

EXISTING WORK

Fairness Interventions as (Dis)Incentives for Strategic Manipulation

Xueru Zhang¹, Mohammad Mahdi Khalili², Kun Jin³, Parinaz Naghizadeh¹, Mingyan Liu³

MODEL: STRATEGIC INTERACTION

Two demographic groups \mathcal{G}_a , \mathcal{G}_b

• Sensitive attribute $S \in \{a, b\}$ • Features $X \in \mathbb{R}^d$

- feature generation $P_{X|YS}(x|y,s)$
- Qualification state $Y \in \{0, 1\}$
 - qualification rate $\alpha_s = P_{Y|S}(1|s)$
- Decision $D \in \{0, 1\}$
 - *policy* $\pi_s(x) = P_{D|XS}(1|x,s)$
- Manipulation action $M \in \{0, 1\}$
 - Manipulation doesn't affect *Y* but results in better feature distribution
 - Manipulation cost $C_s \ge 0$

Individual best response

Manipulate or not?

 $P_{D|YMS}(1|y,1,s) - C_s$

Benefit with manipulation – cost

• Manipulation probability:

 $\Pr(C_s \le P_{D|YMS}(1|y, 1, s) - P_{D|YMS}(1|y, 0, s))$

THEORETICAL RESULTS

EXPERIMENTS: FICO CREDIT SCORE

• *Hispanic & Black*: strategic policy mitigates unfairness

- Most works studied these two problems separately
- Existing Stackelberg game formulation assumes:
 - Manipulation outcome is deterministic & known
 - Manipulation cost is a deterministic function of features before & after manipulation

• A new Stackelberg game formulation:

- Uncertain manipulation outcomes
- Manipulation cost is determined before observing manipulation outcomes
- Understand the impacts strategic manipulation and fairness intervention have on each other

Fairness Constraint

• Individual chooses to manipulate at cost if manipulation brings the higher utility

• Characterize the equilibrium strategies of individuals & decision-maker (four types of policies) • Impact of decision-maker's anticipation of strategic manipulation

– Strategic policy over(under) accepts majority-qualified(majority-unqualified) group – Anticipation of manipulation can **worsen** the fairness of a strategic policy when one group is majority-qualified while the other is majority-unqualified

– When both groups are majority-unqualified, a strategic policy may mitigate unfairness and even flip the disadvantaged group

• Impact of fairness interventions on policies and individuals' manipulation

– Conditions under which non-strategic decision maker may benefit from fairness constraints – Conditions under which fairness constraints serve as (dis)incentives for strategic manipulation

• Black & G_a : strategic policy worsens unfairness							
	\mathcal{G}_a	strategic $C_a = C_b C_a \neq C_b$		non-strategic			
EqOpt	Caucasian	0.355	0.556	0.136			
	Hispanic	0.292	0.493	0.034			
	Asian	0.333	0.533	0.123			
DP	Caucasian	0.611	0.680	0.449			
	Hispanic	0.421	0.490	0.242			
	Asian	0.634	0.703	0.522			

• White & Asian: non-strategic fair policy has higher utilities

	$U_a(\widehat{ heta}_a^{ ext{UN}})$	$U_a(\widehat{ heta}_a^{\mathcal{C}})$	$U_b(\widehat{ heta}_b^{ ext{UN}})$	$U_b(\widehat{ heta}_b^{\mathcal{C}})$
10)	-0.190	-0.189	0.024	0.034
,1)	0.396	0.397	0.181	0.201

• More results:

