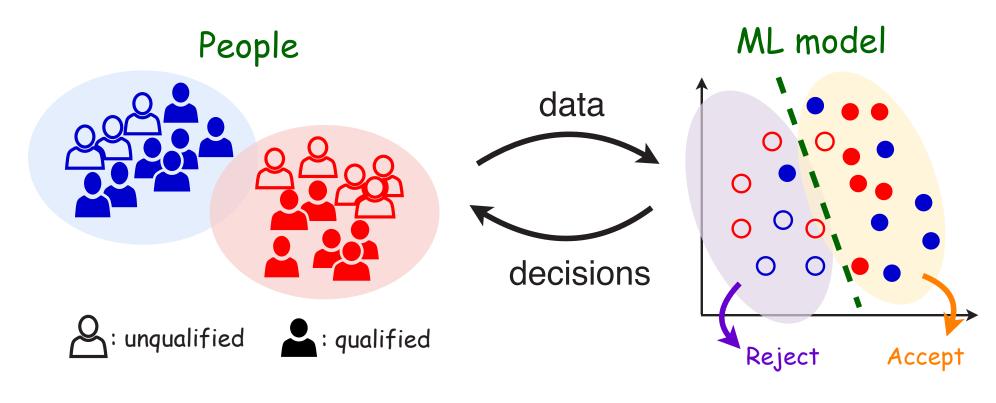


How Do Fair Decisions Fare in Long-term Qualification?

Xueru Zhang*, Ruibo Tu*, Yang Liu, Mingyan Liu, Hedvig Kjellström, Kun Zhang, Cheng Zhang

OBJECTIVES

- Setting: a decision-maker aims to select people from applicants that are qualified for tasks.
- Impose fairness constraint to make fair decisions (e.g., same acceptance rates across groups)
- Interplay between ML models and people
 - ML decisions affect people's behaviors
 - People generate data for training ML models



Goal: study the long-term impact of the fairness constraints on qualifications of different groups

MODEL

Two demographic groups G_a , G_b

- Sensitive attribute $S \in \{a, b\}$
- Time-varying feature $X_t \in \mathbb{R}^d$ and qualification state $Y_t \in \{0, 1\}$
 - Feature generation process: time-invariant $P_{X|Y,S}(x|y,s) = \mathbb{P}(X_t = x|Y_t = y, S = s)$
 - Transitions of qualification state: time-invariant $T^s_{ud} = \mathbb{P}(Y_{t+1} = 1 | Y_t = y, D_t = d, S = s)$
- Qualification rate $\alpha_t^s = P_{Y_t|S}(1|s)$
- Inequality measure: disparity between α_t^a and α_t^b

Myopic decision-maker's optimal fair policies π^a_t, π^b_t

$$\max_{\pi^a, \pi^b} \quad \boldsymbol{U}_t(\pi^a, \pi^b) = \mathbb{E}[R(D_t, Y_t)]$$

- Unconstrained (UN)
- Demographic Parity (DP): $\mathcal{P}_{\mathrm{DP}}^{s}(x) = P_{X|S}(x|s)$
- s.t. $\mathbb{E}_{X_t \sim \mathcal{P}^a_{\mathcal{C}}}[\pi^a(X_t)] = \mathbb{E}_{X_t \sim \mathcal{P}^b_{\mathcal{C}}}[\pi^b(X_t)]$ Equal Opportunity (Eqopt): $\mathcal{P}^s_{\text{Eqopt}}(x) = P_{X|Y,S}(x|1,s)$
 - Decision $D_t \in \{0,1\}$ is based on $\pi_t^s(x) = \mathbb{P}(D_t = 1|X_t = x, S = s)$
 - Utility function $R(1,1) = u_+$, $R(1,0) = -u_-$, R(0,1) = R(0,0) = 0

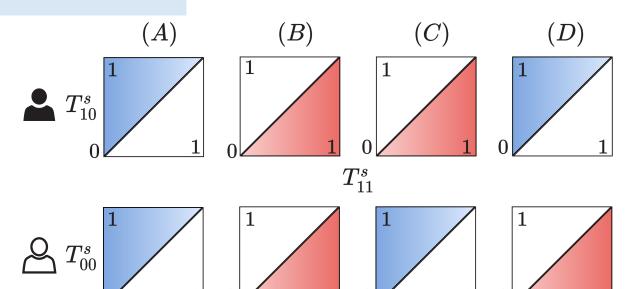
EQUILIBRIUM ANALYSIS

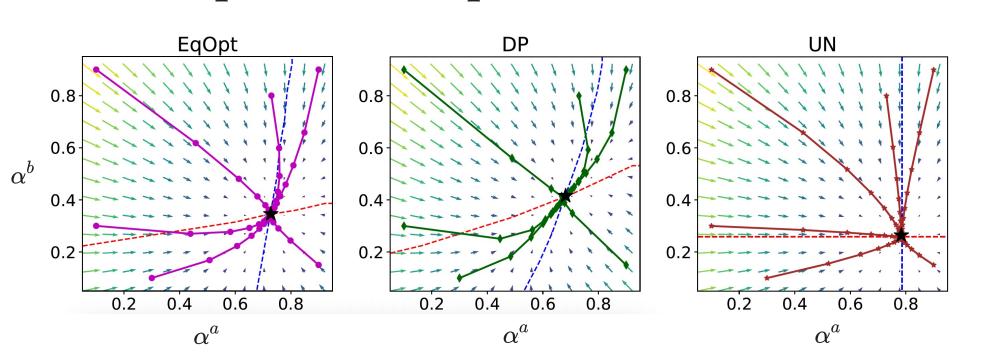
- Optimal (fair) policies: threshold policies are optimal.
- Existence of equilibrium: $\forall T_{dy}^s \in (0,1)$, the dynamics have at least one equilibrium $(\widehat{\alpha}^a, \widehat{\alpha}^b)$.
- Uniqueness of equilibrium: sufficient conditions for the uniqueness of equilibrium under (A)(B).

Two effects on people

– "Lack of motivation"

 $T_{y1}^s \leq T_{y0}^s$ - "Leg-up" $T_{y1}^s \geq T_{y0}^s$





LONG-TERM IMPACT OF FAIRNESS CONSTRAINTS

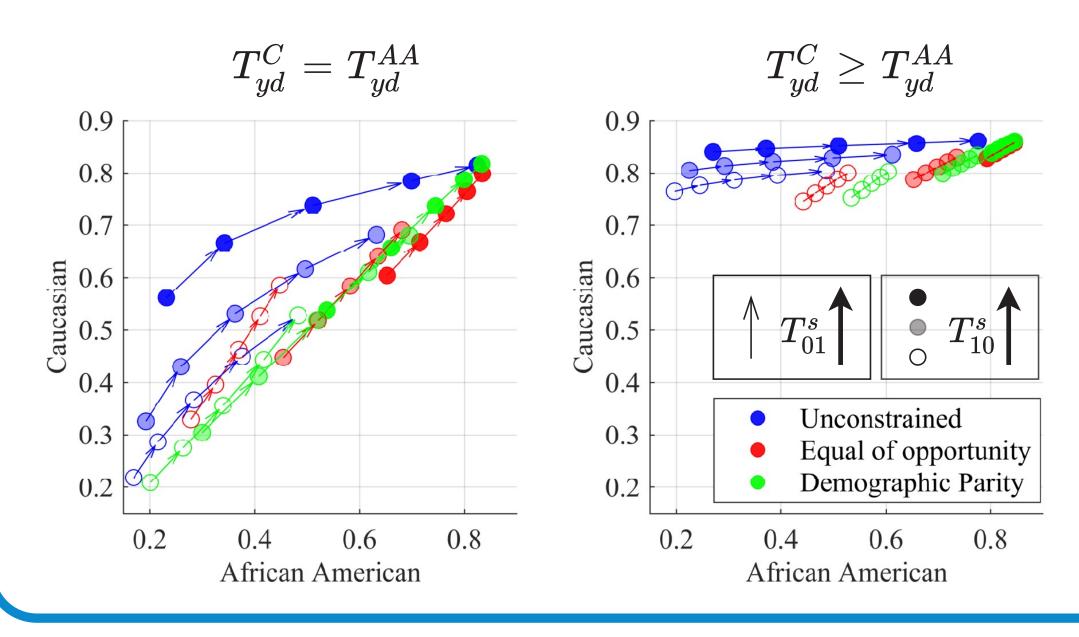
- Natural equality: $\forall P_{X|Y,S}$ and $\forall \alpha \in (0,1)$, \exists transitions T^s_{ud} under (A) or (B) s.t. $\widehat{\alpha}^a_{UN} = \widehat{\alpha}^b_{UN} = \alpha$.
 - If $P_{X|Y,S=a}=P_{X|Y,S=b}$, then fairness $\mathcal{C}=\mathrm{DP}$ or EqOpt maintains equality: $\widehat{\alpha}_{\mathcal{C}}^a=\widehat{\alpha}_{\mathcal{C}}^b$
 - If $P_{X|Y,S=a} \neq P_{X|Y,S=b}$, then fairness $\mathcal{C} = \text{DP}$ or EqOpt violates equality: $\widehat{\alpha}_{\mathcal{C}}^a \neq \widehat{\alpha}_{\mathcal{C}}^b$
- Natural inequality ($\widehat{\alpha}_{\mathbf{UN}}^a \neq \widehat{\alpha}_{\mathbf{UN}}^b$):
 - Case 1: due to different transitions
 - Under (A), DP and EqOpt exacerbate inequality
 - Under (B), DP and EqOpt mitigate inequality
 - Disadvantaged group remains being disadvantaged
 - Case 2: due to different feature that generated

Under some conditions on $P_{X|Y,S}$, u_+, u_- and T^s_{ud} satisfying (B):

- EqOpt mitigates inequality and disadvantaged group remains being disadvantaged
- DP either mitigates inequality, or flips disadvantaged group

NUMERICAL RESULTS

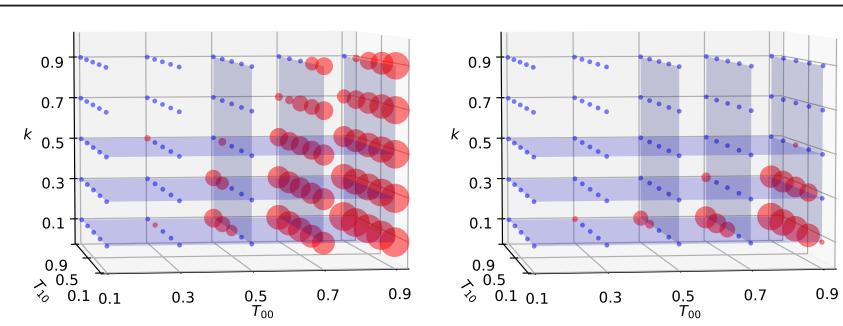
- FICO score dataset
 - Effect of transition intervention



COMPAS dataset

Oscillation may happen in the long-run

	$\widehat{\alpha}_{\theta_H} < \widehat{\alpha}^*$	$\widehat{\alpha}_{\theta_L} < \widehat{\alpha}^*$	osi*	osi_H	osi_L
\overline{A}	0	1	0.29	0.12	0.36
B	0.99	0.01	0	0	0
C	0.37	0.28	0	0	0
D	0.79	0.63	0.06	0	0.13
0.		0.9			



EFFECTIVE INTERVENTION

- Policy Intervention:
- Sub-optimal fair policies can improve $(\widehat{\alpha}^a, \widehat{\alpha}^b)$
- \exists threshold policies s.t. $\widehat{\alpha}^a=\widehat{\alpha}^b$ as long as T^a_{yd} and T^b_{yd} are not different significantly
- Transition Intervention:
- Increasing any T^s_{ud} increases $\widehat{\alpha}^s$

CONCLUSIONS

 \bigstar $(\widehat{\alpha}_{DP}^a, \widehat{\alpha}_{DP}^b)$

- Construct a POMDP framework for sequential decision-making and analyze its equilibrium.
- Imposing fairness constraints may or may **not** help in promoting long-term equality.
- Importance of understanding real-world dynamics in decision-making systems.