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Abstract

The use of machine learning models in high-stake applications (e.g., healthcare,
lending, college admission) has raised growing concerns due to potential biases
against protected social groups. Various fairness notions and methods have been
proposed to mitigate such biases. In this work, we focus on Counterfactual Fairness
(CF), a fairness notion that is dependent on an underlying causal graph and first
proposed by Kusner et al. [26]; it requires that the outcome an individual perceives
is the same in the real world as it would be in a "counterfactual" world, in which the
individual belongs to another social group. Learning fair models satisfying CF can
be challenging. It was shown in [26] that a sufficient condition for satisfying CF is
to not use features that are descendants of sensitive attributes in the causal graph.
This implies a simple method that learns CF models only using non-descendants of
sensitive attributes while eliminating all descendants. Although several subsequent
works proposed methods that use all features for training CF models, there is no
theoretical guarantee that they can satisfy CF. In contrast, this work proposes a new
algorithm that trains models using all the available features. We theoretically and
empirically show that models trained with this method can satisfy CF1.

1 Introduction

While machine learning (ML) has had significant impacts on human-involved applications (e.g.,
lending, hiring, healthcare, criminal justice, college admission), it also poses significant risks,
particularly regarding unfairness against protected social groups. For example, it has been shown
that computer-aided clinical diagnostic systems can exhibit discrimination against people of color
[9]; face recognition surveillance technology used by police may have racial bias [1]; a decision
support tool COMPAS used for predicting the recidivism risk of defendants is biased against African
Americans [5]. Various fairness notions have been proposed to mathematically measure the biases
in ML based on observational data. Examples include: i) unawareness which prohibits the use of
sensitive attribute in model training process; ii) parity-based fairness that requires certain statistical
measures to be equalized across different groups, e.g., equalized odds [20], equal opportunity [20],
statistical parity [13], predictive parity [20]; iii) preference-based fairness that is inspired by the
fair-division and envy-freeness literature in economics, it ensures that given the choice between
various decision outcomes, every group of users would collectively prefer its perceived outcomes,
regardless of the (dis)parity compared to the other groups [43, 12].

However, the fairness notions mentioned above do not take into account the causal structure and
relations among different features/variables. Recently, Kusner et al. [26] proposed a fairness notion
called Counterfactual Fairness (CF) based on the causal model and counterfactual inference; it

1The code repository for this work can be found in https://github.com/osu-srml/CF_
Representation_Learning

37th Conference on Neural Information Processing Systems (NeurIPS 2023).
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requires that the ML outcome received by an individual should be the same in the real world as
it would be in a counterfactual world, in which the individual belongs to a different social group.
To satisfy CF, [26] shows that it is sufficient to make predictions only using the features that are
non-descendants of the sensitive attribute node in the causal graph. However, this approach may
discard crucial data, as descendants of sensitive attribute may contain useful information that is
critical for prediction and downstream tasks. In this work, we show that using only non-descendants
is not a necessary condition for achieving CF. In particular, we propose a novel method for generating
counterfactually fair representations using all available features (including both descendants and
non-descendants of sensitive attribute). The idea is to first generate counterfactual samples of each
data point based on the causal structure, and the fair representations can be generated subsequently
by applying a symmetric function to both factual (i.e., original data) and counterfactual samples. We
can theoretically show that ML models (or any other downstream tasks) trained with counterfactually
fair representations can satisfy perfect CF. Experiments on real data further validate our theorem.

It is worth noting that several subsequent studies of [26] also proposed methods to learn CF models
using all available features, e.g., [14, 36, 24, 10, 2]. However, these methods are empirical and there
is no theoretical guarantee that these methods can satisfy (perfect) CF. In Appendix A, we introduce
more related work and discuss the differences with ours. Our main contributions are as follows:

• We propose a novel and efficient method for generating counterfactually fair representations. We
theoretically show that ML models trained with such representations can achieve perfect/exact CF.

• We extend our method to path-dependent counterfactual fairness [26]. That is, for any unfair path
in a causal graph, we can generate representations that mitigate the impact of sensitive attributes on
the prediction along the unfair path.

• We conduct extensive experiments (across different causal models, datasets, and fairness defini-
tions) to compare our method with existing methods. Empirical results show that 1) our method
outperforms the method of only using non-descendants of sensitive attributes; 2) existing heuristic
methods for training ML model under CF fall short of achieving perfect CF fairness.

2 Problem Formulation

Consider a supervised learning problem where the training dataset consists of triples V = (X,A, Y ),
where random vector X = [X1, · · · , Xd]

⊤ ∈ X are observable features, A ∈ A is the sensitive
attribute (e.g., race, gender) indicating the group membership, and Y ∈ Y ⊆ R is the label/output.
Similar to [31], we associate the observable V = (X,A, Y ) with a causal model M = (U, V, F ),
where U is a set of unobserved (exogenous) random variables that are factors not caused by any
variable in V , and F = {f1, f2, · · · , fd, fd+1, fd+2} is a set of functions (a.k.a. structural equations
[4]) with one for each variable in V . WLOG, let

Xi = fi(pai, Upai), i ∈ {1, · · · , d}; A = fd+1(pad+1, Upad+1
); Y = fd+2(pad+2, Upad+2

),

where pai and Upai are the sets of observable and unobservable variables that are the parents of Xi.
pad+1 and pad+2 (resp. Upad+1

and Upad+2
) are the observable (resp. unobservable) variables that

are parents of A and Y , respectively. Assume (U, V ) can be represented as a directed acyclic graph.

Our goal is to learn a predictor Ŷ = gw(R) parameterized by weight vector w ∈ Rdw from training
data. Here R = h(X,A;M) is a representation generated using (X,A) and causal model M. Define
loss function l : Y × R → R where l(Y, gw(R)) is the loss associated with gw in estimating Y
using representation R. We denote the expected loss with respect to the joint probability distribution
of (R, Y ) by L(w) := E{l(Y, gw(R))}. Throughout the paper, we use small letters to denote the
realizations of random variables, e.g., (x, a, y) is a realization of (X,A, Y ).

2.1 Background: Intervention and Counterfactual Inference

Given structural equations and the distribution of unobservable variables U , we can calculate the
distribution of any observed variable Vi ∈ V and even study the impact of intervening certain
observed variables on other variables. Specifically, the intervention on variable Vi can be done by
simply replacing structural equation Vi = fi(pai, Upai) with equation Vi = v for some v. To study
the impact of intervening Vi, we can use new structural equations to find resulting distributions of
other observable variables and see how they may differ as v changes.
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The specification of structural equations F further allows us to compute counterfactual quantities,
i.e., computing the value of Y if Z had taken value z for two observable variables Z, Y . Because
the value of any observable variable is fully determined by unobserved variables U and structural
equations, the counterfactual value of Y for a given U = u can be computed by replacing structural
equations for Z as Z = z. Such counterfactual value is typically denoted as YZ←z(u).

The goal of counterfactual inference is to compute the probabilities Pr{YZ←z(U)|O = o} for
some observable variables O. It can be used to infer "the value of Y if Z had taken value z in the
presence of evidence O = o". Based on [16], Pr{YZ←z(U)|O = o} can be computed in three steps:
(i) abduction that finds posterior distribution of U given O = o for a given prior on U ; (ii) action that
performs intervention Z = z by replacing structural equations of Z; (iii) prediction that computes
the distribution of Y using new structural equations and the posterior Pr{U |O = o}

2.2 Counterfactual Fairness

Without fairness consideration, simply learning a predictor by minimizing the expected loss, i.e.,
argminw L(w), may exhibit biases against certain social groups. One way to tackle unfairness issue
is to enforce a certain fairness constraint when learning the predictor. In this work, we consider
counterfactual fairness as formally defined below.

Definition 1 (Counterfactual Fairness (CF) [26]). We say a predictor Ŷ = gw(R) satisfies CF if the
following holds for every (x, a):

Pr{ŶA←a(U) = y|X = x,A = a} = Pr{ŶA←a′(U) = y|X = x,A = a}, ∀y ∈ Y, a′ ∈ A.

This notion suggests that any intervention on sensitive attribute A should not change the distribution
Ŷ given that U follows distribution PrM{U |X = x,A = a}2. In other words, adjusting A should
not affect the distribution of Ŷ if we keep other factors that are not causally dependent on A constant.
Learning a fair predictor satisfying CF can be challenging. As shown in [26], a sufficient condition
for satisfying CF is to not use features that are descendant of A. In other words, given training
dataset D = {x(i), a(i), y(i)}ni=1, it suffices to minimize the following empirical risk to satisfy CF:

argminw
1
n

∑n
i=1 E

{
l(y(i), gw(U

(i), x
(i)
⊁A))|X = x(i), A = a(i)

}
,

where x
(i)
⊁A are non-descendant features of A corresponding to i-th sample, and the expectation is

with respect to the random variable U (i) ∼ PrM{U |X = x(i), A = a(i)}.

Although removing the descendants of A from the input is a simple method to address the unfairness
issue, it comes at the cost of losing important information. In some examples (e.g., the ones provided
in [26]), it is possible that all (or most of) the features are descendants of A and need to be eliminated
when training the predictor. We thus ask:

Can we train a predictor that satisfies perfect CF using all the available features as input?

Although several recently proposed methods try to train CF predictors using all the available features
(including both non-descendants and descendants of A) [14, 36], there is no guarantee that they
can satisfy CF. In contrast, our work aims to propose a theoretically-certified algorithm that finds
counterfactually fair predictors using all the available features.

3 Proposed Method

In this section, we introduce our algorithm for training a supervised model under CF. Our method
consists of three steps: (i) counterfactual samples generation; (ii) counterfactually fair representation
generation; and (iii) fair model training. We present each step in detail as follows.

1. Counterfactual samples generation. We first introduce the definition of counterfactual samples
and then present the method for generating them. They will be used for generating CF representations.

2Sometimes, we use subscript M to emphasize that the distribution is calculated based on causal model M
which we assume is known.
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Definition 2 (Counterfactual Sample). Consider i-th data point in training dataset with feature vector
x(i) and sensitive attribute a(i). Let u(i) be the unobservable variable associated with (x(i), a(i))
sampled from distribution PrM{U |X = x(i), A = a(i)} under causal model M = (V,U, F ). Then,
(x̌(i), ǎ(i)) is a counterfactual sample with respect to (x(i), a(i)) if ǎ(i) ̸= a(i) and x̌(i) is generated
using structural equations F , unobservable variable U = u(i), and intervention A = ǎ(i).3

Equivalently, we can represent the counterfactual feature x̌(i) = X̌
(i)

A←ǎ(i)(u
(i)). Next, we use an

example to clarify the generation process of counterfactual sample.
Example 1 (Law School Success [26]). Consider a group of students, each has observable features
grade-point average (GPA) before entering college XG and entrance exam score (LSAT) XL. Let
first-year average grade in college (FYA) be label Y to be predicted and let race Q and sex S be the
sensitive attributes. Suppose there are three unobservable variables UG, UL, UF representing errors
and the relations between these variables can be characterized by the following structural equations:

XG = GPA = bG + wQGQ+ wSGS + UG,

XL = LSAT = bL + wQLQ+ wSLS + UL,

Y = FYA = bF + wQFQ+ wSFS + UF ,

where (bG, bL, bF , w
Q
G , w

S
G, w

Q
L , w

S
L, w

R
F , w

S
F ) are the parameters of the causal model, which we

assume are given4. Consider one student with x(0) = (x
(0)
G , x

(0)
L ) and a(0) = (q(0), s(0)). To generate

its counterfactual sample, we first compute the underlying unobservable variables (u(0)
G , u

(0)
L ):(

u
(0)
G , u

(0)
L

)
=

(
x
(0)
G − bG − wQGq

(0) − wSGs
(0), x

(0)
L − bL − wQL q

(0) − wSLs
(0)

)
.

Then, for any (q̌, š) ∈ A−{(q(0), s(0))}, the corresponding counterfactual features can be generated:

x̌
(0)
G = bG + wQG q̌ + wSGš+ u

(0)
G = x

(0)
G + wQG(q̌ − q(0)) + wSG(š− s(0))

x̌
(0)
L = bL + wQL q̌ + wSLš+ u

(0)
L = x

(0)
L + wQL (q̌ − q(0)) + wSL(š− s(0))

In the above example, finding unobservable variables is straightforward due to the additive error
model (i.e., each observable variable Vi is equal to fi(pai) + Ui ). For other causal models that
are non-additive, we can leverage techniques such as Variational Auto Encoder (VAE) to first learn
distribution PrM{U |X = x,A = a} and then sample from this distribution, see e.g., [21, 24, 30, 37].

2. Counterfactually fair representation generation. Next, we introduce how to generate counter-
factually fair representation R = h(X,A;M, s) using counterfactual samples generated above.

Algorithm 1 CF Representation Generation h(x, a;M, s)

Input: Causal model M, observable features (x, a), sym-
metric function s

1: Sample u from distribution PrM{U |X = x,A = a}
2: Use u and causal model M to generate |A|−1 counter-

factual samples {(x̌[1], ǎ[1]), . . . , (x̌[|A|−1], ǎ[|A|−1])},
where ǎ[j] ∈ A− {a}.

3: Use symmetric function s(.) to generate representation

R = [s(x, x̌[1], . . . , x̌[|A|−1]), u]

Output: counterfactually fair representation R

The complete procedure is given in Al-
gorithm 1. The idea is to first apply a
symmetric function s(·) to both factual
feature x and counterfactual features
{x̌[j]}|A|−1j=1 . This output can be lever-
aged to generate CF representation. The
symmetry of the function is formally de-
fined below.
Definition 3. A function s : X |A| → R
is symmetric if the output is the same for
any permutation of inputs.

One example of symmetric function is
the average over all inputs, e.g., s(x, x̌[1], . . . , x̌[|A|−1]) = (x+x̌[1]+...+x̌[|A|−1])

|A| .

3. Fair model training. Given CF representation R = h(X,A;M, s) generated by Algorithm 1,
we can use it directly to learn a predictor that satisfies CF. Indeed, we can show that any predictor
learned based on CF representation satisfies perfect CF, as stated in Theorem 1 below.

3If A is non-binary, we can generate |A| − 1 counterfactual samples for each ǎ ∈ A− {a}. We can use x̌[j]

to represent j-th counterfactual sample corresponding to x and the j-th element in A− {a}.
4The parameters of a causal model can be found using observational data and by the maximum likelihood

estimation. As a result, we can assume that the parameters of the causal model are given.

4



Theorem 1. If representation is generated based on h(x, a;M, s) in Algorithm 1, then the predictor
gw(h(x, a;M, s)) satisfies perfect CF for all w ∈ Rdw .

Because gw(h(x, a;M, s)) satisfies CF for all parameter w, we can find the optimal predictor directly
by solving an unconstrained optimization:

w∗ = argmin
w

1

n

n∑
i=1

l
(
y(i), gw(h(x

(i), a(i);M, s)
)

Under Theorem 1, it is guaranteed that the optimal predictor gw∗ satisfies counterfactual fairness.

Inference. After learning the optimal CF predictor gw∗ , we can use it to make fair predictions about
new data. At the inference phase, for a given example (x, a), we first generate its CF representation
using Algorithm 1 and find the prediction ŷ using gw∗ . That is, ŷ = gw∗(h(x, a;M, s)).

Discussion. Compared to [26], our method leverages all available features and can attain much better
performance without sacrificing fairness. We will further validate this in experiments (Section 5).
As mentioned earlier, there are existing methods that also use all features to train predictors under
CF constraint. For instance, the method proposed in [24] also generates the counterfactual sample
for each training data and it trains model using both factual and counterfactual samples; [14] learns
CF predictor by adding a penalty term to the learning objective function, where the penalty term is
calculated based on the counterfactual samples. While these two methods also leverage counterfactual
samples to reduce bias, they cannot satisfy perfect CF and there is no theoretical guarantee.

4 Path-dependent Counterfactual Fairness

In this section, we consider a variant notion of CF called Path-dependent Counterfactual Fairness
(PCF). We will show how the proposed method can be adapted to train predictors under PCF. Let G
be the graph associated with causal model M, and PGA be the set of all unfair directed paths from
sensitive attribute A to output Y . Further, we define XPc

GA
as the features that are not present in any

unfair path in PGA and XPGA
as the features along the unfair paths. Path-dependent Counterfactual

Fairness is defined as follows.
Definition 4 (Path-dependent Counterfactual Fairness (PCF) [26]). We say Ŷ = gw(R) satisfies PCF
with respect to path set PGA if the following holds for every (x, a): ∀y ∈ Y, a′ ∈ A

Pr{ŶA←a,XPc
GA
←xPc

GA

(U) = y|X = x,A = a} = Pr{ŶA←a′,XPc
GA
←xPc

GA

(U) = y|X = x,A = a}

Algorithm 2 PCF Representation Generation h(x, a;M, s,XPc
GA

)

Input: Causal model M, Set of variables XPc
GA

that are not along
unfair paths, (x, a), symmetric function s

1: Sample u from distribution PrM{U |X = x,A = a}
2: Apply intervention XPc

GA
= xPc

GA
to get a new model M′.

3: Use u and causal model M′ to generate |A|−1 counterfactual
features {(x̌[1]

PGA
, ǎ[1]), . . . , (x̌

[|A|−1]
Pc

GA

, ǎ[|A|−1])}, where ǎ[j] ∈
A− {a}.

4: Use symmetric function s(.) to generate representation

R =
[
xPc

GA
, s(xPGA

, x̌
[1]
PGA

, . . . , x̌
[|A|−1]
PGA

), u
]

Output: path-dependent counterfactually fair representation R

This notion suggests that if we
fix attributes XPc

GA
and let U

follows posterior distribution
PrM{U |X = x,A = a}, then
variable A should not affect the
predictor along unfair path(s) in
PGA . Note that PCF reduces
to CF if XPc

GA
= ∅. We want

to emphasize that path-specific
counterfactual fairness defined
in [7] is different from Defi-
nition 4. Path-specific coun-
terfactual fairness [7] consid-
ers a baseline value a′ for A,
and requires A = a′ propagate
through unfair paths, and the true value of A propagates through other paths. In contrast, in path-
dependent CF, there is no baseline value for A, and A should not cause Y through unfair paths.

In this section, we describe how our proposed method could be adapted to the path-dependent case.
Before describing the algorithm formally, we present an example.
Example 2 (Representation for PCF). Consider a causal graph shown in Figure 1. In this graph,
there are two directed paths from A to Y . We assume that A is binary, and PGA = {(A → X2 → Y )},
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and XPc
GA

= {X1}. Based on Definition 4, given sample (x, a), after intervention X1 = x1 (Figure
2), intervention on A should not affect the prediction outcome. We generate a representation in the
following steps, 1) we find distribution PrM{U |X = x,A = a} and sample u from this distribution.
2) Using the graph in Figure 2, we generate counterfactual value for X2. That is, for a given
structural equation X2 = f2(A,X1, U), we generate counterfactual value x̌2 = f2(a

′, x1, u), where
a′ ̸= a. 3) We generate representation R = [x1, s(x2, x̌2), u], where s is a symmetric function.

Figure 1: The causal
graph in Example 2.
There are two directed
paths from A to Y .

Figure 2: The causal
graph in Example 2 af-
ter applying interven-
tion XPc

GA
= xPc

GA

Based on the above example, the represen-
tation should be generated based on causal
graph G after intervention XPc

GA
= xPc

GA
.

The detailed representation generation proce-
dure under PCF is stated in Algorithm 2.
Let h(x, a;M, s,XPc

GA
) be the function that

generates such a presentation using Algo-
rithm 2. We have the following theorem for
h(x, a;M, s,XPc

GA
).

Theorem 2. Assume R = h(x, a;M, s,XPc
GA

)

is representation generated based on Algorithm
2. Then the predictor gw(h(x, a;M, s,XPc

GA
))

satisfies perfect PCF for all w ∈ Rdw .

The above theorem implies if we train a predictor using {r(i) = h(x(i), a(i);M, s,XPc
GA

), y(i)}ni=1,
and we use r = h(x, a;M, s,XPc

GA
) at the time of inference, then PCF is satisfied by the predictor.

5 Experiment

Datasets and Causal Models. We use the Law School Success dataset [40] and the UCI Adult
Income Dataset [25] to evaluate our proposed method. The Law School Success dataset consists
of 21,790 students across 163 law schools in the United States. It includes five attributes for each
student: entrance exam score (LSAT), grade-point average (GPA), first-year grade (FYA), race, and
gender. In our experiment, gender is the sensitive attribute A, and the goal is to predict FYA (label Y )
using LSAT, GPA, Race (three features X), and the sensitive attribute A.

The UCI Adult Income Dataset contains 65,123 data instances, each with 14 attributes: age, work
class, education, marital status, occupation, relationship, race, sex, hours per week, native country,
and income. In our experiments, we consider sex as the sensitive attribute A, whether income is
greater than $50K or not as the target variable Y , and all other attributes as features X .

Figure 3: CVAE causal graph Figure 4: DCEVAE causal graph

We evaluated our methods using
two distinct causal graphs. The
first graph is the one presented in
CVAE paper [37] (see Figure 3).
We divided the feature attributes
into two subsets, Xα and Xβ . Xα

comprises attributes that are not
causally affected by A, while Xβ

includes the remaining attributes.
Exogenous variable U is defined as
the latent influencing factors. For
the Law School Success dataset,
Xα consists of {Race} and Xβ in-
cludes {LSAT, GPA}. For the UCI Adult Income dataset, similar to [24], we assume that Xα contains
{Age, Race, Native Country} and Xβ includes {Workclass, Education, Marital Status, Occupation,
Relationship, Hours per Week}.

The second graph is proposed by DCEVAE paper [24] (see Figure 4). The main assumption in [24] is
that the exogenous variables controlling Xα and Xβ can be disentangled into Uα and Uβ . We used
the same sets of Xα and Xβ as in the CVAE graph.
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In contrast to the structural equations used in [26], we let structural functions be a family of functions
represented by the decoder of a VAE network, as proposed in CVAE [37] and DCEVAE [24].
Moreover, the encoder is able to find unobserved variable U for any given data point.5 The parameters
of the VAE network are learned from observational data. In the CVAE causal model, the decoder part
includes functions fα, fβ , and fY and is trained such that the following structural equations hold,

Xα = fα(U); Xβ = fβ(U,A); Y = fY (U,A) (1)

For the DCEVAE causal model, the decoder part also includes functions fα, fβ , and fY but it is
trained such that the following holds,

Xα = fα(Uα);Xβ = fβ(Uβ , A);Y = fY (Uα, Uβ , A) (2)

Baselines and Experimental Setup. For each dataset, we perform two separate experiments; one
under CVAE causal model, and the other under DCEVAE causal model. For each experiment, we
consider the following five baselines.
• Unfair (UF). This method trains a supervised model (logistic regression for the UCI Adult Income

dataset, and linear regression for the Law School Success dataset) without any fairness constraint.
• Counterfactual Augmentation (CA) [24]. For each sample (x(i), y(i), a(i)) ∈ D, first we use the

encoder of VAE to find unobserved variable u(i). Then, we use the decoder to generate both factual
and counterfactual samples. Specifically, for counterfactual samples, we use u(i) and ǎ(i)[1] ̸= a(i)

as the input of decoder to generate x̌(i)[1] and y̌(i)[1]. For factual data, we use u(i) and ǎ(i)[0] = a(i)

as the input of the decoder to generate x̌(i)[0] and y̌(i)[0]. We use the following dataset to train a
predictor, Ď = {(x̌(i)[0], ǎ(i)[0], y̌(i)[0]), (x̌(i)[1], ǎ(i)[1], y̌(i)[1])|i = 1, . . . , n}.

• Improved Counterfactual Augmentation (ICA). We realized that the baseline CA could further
be improved by training the predictor using Ď = {(x(i), a(i), y(i)), (x̌(i)[1], ǎ(i)[0], y̌(i)[1])|i =
1, . . . , n}. Thus, this improved method is also considered as a baseline in experiments.

• Counterfactual Training Using Exogenous Variable (CE) [26]. This method only uses the
variables that are not descendants of the sensitive attribute.

• Counterfactual Regularizer (CR) [14]. This baseline adds a regularizer ||ŷ(i) − ˇ̂y(i)[1]||2 to the
loss function, where ŷ(i) is the output of the predictor for input (x(i), a(i)) and ˇ̂y(i)[1] is the output
of the prediction for (x̌(i)[1], ǎ(i)[1]).

For our method, we use Algorithm 1 and s(x, x̌) = x+x̌
2 to generate CF representation. We use the

generated representation for training and inference as stated in Section 3.

For each method, we split the dataset randomly (with 80%-20% ratio) into a training dataset D =
{(x(i), a(i), y(i))|i = 1, . . . , n} and a test dataset Dtest = {(x(i), a(i), y(i))|i = n+ 1, . . . , n+m}.
The metrics for each method are calculated in five independent runs using the test dataset, and the
average and standard deviation are reported in the tables. We use the mean squared error (MSE) for
the regression task and the classification accuracy (Acc) for the classification task to evaluate the
performance of our method and the baselines. To assess counterfactual fairness, we use total effect
(TE) measure defined as TE = 1

m

∑m
i=n+1 |ŷ(i) − ˇ̂y(i)[1]|, where ˇ̂y(i)[1] is the output of the predictor

for the counterfactual sample (x̌(i)[1], ǎ(i)[1]). We also calculate the total effect for each protected
group. More specifically, TEa = 1

|{i|i>n,a(i)=a}|
∑
i>n,a(i)=a |ŷ(i) − ˇ̂y(i)[1]|. In our experiments,

TE0 is the total effect for females, and TE1 is the total effect for males. In general, smaller TE,
TE0, TE1 imply that the method is fairer regarding the CF definition. Note that because CE method
proposed in [26] makes predictions solely using non-descendants of A, empirical values for TE,
TE0, and TE1 are 0 for the CE method.

Results. Table 1 and Table 2 represent the results for the UCI Adult Income dataset under CVAE
and DCEVAE causal model, respectively. Note that there is no theoretical guarantee that UF, CA,
ICA, and CR methods can satisfy Counterfactual fairness. As we can see in these two tables, the
TE metric is significantly large for UF, CA, ICA, and they are not fair. On the other hand, CE, CR,
and our methods can achieve relatively small TE values. However, among these three methods, our
method can achieve the highest accuracy. Moreover, compared with the CR method, our method
achieves roughly 80% improvement in terms of TE metric. It is worth mentioning that when we
compare our algorithm with the UF model (which achieves the highest accuracy), our method only
results in roughly 2% drop in accuracy but improves the TE metric by 92%. The results for the Law
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Table 1: Logistic regression classifier results on UCI Adult dataset with DCEVAE causal model
Method Accuracy TE TE1 TE2

UF 0.8165 ± 0.0037 0.2286 ± 0.0037 0.1903 ± 0.0061 0.2475 ± 0.0040
CA 0.8053 ± 0.0040 0.1847 ± 0.0075 0.1463 ± 0.0077 0.2037 ± 0.0090
ICA 0.8141 ± 0.0039 0.2085 ± 0.0035 0.1737 ± 0.0062 0.2256 ± 0.0025
CE 0.7858 ± 0.0028 – – –
CR 0.7914 ± 0.0015 0.0821 ± 0.0022 0.0506 ± 0.0034 0.0977 ± 0.0022

Ours 0.7931 ± 0.0030 0.0163 ± 0.0013 0.0146 ± 0.0021 0.0172 ± 0.0022

Table 2: Logistic regression classifier results on UCI Adult dataset with CVAE causal model
Method Accuracy TE TE1 TE2

UF 0.8136 ± 0.0012 0.2338 ± 0.0044 0.1974 ± 0.0062 0.2517 ± 0.0069
CA 0.7946 ± 0.0021 0.1717 ± 0.0038 0.1203 ± 0.0069 0.1970 ± 0.0030
ICA 0.8095 ± 0.0026 0.2021 ± 0.0063 0.1540 ± 0.0082 0.2267 ± 0.0062
CE 0.7596 ± 0.0030 – – –
CR 0.7882 ± 0.0020 0.0868 ± 0.0041 0.0565 ± 0.0036 0.1017 ± 0.0048

Ours 0.7951 ± 0.0020 0.0126 ± 0.0042 0.0107 ± 0.0027 0.0139 ± 0.0060

School Success dataset under CVAE and DCEVAE are presented in Tables 3 and 4. Based on Table
3, only our algorithm and the CE method are able to achieve TE less 0.1. However, the MSE under
our algorithm is significantly smaller. We also notice that under DCEVAE model and the law school
success dataset (Table 4), the CR method exhibits similar performance as our method. It is worth
mentioning that TE1 and TE2 under our algorithm are almost the same under our algorithm in all
four tables. This shows our algorithm treats male and female groups almost the same in terms of CF.

We visualize the probability density function (pdf) of predicted FYA (output of the linear regression
model) under the DECVAE causal model for factual (blue curve) and counterfactual (red curve)
samples in Figure 5.6 Under CF, we expect these two distributions to be the same. These figures show
that our method is able to keep the model’s behavior the same for factual and counterfactual samples.
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Figure 5: Density distribution of ˆFYA with DCEVAE causal model

Path-dependent Counterfactual Fairness. Table 5 and Table 6 show the results for the UCI Adult
Income dataset under path-dependent counterfactual. In this experiment, for finding counterfactual
samples, we first consider a causal graph obtained after intervention on the variables that are not
present on any unfair paths. Then, we use the resulting graph to generate counterfactual samples.
In Tables 5 and 6, Acc (W) and TE (W) represent the accuracy and the total effect for a scenario
in which Workclass is not on any unfair paths. Moreover, Acc (E) and TE (E) represent another
scenario where Education is not on unfair paths. These tables show that, except for our algorithm and
the CE method, other baselines fall short in satisfying the PCF. Our method exhibits significantly
higher accuracy compared to the CE method as well. Similar results Additional results for Algorithm
2 are in the appendix. Societal Impact: In this paper, we introduced an algorithm that can find a

5The details about the network structure used for VAE can be found in the appendix.
6Figure 9 in the appendix illustrates the pdf of predicted FYA under the CVAE model.
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Table 3: Linear regression results on Law School Success dataset with CVAE causal model
Method MSE TE TE1 TE2

UF 0.8664 ± 0.0040 0.1346 ± 0.0036 0.1345 ± 0.0028 0.1347 ± 0.0057
CA 0.8893 ± 0.0096 0.2335 ± 0.0125 0.2301 ± 0.0092 0.2362 ± 0.0016
ICA 0.8679 ± 0.0064 0.1608 ± 0.0058 0.1594 ± 0.0046 0.1619 ± 0.0078
CE 0.8900 ± 0.0054 – – –
CR 0.8622 ± 0.0148 0.1035 ± 0.0027 0.1032 ± 0.0024 0.1038 ± 0.0039

Ours 0.8692 ± 0.0060 0.0661 ± 0.0019 0.0654 ± 0.0023 0.0667 ± 0.0016

Table 4: Linear regression Results on Law School Success dataset with DCEVAE causal model
Method MSE TE TE1 TE2

UF 0.8677 ± 0.0043 0.1344 ± 0.0056 0.1345 ± 0.0064 0.1343 ± 0.0054
CA 0.8783 ± 0.0084 0.1759 ± 0.0368 0.1767 ± 0.0384 0.1753 ± 0.0357
ICA 0.8693 ± 0.0045 0.1459 ± 0.0169 0.1466 ± 0.0182 0.1454 ± 0.0161
CE 0.8781± 0.0068 – – –
CR 0.8703 ± 0.0055 0.0989 ± 0.0058 0.1000 ± 0.0070 0.098 ± 0.0052

Ours 0.8687 ± 0.0045 0.1076 ± 0.0039 0.1086 ± 0.0049 0.1068 ± 0.0032

fair predictor under counterfactual fairness. However, we do not claim CF is the only right fairness
notion. Depending on the application, counterfactual fairness may or may not be the right choice for
counterfactual fairness. Limitation: As stated in [26], to find a predictor under CF, causal model M
should be known to the fair learning algorithm. Finding a causal model is challenging since there
can be several causal models consistent with observational data [31]. This limitation exists for our
algorithm and baselines.

6 Conclusion

We proposed a novel method to train a predictor under counterfactual fairness. Unlike [26], which
shows that a sufficient condition for satisfying CF is to not use the features that are descendants of
the sensitive attribute, our algorithm uses all the available features leading to better performance.
The proposed algorithm generates a representation for training that guarantees CF and improves
performance compared to the baselines. We also showed that our algorithm can be extended to
path-dependent counterfactual fairness.

Table 5: Logistic regression classifier on UCI Adult dataset with CVAE causal model
Method Acc (W) TE (W) Acc (E) TE (E)

UF 0.8136 ± 0.0012 0.2340 ± 0.0043 0.8136 ± 0.0012 0.1884 ± 0.0048
CA 0.7945 ± 0.0026 0.1715 ± 0.0046 0.7947 ± 0.0020 0.1600 ± 0.0057
ICA 0.8063 ± 0.0022 0.1997 ± 0.0107 0.8076 ± 0.0032 0.1689 ± 0.0116
CE 0.7596 ± 0.0030 – 0.7596 ± 0.0030
CR 0.7882 ± 0.0020 0.0869 ± 0.0040 0.7926 ± 0.0021 0.1097 ± 0.0023

Ours 0.7951 ± 0.0030 0.0127 ± 0.0043 0.7952 ± 0.0022 0.0131 ± 0.0053

Table 6: Logistic regression classifier on UCI Adult dataset with DCEVAE causal model
Method Acc (W) TE (W) Acc (E) TE (E)

UF 0.8165 ± 0.0037 0.2285 ± 0.0037 0.8165 ± 0.0037 0.2065 ± 0.0036
CA 0.8063 ± 0.0030 0.1871 ± 0.0030 0.8039 ± 0.0028 0.1570 ± 0.0096
ICA 0.8141 ± 0.0039 0.2087 ± 0.0041 0.8143 ± 0.0035 0.1766 ± 0.0042
CE 0.7858 ± 0.0028 – 0.7858 ± 0.0028 –
CR 0.7911 ± 0.0020 0.0824 ± 0.0028 0.7968 ± 0.0027 0.1026 ± 0.0021

Ours 0.7932 ± 0.0030 0.0164 ± 0.0014 0.7939 ± 0.0038 0.0159 ± 0.0016
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A Related Work

This section succinctly presents an overview of fairness in the context of machine learning, especially
focusing on the burgeoning concept of counterfactual fairness.

Fairness in Machine Learning. While there have been several efforts on developing fair machine
learning algorithms (see, e.g., [23, 44, 42, 22, 3, 34]), fairness still remains an elusive and loosely
defined concept. Several definitions have been proposed, each motivated by unique considerations and
emphasizing different elements. For instance, one such notion is ’unawareness’, which necessitates
the exclusion of sensitive attributes from the input data fed into machine learning models. Conversely,
parity-based fairness sets guidelines on how models should perform across different demographics.
Demographic parity, a widely accepted group fairness criterion, ensures consistent distribution of
predictions (Ŷ ), regardless of sensitive attributes (A), defined as P (Ŷ |A = 0) = P (Ŷ |A = 1) [13].

Equal opportunity is another key criterion, ensuring that individuals from diverse protected attribute
groups have the same probability of selection, represented by P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ =
1|A = 1, Y = 1) [20]. The related concept of equal odds prescribes equal true positive and false
positive rates across different protected attribute groups [38].

Additionally, preference-based fairness argues that an algorithm’s design should not be solely de-
termined by its creators or regulators but should also incorporate the preferences of those directly
affected by the algorithm’s outputs [43, 12].

Counterfactual Fairness. Emerging from the broader concept of individual fairness, counterfactual
fairness seeks to guarantee that similar datapoints are treated identically [32]. It uses counterfactual
pairs to establish similarity. The field of natural language processing has seen the use of intuitive
causal models, where words associated with protected attributes are substituted to generate counter-
factual data [29, 14]. However, this approach might overlook possible causal relationships among
words.

To overcome this, a more sophisticated causal model was proposed by [31], facilitating a three-step
process for counterfactual data generation: Abduction-Action-Prediction. This process includes the
inference of exogenous variables’ distribution based on observed data, the modification of protected
attributes, and the computation of resultant attributes. Leveraging this causal model, [26] proposed
the formal definition of counterfactual fairness.

Adopting the advanced assumptions of [31] about structural functions in the causal model allows for
counterfactual data generation via the Markov chain Monte Carlo (MCMC) algorithm [15]. Several
practical applications employ an encoder-decoder-like structure for counterfactual inference, with the
encoder’s hidden representation considered as the exogenous variable [30, 21, 37, 24]. The decoder
predicts counterfactual data after the sensitive attribute is modified. Certain research, such as [8],
explores counterfactual inference without a causal model by reconceptualizing it as a multi-objective
issue.

A myriad of techniques exist to construct fair models using counterfactual inference. The simplest
among these, unawareness, involves the removal of the protected attribute from the input [18]. Yet,
due to potential correlations between remaining features and protected attributes, this method often
falls short. [26] suggested an approach that uses only the non-descendant variables of the sensitive
attribute as model inputs, achieving perfect fairness. Other research aimed to attain approximate
counterfactual fairness [36].

A common approach employed by [14, 36, 6, 11, 33] introduces a fairness penalty regularizer to the
loss function when training a counterfactually fair model. Meanwhile, studies by [24, 14, 35, 10]
have used a counterfactual augmentation method to increase fairness. This involves generating a
new training dataset by mixing counterfactual and factual data. Notably, several studies [17, 39, 41,
19, 28] sought to minimize the correlation between exogenous variables and the sensitive attribute
using adversarial learning or regularization. They propose another kind of fairness from the causal
perspective, differing from [26].

While the method proposed by [26] maintains perfect fairness, it often leads to a significant decrease in
precision due to the underutilization of observed data’s information. Subsequent methodologies have
managed to enhance precision, though they cannot theoretically guarantee counterfactual fairness. As
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counterfactual fairness gains increasing traction [17, 6, 27], there is an urgent need for approaches
that simultaneously augment performance and uphold fairness.

B Proofs

Theorem 1. We start by finding Pr{RA←a′(U) = r|X = x,A = a}.

Pr(RA←a′(U) = r|X = x,A = a) =

∫
Pr(RA←a′(u) = r|X = x,A = a) Pr(U = u|X = x,A = a)

Note that R in Algorithm 1 depends on value realization u and feature vector x. However, given u,
RA←a′(u) does not depend on intervention A = a′ as s(.) is a symmetric function and gets all the
counterfactual samples for different values of a′. As a result, Pr(RA←a′(U) = r|X = x,A = a)
does not depend on a′. Moreover, Pr(U = u|X = x,A = a) is not a function of a′ and does not
depend on a′. This implies the right-hand side of (3) does not change by a′. As a result, for a given
pair of (x, a), Pr(RA←a′(U) = r|X = x,A = a) remains unchanged for all a′ ∈ A. This implies
that R satisfies CF. Consequently, any function of R including gw(R) satisfies CF.

Theorem 2. Assume that R has been generated using Algorithm 2. We have,

Pr(RA←a′,XPc
GA
←xPc

GA

(U) = r|X = x,A = a) =∫
Pr(RA←a′,XPc

GA
←xPc

GA

(u) = r|X = x,A = a) Pr(U = u|X = x,A = a)

Note that, Pr(RA←a′,XPc
GA
←xPc

GA

(U) = r|X = x,A = a) does not depend on a′. This is because,

Algorithm 2 generates a presentation using a symmetric function, and all the counterfactual samples
{(x̌[1]
PGA

, ǎ[1]), . . . , (x̌
[|A|−1]
PGA

, ǎ[|A|−1])}, and intervention on A does not change the presentation.
Note that Pr(U = u|X = x,A = a) is not a function of a′ and does not depend on a′. This
implies the right-hand side of (3) does not change by a′. As a result, for a given pair of (x, a),
Pr(RA←a′,XPc

GA
←xPc

GA

(U) = r|X = x,A = a) remains unchanged for all a′ ∈ A. This implies

that R satisfies PCF. Consequently, any function of R including gw(R) satisfies PCF.

Pr{ŶA←a,XPc
GA
←xPc

GA

(U) = y|X = x,A = a} = Pr{ŶA←a′,XPc
GA
←xPc

GA

(U) = y|X = x,A = a}

C Synthetic Data Simulation

For the real data experiments in Section 5, the causal model behind the problem remains unknown, and
we had to make an assumption about the causal structure and estimate the causal model parameters
using observed data.

In order to make sure that we are working with a true causal model and true structural equations
and demonstrate our proposed method can improve performance while maintaining counterfactual
fairness, we carry out a simulation experiment on the synthetic data.

We consider a causal graph shown in Figure 6. The structural function defined in the corresponding
causal model is

fX = sinU1 + cosU2A+A+ 0.1; fY = 0.2X2 + 1.2X + 0.2

To generate the synthetic dataset, we sampled A from the Bernoulli distribution with p = 0.4 for 3000
times. U1 and U2 are sampled independently from the normal distribution N (0, 1). X and Y were
computed with the structural function. The counterfactual data X̌ were computed by substituting A
in the structural function with Ǎ.

We implemented our method and the baseline methods as described in Section 5 (since there is no
difference between observed data and factual data in this scenario, we have no ICA baseline here).
For the CR method, we set the weight of the fairness regularization term as 0.05. The 3000 synthetic
data were split into a training set and a test set with a ratio of 80% - 20%. Then we trained a linear
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Table 7: Linear regression results on the synthetic datal
Method MSE (L) TE TE0 TE1

UF 0.0172 ± 0.0009 1.2499 ± 0.0093 1.2460 ± 0.0252 1.2543 ± 0.0310
CA 0.3467 ± 0.0208 0.5372 ± 0.0057 0.5409 ± 0.0125 0.5316 ± 0.0160
CE 0.7868 ± 0.0556 0.000 ± 0.0000 0.000 ± 0.0000 0.000 ± 0.0000
CR 0.8598 ± 0.0521 0.2572 ± 0.0036 0.2590 ± 0.0066 0.2544 ± 0.0078

Ours 0.4739 ± 0.0202 0.000 ± 0.0000 0.000 ± 0.0000 0.000 ± 0.0000

regression model with the training data and calculate MSE, TE, TE0, TE1 with the test data. For each
method, we run the experiments five times with different random splits. Table 7 provided the results
for the simulation. With the ground truth of the causal model, our proposed method could achieve a
100% counterfactual fairness as the CE method. However, with the use of X , we improved the MSE
to a large extent, almost as well as the CA method.

D Detailed Experimental Setup on Real Data

Figure 6: Synthetic causal
graph

We conducted our experiments using a supercomputing platform.
The CPUs used were Intel(R) Xeon(R) Platinum 8268 CPU @
2.90GHz, and the GPU model was a Tesla V100. Our primary
software environments were Python 3.9, Pytorch 1.12.1, and CUDA
10.2.

The VAE structure for the CVAE model is shown in Figure 7.
The details for training the VAE can be found in [37]. However,
we briefly discuss how the training was done. An encoder takes
[Xα, Xβ , Y, A] as input to generate the hidden variable U . The
decoders then serve as structural functions. Decoder fα takes U as
input to generate X̌α, decoder fβ takes [U, Ǎ] to generate X̌β , and fY also uses [U, Ǎ] to generate Y̌ .

Figure 7: VAE Structure for CVAE Model

During the training of the VAE, we used the following loss function:

L = wαlα(Xα, X̌α) + wβlβ(Xβ , X̌β) + wY lY (Y, Y̌ ) + wuKL(U ||Up) +Wfair||Y̌ [0] − Y̌ [1]||2

For the Law School Success dataset, lα is the BCE loss function, and lβ and lY are the MSE
loss function. For the UCI Adult Income dataset, lα, lβ , and lY are BCE loss functions. We set
wα = 1, wβ = 1, wY = 1, wu = 1, and wfair = 0.15. The batch size was set to 256 and the learning
rate to 0.001. The experiments for the UF, CA, ICA, and CR methods were based on the same VAE.
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For the CE and our method, as we needed to use the VAE during the test time, we removed the use of
Y from the structure, including the decoder fY . Hence, the encoder uses [Xα, Xβ , A] to obtain U ,
and X̌α = fα(U), X̌β = fβ(U, Ǎ). In this case, the loss function becomes:

L = wαlα(Xα, X̌α) + wβlβ(Xβ , X̌β) + wuKL(U ||Up)

For the Law School dataset, we kept the hyperparameters the same, so wα = 1, wβ = 1, wu = 1. For
the UCI Adult Income dataset, we set wα to 1, wβ to 1, and wu to 1.

Figure 8 depicts the VAE structure for the DCEVAE model. The details for training the VAE can
be found in [24], and we summarize it here. The hidden variable is divided into two parts, Uα and
Uβ . Hence, Uα = Eα(Xα, Y ) and Uβ = Eβ(Xβ , A, Y ). During the decoding stage, X̌α = fα(Uα),
X̌β = fβ(Uβ , Ǎ), and Y̌ = fY (Uα, Uβ , Ǎ). A discriminator, Dψ, is also employed to aid in
disentangling Uα and Uβ .

Figure 8: VAE Structure for DCEVAE Model

The training of this VAE can be divided into two stages. In the first stage, we permuted the Uβ
generated in the batch of data and concatenated them with Uα. The discriminator was trained to
distinguish whether a [Uα, Uβ ] is randomly permuted. In the second stage, we trained the encoders
and decoders. The loss function is:

L = wαlα(Xα, X̌α) + wβlβ(Xβ , X̌β) + wY lα(Y, Y̌ ) + wuKL(U ||Up)
+Wfair||Y̌ [0] − Y̌ [1]||2 + wh ∗ TC
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Figure 9: Density distribution of ˆFYA with CVAE causal model
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Here, TC refers to the total correlation loss, which is the negative discrimination loss of Dψ
7. We

used the same lα, lβ , lY , and weights (wα, wβ , wY ) as those used for training the CVAE. We also
used the same batch size and learning rate. wh is set at 0.4, and wfair is set at 0.2. As before, we
used the same VAE for the implementation of UF, CA, ICA, and CR methods.

For the CE and our method, we removed all structures related to Y , as we did with the CVAE. For the
Law School Success dataset, we kept the hyperparameters the same. And for the UCI Adult Income
dataset, we set wu to 0.5 and wh to 0.4.

For the finding predictors, we used the linear regression model for the Law School Success Dataset
and the logistic regression model for the UCI Adult Income dataset. When training the CR model,
we set the coefficient of the regularization term as 0.002.

We split each dataset into a training set, validation set, and test set with a ratio of 60%-20%-20%.
The validation set was used to stop the training of the VAE early. The training and validation sets
were used together to train the predictors. All experiments were repeated five times with different
splits to ensure the results are stable.

Figure 9 visualizes the PDF of the predicted FYA under the CVAE causal model. As seen in Figure 5,
our model is more effective in maintaining the model’s behavior for both factual and counterfactual
data.

Table 8: Linear regression results on Law School Success dataset with CVAE causal model
Method MSE (G) TE (G) MSE (L) TE (L)

UF 0.8664 ± 0.0060 0.1331 ± 0.0034 0.8664 ± 0.0060 0.1258 ± 0.0039
CA 0.8889 ± 0.0097 0.2330 ± 0.0126 0.8915 ± 0.0098 0.2358 ± 0.0127
ICA 0.8704 ± 0.0042 0.1633 ± 0.0014 0.8683 ± 0.0065 0.1543 ± 0.0044
CE 0.8900 ± 0.0076 – 0.8900 ± 0.0076 –
CR 0.8693 ± 0.0064 0.1035 ± 0.0027 0.8696 ± 0.0063 0.0880 ± 0.0025

Ours 0.8689 ± 0.0059 0.0663 ± 0.0019 0.8682 ± 0.0060 0.0655 ± 0.0019

Table 9: Linear regression results on Law School Success dataset with DCEVAE causal model
Method MSE (G) TE (G) MSE (L) TE (L)

UF 0.8677 ± 0.0043 0.0780 ± 0.0086 0.8677 ± 0.0043 0.1300 ± 0.0053
CA 0.8748 ± 0.0050 0.1151 ± 0.00277 0.8794 ± 0.0010 0.1736 ± 0.0398
ICA 0.8687 ± 0.0046 0.0934 ± 0.0160 0.8696 ± 0.0047 0.1372 ± 0.0166
CE 0.8781 ± 0.0068 – 0.8781 ± 0.0068 –
CR 0.8708 ± 0.0042 0.0463 ± 0.0049 0.8712 ± 0.0053 0.0821 ± 0.0052

Ours 0.8679 ± 0.0045 0.0693 ± 0.0037 0.8692 ± 0.0047 0.0968 ± 0.0024

Tables 8 and 9 present the results for the Law School Success dataset under path-dependent coun-
terfactuals. In these tables, MSE(L) and TE(L) represent the MSE and TE when the LSAT is not in
any unfair path, while MSE(G) and TE(G) correspond to the scenario in which GPA is not in any
unfair path. The results affirm that our method consistently satisfies PCF in every case. Although the
CR method can achieve PCF similar to our method when GPA or LSAT is not in any unfair path of
the DCEVAE causal model, it fails in other scenarios because it does not guarantee counterfactual
fairness.

7More details about the function can be found in [24]
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