair

(θ′a, θ
′
b) with θ′a ∈ (θCa , θ

UN
a ) and θ′b ∈ (θCb , θ

UN
b ) whose utility is higher than that of (θCa , θ

C
b ).

In contrast, θCa > θ
UN
a , θCb > θ

UN
b may hold. In this case, θCa ∈ (x∗a,za) must hold, while either

θCb < xUNb or θCb > xUNb holds.

Therefore, ∆a(θUNa ) < ∆a(θCa ) and ∆b(θUNb ) < ∆b(θCb ) (or ∆b(θUNb ) > ∆b(θCb )) must hold so that
pCa > pUNa , pCb > pUNb (or pCb < pUNb ).

We can prove in a similar way for the case when αa,αb < δu.

E.12 Proof of Theorem 27

First consider case when αa,αb > δu.
WLOG, let s := a and −s := b.
Define function ηC(·) := (FC

a )−1FC
b (·). If FC

b (xUNb ) < FC
a (x∗a), then ηC(xUNb ) < x∗a.

As αa→ δu, θUNa → x∗a. As αa decreases, ηC(xUNb ) is non-increasing (constant w.r.t. αa for EqOpt
and decreases for DP). ∃ κ > δu s.t. when αa = κ, θUNa = ηC(xUNb ). Then ∀αa < κ, ηC(xUNb ) < θUNa .
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As na→ 1, θCa → θUNa and limna→1 θ
C
b > xUNb . Therefore, ∃τ ∈ (0,1) s.t. for any na > τ, we have

θCa ∈ (ηC(xUNb ), θUNa ) and θCb > xUNb . It implies that pCa < pUNa , pCb < pUNb .
For the case when αa,αb < δu, it can be proved in a similar way and is omitted.

E.13 Proof of Proposition 6

WLOG, let s := a, −s := b.
Since f y

a (x) = f y
b (x), denote ∆(·) = ∆a(·) = ∆b(·).

By Lemma 10, for s ∈ {a,b}, θ̂UNs satisfies f 1
s (̂θUNs )

f 0
s (̂θUNs )

=
u−(1−αs)

u+αs
. Since f y

a (x) = f y
b (x), αb < αa < δu,

u−(1−αb)
u+αb

> u−(1−αa)
u+αa

. Under Assumption 11, we have θ̂UNa < θ̂UNb .
It implies that F1

a(̂θUNa ) < F1
b(̂θUNb ), so that FEqOpta (̂θUNa ) < FEqOptb (̂θUNb ).

Note that FDPs (̂θUNs ) = αsF1
s (̂θUNs ) + (1−αs)F0

s (̂θUNs ). Since F0
a(̂θUNa ) < F0

b(̂θUNb ) and αb < αa, we
have FDPa (̂θUNa ) < FDPb (̂θUNb ).

First, we show that the unfairness can be mitigated under some cost random variable Ca.

Given αb,Cb, θUNb is determined and satisfies
f 0
b (θUNb )

f 1
b (θUNb )

=
u+αb−Ψ′b(∆(θUNb ))

u−(1−αb)−Ψ′b(∆(θUNb )) (by Lemma 10), where

∆(θ) = F0
b(θ)−F1

b(θ) = F0
a(θ)−F1

a(θ).

Given any αa ∈ (αb, δu), if Ga’s cost Ca satisfies
u+αa−Ψ′a(∆(θUNb ))

u−(1−αa)−Ψ′a(∆(θUNb )) =
u+αb−Ψ′b(∆(θUNb ))

u−(1−αb)−Ψ′b(∆(θUNb )) , i.e.,

Ψ′a(∆(θUNb )) =
u−(1−αa)−u+αa

u−(1−αb)−u+αb︸ ︷︷ ︸
>0 (since αa,αb<δu)

·
(
Ψ′b(∆(θUNb ))−u+αb

)︸ ︷︷ ︸
<0 (by Theorem 22)

+u+αa < u+αa < u−(1−αa) (E.2)

then
f 0
a (θUNb )

f 1
a (θUNb )

=
u+αa−Ψ′a(∆(θUNb ))

u−(1−αa)−Ψ′a(∆(θUNb )) holds and θUNa = θUNb .

Therefore, FEqOpta (θUNa ) = FX|Y,S (θUNa |1,a) = FX|Y,S (θUNb |1,b) = FEqOptb (θUNb ).
Because F0

a(θUNa ) = F0
b(θUNb ) also holds,∣∣∣FDPa (θUNa )−FDPb (θUNb )

∣∣∣ = (αa−αb)∆(θUNb )∣∣∣FDPa (̂θUNa )−FDPb (̂θUNb )
∣∣∣ = (αa−αb)∆(̂θUNb ) +αa(F1

b(̂θUNb )−F1
a(̂θUNa ))

+(1−αa)(F0
b(̂θUNb )−F0

a(̂θUNa ))

> (αa−αb)∆(̂θUNb )
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Since θUNb > θ̂UNb > x∗b (by Theorem 22), ∆(̂θUNb ) > ∆(θUNb ).
Therefore,

∣∣∣FDPa (θUNa )−FDPb (θUNb )
∣∣∣ < ∣∣∣FDPa (̂θUNa )−FDPb (̂θUNb )

∣∣∣.
Next, we show that the disadvantaged group can be flipped under some cost random variable Ca.
Given any αa ∈ (αb, δu), let

(
ηC(θUNb ), θUNb

)
be a pair of thresholds satisfying fairness C, then

if Ψ′a(∆(ηC(θUNb ))) ≥ u−(1−αa) = Ψ′a(∆(xa)), we have ∆(ηC(θUNb )) ≥ ∆(xa) implying ηC(θUNb ) ≤ xa.
Since θUNa > xa, ηC(θUNb ) < θUNa must hold.

Therefore, FC
b (θUNb ) = FC

a (ηC(θUNb )) < FC
a (θUNa ).

Lastly, we show that cost Ca mentioned above always exists.
Since Ψ′a(z) = u−(1−αa)

(
FCa(z) + zPCa(z)

)
, condition Ψ′a(∆(ηC(θUNb ))) ≥ u−(1−αa) is equivalent

to FCa(z) + zPCa(z) ≥ 1 with z = ∆(ηC(θUNb )), which is attainable. Similarly, the condition in Eqn.
(E.2) is equivalent to FCa(z) + zPCa(z) = c for some c < 1 with z = ∆(θUNb ), which is also attainable.

E.14 Proof of Proposition 7

Consider the case when αa,αb > δu. WLOG, let s := a, −s := b.
1. C = EqOpt: PEqOpt

s (x) = f 0
s (1)

Because X|Y = y,S = s,y = {0,1}, s = {a,b} have the same variance σ2, and µ1
a−µ

0
a < µ

1
b−µ

0
b, we

have x∗s =
µ1

s+µ0
s

2 and FEqOpta (x∗a) > FEqOptb (x∗b).

When αb > δu, we have θUNb < x∗b and xUNb > x∗b. As αb increases, xUNb and FEqOptb (xUNb ) increase;
as αb → δu, xUNb → x∗b. Therefore, ∃ω > δu s.t. when αb = ω, the consequent xUNb satisfies
FEqOpta (x∗a) = FEqOptb (xUNb ). For any αb < ω, FEqOpta (x∗a) > FEqOptb (xUNb ) holds.

2. C = DP: PDP
s (x) = PX|S (x|s) = αs f 0

s (1) + (1−αs) f 0
s (x).

Since FX|Y,S (x|1, s) < FX|Y,S (x|0, s),∀x, as αa increases, FDPa (x∗a) decreases.

Because X|Y = y,S = s,y = {0,1}, s = {a,b} have the same varianceσ2, we have
F1

a(x∗a)−F1
b(x∗b)

F0
b(x∗b)−F0

a(x∗a)
= 1. If

u+

u−
< 1, u+

u−
<

F1
a(x∗a)−F1

b(x∗b)
F0

b(x∗b)−F0
a(x∗a)

, which implies that δuF1
a(x∗a)+(1−δu)F0

a(x∗a)> δuF1
b(x∗b)+(1−δu)F0

b(x∗b),

i.e., FDPa (x∗a) > FDPb (x∗b) when αa = αb = δu.

As αb→ δu, xUNb → x∗b. As such, there exist ω1,ω2 > δu such that ∀αb < ω1 and ∀αa < ω2, we
have FDPa (x∗a) > FDPb (xUNb ).

The case when αa,αb < δu can be proved similarly and is omitted.
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E.15 Proof of Proposition 8

WLOG, let s := a and −s := b. Let xUNs be defined s.t. ∆s(xUNs ) = ∆s(θUNs ) and xUNs 6= θUNs when
θUNs 6= x∗s,

Since f y
a (x) = f y

b (x), x∗a = x∗b holds. If Us(θ) has multiple extreme points, then according to
Theorem 22, all extreme points fall between xUNs and θUNs .

Since αa > δu > αb, Ua(θ) is increasing over (−∞, θUNa ) and decreasing over (xUNa ,+∞), while
Ub(θ) is increasing over (−∞, xUNb ) and decreasing over (θUNb ,+∞).
• C = EqOpt

Since f y
a (x) = f y

b (x), θEqOpta = θEqOptb . To disincentivize under EqOpt fairness, one of the
following four possibilities must hold: (1) θEqOpta > xUNa , θEqOptb < xUNb (2) θEqOpta < θUNa , θEqOptb >

θUNb (3) θEqOpta < θUNa , θEqOptb < xUNb (4) θEqOpta > xUNa , θEqOptb > θUNb .

Note that (3) and (4) never hold.

Suppose (3) (resp. (4)) holds, then always ∃(θ′a, θ
′
b) satisfying EqOpt with θ′a > θ

EqOpt
a , θ′b >

θEqOptb (resp. θ′a < θEqOpta , θ′b < θEqOptb ) s.t. (θ′a, θ
′
b) attains a higher utility. In other words,

(θEqOpta , θEqOptb ) cannot be optimal fair policies. It concludes that (3) and (4) cannot hold.

Note that (1) and (2) cannot be satisfied, because xUNb < x∗b = x∗a < xUNa , θUNb > x∗b = x∗a > θ
UN
a , and

θEqOpta = θEqOptb must hold.

Therefore, none of four cases can be satisfied. EqOpt cannot disincentivize both groups.

• C = DP

To disincentivize under DP fairness, one of the following four possibilities must hold: (1)
θDPa > xUNa , θDPb < xUNb (2) θDPa < θUNa , θDPb > θUNb (3) θDPa < θUNa , θDPb < xUNb (4) θDPa > xUNa , θDPb > θUNb .

Similar as the case when C = EqOpt, (3) and (4) never hold.

Note that in order to satisfy DP, it is impossible for (2) to hold. Because αa > αb and f y
a (x) = f y

b (x),
θDPb < θDPa must hold under DP. Moreover, θUNa < x∗a = x∗b < θ

UN
b . Therefore, (2) never hold.

However, (1) is likely to be satisfied.

When Ua(θ), Ub(θ) have unique extreme point.
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Re-write xUNs as a function of αs: xUNs (αs), take derivative of FDPb (xUNs (αs)) w.r.t. αs, we have

dFDPs (xUNs (αs))
dαs

= F1
s(xUNs (αs))−F0

s(xUNs (αs))︸ ︷︷ ︸
term 1=−∆s(xUNs (αs))

+ PX|S (xUNs (αs)|s) ·
dxUNs (αs)

dαs︸ ︷︷ ︸
term 2

Note that limαa→1FUNa (xUNa (αa)) = FUNa (+∞) = 1, limαb→0FUNb (xUNb (αb)) = FUNb (−∞) = 0,

limαa→δu FUNa (xUNa (αa)) = δuF1
a(x∗a) + (1−δu)F0

a(x∗a),

limαb→δu FUNb (xUNb (αb)) = δuF1
b(x∗b) + (1−δu)F0

b(x∗b).

Since x∗a = x∗b, limαb→δu FUNb (xUNb (αb)) = limαa→δu FUNa (xUNa (αa)).

If ∆b(x∗b) > PX|S (x∗b|b) ·
dxUNb (αb)

dαb

∣∣∣∣
αb=δu

(for a special case where X|Y = y,S = s is Gaussian dis-
tributed, it can be satisfied if X|Y = 1,S = s and X|Y = 0,S = s are sufficiently separable),

then
dFDPb (xUNb (αb))

dαb

∣∣∣∣
αb=δu

< 0, and ∃I ⊂ (0, δu) such that ∀αb ∈ I, we have FDPb (xUNb (αb)) >

limαa→δu FUNa (xUNa (αa))

Therefore, ∃(αa,αb) with αa→ δu and αb ∈ I s.t. FDPb (xUNb (αb)) > FUNa (xUNa (αa)).

In this case, if na is sufficiently large, we have θDPa > xUNa and θDPb < xUNb .
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