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Abstract We consider the interaction of strategic agents and their decision-making
process toward the provision of a public good. In this interaction, each user exerts
a certain level of effort to improve his own utility. At the same time, the agents are
interdependent and the utility of each agent depends not only on his own effort but
also on the other agents’ effort level. As the agents have a limited budget and can exert
limited effort, question arises as to whether there is advantage to agents pooling their
resources. In this study, we show that resource pooling may or may not improve the
agents’ utilitywhen they are drivenby self-interest.We identify some scenarioswhere
resource pooling does lead to social welfare improvement as compared to without
resource pooling.We also propose a taxation–subsidymechanism that can effectively
incentivize the agents to exert socially optimal effort under resource pooling.

Keywords Public good · Resource pooling · Social welfare

1 Introduction

The interactions among strategic agents form a network game [5, 10], and the provi-
sion of public goods is one particular type of such games when their decision-making
processes concern the provision of a public good [3, 6, 15]. The interdependent secu-
rity (IDS) game [9, 12, 16] is one such example. Other examples of a network game
include networked Cournot competition [4, 7]. The goal in studying these games
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is often to characterize their equilibrium and the effect of the underlying network
structure on such equilibrium. Such findings can help policy and network designers
make better decisions in inducing desirable outcomes.

The conditions for existence and uniqueness of equilibrium in a network game
with linear best-response functions have been studied in [11, 15]. Miura-Ko et al.
[11] consider a security decision-making problem and find a sufficient condition for
the uniqueness of the equilibrium, while [15] considers the provision of a public
good and introduces a necessary and sufficient condition for the uniqueness of the
equilibrium. Network games with nonlinear best-response functions have also been
studied in the literature [2, 14]. Acemoglu et al. [2] show that if the best-response
function is a contraction or non-expansive mapping, then the equilibrium is unique.
Naghizadeh et al. [14] provide a condition on the smallest eigenvalue of a matrix
composed of interdependency factor and derivative of the best-response function to
guarantee the uniqueness of equilibrium. Similarly, a potential game formodeling the
Cournot competition is introduced in [1], where it is shown that if the cost function
is strictly convex, then the equilibrium is unique, while [4] provides a sufficient
condition for uniqueness of equilibrium and studies the effect of the competition
structure on the firms’ profit.

Of equal interest in the context of network games is the question of designing
mechanisms that induce network games with desirable equilibrium properties. For
instance, in the literature of IDS games where the public good being provisioned is
agents’ investment in security, incentive mechanisms have been proposed to induce
higher levels of effort by agents. In [9], Grossklags et al. suggest bonus and penalty
based on agents’ security outcome, while Parameswaran et al. [16] propose a mecha-
nism to overcome the free-riding/underinvestment issue, where an authoritymonitors
user investment.

In this paper, we study a generic problem of public good provision on networks,
where each agent/player exerts a certain effort (the provision of a public good) that
impacts themselves as well as their neighbors on a connectivity graph. The difference
between this andmost priorwork (including those cited above) is thatwe assume each
agent has a budget constraint but may be allowed to pool their resources. Specifically,
we consider three different scenarios:

(i) Agents are not allowed to pool their resources.
(ii) Agents are free to pool their resources but will do so selfishly.
(iii) Agents are free to pool their resources and are incentivized to do so optimally

(in terms of social welfare) and voluntarily.

Case (i) is a baseline scenario. The agents’ utility in this case is also consid-
ered their outside option when presented with a mechanism. Case (ii) allows us to
investigate the behavior of strategic agents when resource pooling is allowed but not
regulated. As we will show the Nash equilibrium in this case may lead to improved
as well as worsening social welfare as compared to Case (i). In Case (iii), we design
a mechanism to incentivize agents to choose socially optimal actions in resource
pooling; this mechanism is budget-balanced, incentive-compatible, and individually
rational.
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The remainder of the paper is organized as follows. We present the model,
preliminaries, and Case (i) in Sect. 2. We then analyze Case (ii) in Sect. 3. We pro-
pose a mechanism that attains the socially optimal solution at the equilibrium of its
induced game in Sect. 4. We present numerical examples in Sect. 5 and conclude the
paper in Sect. 6.

2 Model: A Scenario Without Resource Pooling

We study the interaction of N agents in a directed network G = (V, E), where
V = {1, 2, · · · , N } is a set of N agents and E = {(i, j)|i, j ∈ V } is a set weighted
edges between them. An agent i ∈ V has limited budget Bi and chooses to exert
effort xi ∈ [0, Bi ] toward improving his utility. Agent i’s payoff depends on his own
effort, as well as the effort exerted by others with nonzero influence on i . An edge
(i, j) ∈ E indicates that agent j depends on agent i (or that agent i influences j) with
edge weight gi j ∈ [0, 1]. The dependence need not be symmetrical, i.e., gi j �= g j i in
general. We shall assume gi i = 1, i = 1, 2, · · · , N and gi j < 1, ∀i �= j to reflect
the notion that an agent is his own biggest influence.

Let xxx = [x1, x2, · · · , xN ] be the profile of exerted efforts by all N agents. Then,
the utility of agent i is given by,

ui (xxx) =
∑

j∈V
g j iμ j (x j ) , (1)

where μi (a) is a function determining the benefit to agent i from effort a.
We will assume that μi (.) is differentiable and strictly increasing for all i and that

μi is strictly concave. This implies that while the initial effort leads to a considerable
increase in utility, the marginal benefit decreases as effort increases.

Since μi (.) is strictly increasing and agents are strategic, the best strategy for each
agent is to use all of his budget. Therefore,

voi =
∑

j∈V
g j iμ j (Bj ) (2)

is the highest utility that agent i achieves without resource pooling. We shall take voi
to be the participation constraint of agent i in deciding whether there is incentive to
participate in any mechanism.

3 Public Good Provision with Resource Pooling

Consider now the scenario where the agents can pool their resources. Let xxxi =
[xi1, xi2, · · · , xiN ]T be the action of agent i where xi j ≥ 0 denotes the effort exerted
by agent i on behalf of agent j , e.g., by transferring part of its budget to j .
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Let X = [xxx1, xxx2, · · · , xxx N ]T be the profile of the exerted efforts, an N × N matrix.
Due to the increasing nature of μ j , we have

∑N
j=1 xi j = Bi . As a result, the agent’s

utility given action profile X is:

vi (X = [xxx1, xxx2, · · · , xxx N ]T ) =
∑

j∈V
g j i · μ j (

N∑

k=1

xk j ) (3)

Notice that vi (X) is concave in X , but it is not necessary strictly concave. Moreover,
vi (X) is strictly concave in xxxi .

This game is denoted as GP and given by the tuple (V, {xi j |i, j ∈ V },
{vi (.)|i ∈ V }). Let Bi (xxx−i ) denote the best-response function of agent i :

Bi (xxx−i ) = argmax
xxxi

∑

j∈V
g j i · μ j (

N∑

k=1

xk j ) (4)

s.t.
N∑

j=1

xi j = Bi , xi j ≥ 0, j = 1, 2, · · · , N

Since vi (X) is strictly concave in xxxi , this maximization has a unique solution and
can be solved using KKT conditions, for j = 1, 2, · · · , N :

−g j i · μ′
j (

∑N
k=1 xk j ) − λ j + ν = 0 ,

λ j · xi j = 0, xi j ≥ 0,
∑N

j=1 xi j = Bi , λ j ≥ 0 ,
(5)

where λ j and ν are dual variables of the j th inequality and the equality constraints,
respectively. We can simplify above KKT conditions and write the best response of
agent i given action profile xxx−i as follows:

xi j =
⎡

⎣(μ′
j )

−1(
ν

g j i
) −

∑

k∈V−{i}
xk j

⎤

⎦
+

, (6)

where [a]+ = max{0, a}. A pure-strategy Nash equilibrium (NE) of the public good
provision game is a matrix of efforts X = [xxxi , xxx−i ]T , for which

vi (xxxi , xxx−i ) ≥ vi (xxxi , xxx−i ),∀xxxi ∈ Si ,∀i, (7)

where Si = {(s1, s2, · · · , sN )|s1 + s2 + · · · + sN = Bi , s j ≥ 0 ∀ j ∈ V }. We have
the following result on the existence of NE in the game GP .

Theorem 1 The game GP (public good provisionwith resource pooling) has at least
one NE.
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Proof The strategy spaces Si are nonempty, compact, and convex. Moreover, payoff
functions vi (.) are continuous and concave in xxxi for all i ∈ V . Using [8], there exists
at least one pure-strategy Nash equilibrium. �

Let v∗
i be the utility of agent i at the NE in game GP . Then, in general, we may

or may not have v∗
i ≥ voi ; i.e., agents do not necessarily gain from resource pooling.

In Sect. 5, we give some examples. There are however special cases where all agents
obtain higher utility in GP as we show below. We begin by characterizing the NE.

Lemma 1 Let X be the action profile of agents in the NE of GP. Then, xi j ·
x ji = 0, ∀i �= j .

Proof Let us assume that xi j �= 0. Note that μ′
i (

∑N
k=1 xki ) ≤ g j iμ

′
j (

∑N
k=1 xk j ) since

otherwise agent i can improve its utility by increasing xii and decreasing xi j . There-
fore, we have

μ′
i (

∑N
k=1 xki ) ≤ g j iμ

′
j (

∑N
k=1 xk j ) → gi jμ

′
i (

∑N
k=1 xki ) < μ′

j (
∑N

k=1 xk j ) , (8)

which implies that x ji = 0 since otherwise agent j can improve its utility by decreas-
ing x ji and increasing x j j . As a result, xi j · x ji = 0. �

Lemma1 says that if agent i improves agent j’s utility by offering nonzero xi j ,
then agent j will necessarily set x ji = 0. Next, we provide some examples where the
agents’ utility improves in the NE of game GP as compared to that without resource
pooling (voi ).

Theorem 2 1. Let N = 2. Then, v∗
i ≥ voi , i = 1, 2. In other words, in a network

consisting of two agents, both achieve equal or higher utility at the NE under
game GP.

2. Consider a network consisting of one parent (agent1) and N − 1 children: gi j = 0
if i �= j and i, j > 1. Moreover, assume that μi (x) = μ j (x) and Bi = Bj and
gi1 = g j1 and g1i = g1 j for all i, j > 1. Let v∗

i be the utility of the agent i at the
symmetric Nash equilibriumwhere xi1 = x j1 and x1i = x1 j for all i, j > 1. Then
v∗
i ≥ voi , ∀i ∈ V .

Proof 1. Let X be the action profile of the agents in the NE. Then, by Lemma1,
we know that x12 = 0 or x21 = 0. Without loss of generality, let us assume that
x12 = 0. Therefore, x11 = B1. By the definition of NE, we have

v∗
2 = μ2(x22) + g12μ1(B1 + x21) ≥ μ2(B2) + g12μ1(B1) = vo2 . (9)

Next, we show that v∗
1 ≥ vo1 .We proceed by contradiction. Let us assumeμ1(B1 +

x21) + g21μ2(x22) = v∗
1 < vo1 = μ1(B1) + g21μ2(B2). This implies that decrease

in x21 and increase in x22 improve the utility of agent 1 or equivalently μ′
1(B1 +

x21) < g21μ
′
2(x22). This is a contradiction since agent 1 can improve its utility by

decreasing x11 and increasing x12. Therefore, v∗
1 ≥ vo1 .
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2. Consider a symmetric equilibrium where xi1 = x j1 and x1i = x1 j for all i, j >
1. By Lemma1, we know that xi1 = x j1 = 0 or x1i = x1 j = 0. Therefore, we
consider two different cases:
Case 1: xi1 = x j1 = 0. Let x1i = x1 j = x . We have

v∗
1 = μ1(x11) + (N − 1)g21μ2(B2 + x) ≥︸︷︷︸

Definition of NE
μ1(B1) + (N − 1)g21μ2(B2) = vo1

(10)

To show that v∗
2 ≥ vo2 , we proceed by contradiction. Let us assume that v∗

2 < vo2 .
Then, we have

μ2(B2 + x) + g12μ1(x11) < μ2(B2) + g12μ1(B1) →
μ′
2(B2 + x) ≤ g12μ

′
1(x11) → g21μ

′
2(B2 + x) < μ′

1(x11)
(11)

The last equation implies that agent 1 can improve its utility in NE by decreasing
x and increasing x11. This is a contradiction and v∗

2 ≥ vo2 .
Case 2: x1i = x1 j = 0. The proof is similar to case 1.

�

Theorem2 provides two examples where game GP can improve social welfare
with resource pooling. While this cannot be guaranteed in general, we next design a
mechanism guaranteed to induce a public good provision gamewith resource pooling
where agents exert the socially optimal efforts at its NE.

4 A Mechanism with Socially Optimal Outcome

In this section, we present a taxationmechanism that implements the socially optimal
solution at the NE of the game it induces in a decentralized setting. We begin by
defining socially optimal strategies.

A socially optimal strategy is a strategy profile X∗ =
[
x∗
i j

]

N×N
that solves the

following optimization problem (total utility):

X∗ ∈ arg max
X=[xxxi ;xxx−i]T ,xxxi∈Si

N∑

i=1

vi (X) . (12)

Notice that vi (X) is concave in X , but it is not necessarily strictly concave. There-
fore, socially optimal effort profile X∗ is not necessarily unique.

Generally, agents’ actions at the NE of a game are not socially optimal; this is the
case in the gameGP as we showed in the previous section. To induce socially optimal
behavior, the approach of mechanism design is often used, whereby incentives are
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provided to induce a different game whose equilibrium coincides with the socially
optimal solution.

We next describe such amechanism based on taxation. In designing such amecha-
nism, wewill assume thatμi (.) and Bi are the private information of agent i unknown
to the mechanism designer. Let ti be the tax (punishment) levied on agent i by the
mechanism designer; ti < 0 is also referred to as a subsidy (reward). Agent i’s utility
after ti is given by:

ri (X, ti ) = vi (X) − ti . (13)

A taxation mechanism is budget-balanced if the taxes at equilibrium are such
that

∑N
i=1 ti = 0; i.e., the mechanism designer neither seeks to make money from

the agents nor injects money into the system. Under a budget-balanced mechanism,
we have

∑N
i=1 vi (X) = ∑N

i=1 ri (X, ti ). Our goal is to design a taxation mechanism
which satisfies the following conditions:

1. The game induced by the mechanism has a NE.
2. The mechanism is socially optimal; i.e., it implements the socially optimal efforts

at all NEs of the game it induces.
3. The mechanism is budget-balanced.
4. The mechanism is individual rational; i.e., the utility of agent i at the NE of the

induced game is at least voi for all i .
1

Our mechanism is inspired by [17] and satisfies all of the above conditions.
A decentralized mechanism consists of a game form (M, h) where M :=∏N
i=1 Mi and Mi is the set of all possible messages of agent/player i . Moreover,

h : M → A is the outcome function and determines the effort profile and tax profile.
Note thatA is the space of all effort and tax profiles. The game form (M, h) together
with utility functions ri (.) defines a game given by (M, h, {ri (.)}). We refer to this
game as the game induced by the mechanism. Amessage profile of the decentralized
mechanismmmm = [m1,m2, · · · ,mN ] is a Nash equilibrium of this game if

ri (h(mi ,mmm−i )) ≥ ri (h(mi ,mmm−i )), ∀mi , ∀i . (14)

The components of our decentralized mechanism are as follows.
The Message Space: Each agent i reports message mi = (xxx (i),πππ(i)), where xxx (i)

is a vector with N · (N − 1) elements and is agent i’s suggestion of all agents’ effort
profiles. In other words,

xxx (i) =
[
x (i)12 , x

(i)
13 , · · · , x (i)1N , x

(i)
21 , x

(i)
23 , · · · , x (i)N (N−1)

]
, x (i)jk ∈ R, j �= k, (15)

1This is a weaker condition than voluntary participation, which requires that an agent’s utility in
the mechanism with everyone else is no less than his utility when unilaterally opting out. It has
been shown in [13] that it is generally impossible to simultaneously achieve social optimality, weak
budget balance, and voluntary participation.
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where x (i)jk is agent i’s suggestion of agent j’s effort to improve agent k’s utility. Note

that xxx (i) has only N · (N − 1) elements because x (i)j j , j = 1, 2, · · · , N are not in xxx (i)

but are completely determined by xxx (i).
πππ(i) is a price vector of real positive numbers used by the designer to determine

the tax of each agent. Similar to xxx (i), πππ(i) has N · (N − 1) elements:

πππ(i) =
[
π(i)
12 ,π

(i)
13 , · · · ,π(i)

1N ,π
(i)
21 ,π

(i)
23 , · · · ,π(i)

N (N−1)

]
, π(i)

jk ∈ R+, j �= k . (16)

TheOutcomeFunction: The outcome function determines the tax profile for each
agent as well as investment profile x̂xx(mmm). The investment profile x̂xx(mmm) is calculated
as follows,

x̂xx(mmm) = 1
N

∑N
k=1 xxx

(k). (17)

The amount of tax t̂i agent i pays is given by

t̂i (mmm) = (πππ(i+1) − πππ(i+2))T x̂xx(mmm)

+(xxx (i) − xxx (i+1))T diag(πππ(i))(xxx (i) − xxx (i+1))

−(xxx (i+1) − xxx (i+2))T diag(πππ(i+1))(xxx (i+1) − xxx (i+2)).

(18)

Note that N + 1 and N + 2 are treated as 1 and 2 in (18). For the notational conve-
nience and future use, we define x̂i i (mmm) = Bi − ∑

k∈V−{i} x̂ik,∀i ∈ V .
Note that Eq. (18) implies that the proposedmechanism is always budget-balanced

because
∑N

i=1 t̂i (mmm) = 0,∀mmm. Moreover, we have the following lemma on the tax
term of the proposed mechanism at the NE of the induced game.

Lemma 2 Let mmm be a Nash equilibrium of the proposed mechanism, and mi =
(xxx (i),πππ(i)) and xxx = x̂xx(mmm). Then,

t̂i (mmm) = (πππ(i+1) − πππ(i+2))T · xxx ∀i (19)

Proof The proof is provided in appendix. �

Lemma2 implies that both terms (xxx (i) − xxx (i+1))T diag(πππ(i))(xxx (i) − xxx (i+1)) and
(xxx (i+1) − xxx (i+2))T diag(πππ(i+1))(xxx (i+1) − xxx (i+2)) in (18) vanish at the equilibrium of
the proposed mechanism. The inclusion of these two terms is necessary to make sure
that the mechanism implements the socially optimal effort profile at each NE.

We next show that the proposed mechanism is individually rational.

Theorem 3 Let mmm be a NE of the proposed mechanism. Then, the agents achieve
higher utility at the NE than their outside option if they all opt out. That is,
ri (X̂(mmm), t̂i (mmm)) ≥ voi , ∀i ∈ V , where X̂(mmm) = [x̂i j ]N×N is the matrix of agents’
effort.

Proof Proof is provided in appendix. �
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We are now ready to prove the main theorem about socially optimal mechanism
with resource pooling. The next theorem shows that if X̂(mmm) is the outcome of
the proposed mechanism at a Nash equilibrium, then X̂(mmm) is a solution to the
optimization problem (12). In other words, the NEs of the game induced by proposed
mechanism implement a socially optimal effort profile. Note that the game does not
necessarily have a unique NE in terms of the messages, and the outcome is one of
the socially optimal solutions to optimization problem (12).

Theorem 4 Let mmm be a NE of game (M, h, {ri (.)}) induced by the proposed mech-
anism. Then, X̂(mmm) is a optimal solution to optimization problem (12).

Proof Letmmm = [(xxx (1),πππ(1)), · · · , (xxx (N ),πππ(N ))] be a NE of the proposed mechanism.
By definition of the Nash equilibrium, we can write,

ri (X̂((xxx (i),000),mmm−i ), ti ((xxx (i),000),mmm−i )) ≤ ri (X̂(mmm), t̂i (mmm)) (20)

By Lemma2 and Eq. (18), ti ((xxx (i),000),mmm−i ) = (πππ(i+1) − πππ(i+2))T x̂xx((xxx (i),000),
mmm−i )). Therefore, (20) can be written as follows,

vi (A(x̂xx((xxx (i),000),mmm−i ))) − (πππ(i+1) − πππ(i+2))T x̂xx((xxx (i),000),mmm−i )) ≤
vi (A(x̂xx(mmm))) − (πππ(i+1) − πππ(i+2))T xxx ∀xxx (i) (21)

where

A(xxx) =

⎡

⎢⎢⎢⎣

[
B1 − ∑

k∈V−{1} x1k
]
x12 · · · x1N

...
...

. . .
...

xN1 xN2 · · ·
[
BN − ∑

k∈V−{N } xNk

]

⎤

⎥⎥⎥⎦ (22)

Substituting xxx = 1
N (xxx

(i) + ∑
k∈V−{i} xxx

(k)) and using (21), we have

xxx = arg max{xxx∈RN (N−1),A(xxx)∈S}vi (A(xxx)) − (πππ(i+1) − πππ(i+2))T xxx , (23)

where S is the feasible set of effort profiles: S = {X = [
xi j

] ∈ RN×N | ∑N
j=1 xi j =

Bi , xi j ≥ 0, ∀i, j ∈ V }. Because the optimization in (23) is convex, KKT conditions
are necessary and sufficient for the optimality of xxx . The KKT conditions for (23) are
given by:

(πππ(i+1) − πππ(i+2)) − 
xxxvi (A(xxx)) − λλλi + θθθi = 0,

(λλλi )T xxx = 0,

θij (−Bj + ∑
k∈V−{ j} x jk) = 0,

λλλi ≥ 0,

θθθi ≥ 0 ,

(24)
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where λλλi =
[
λi
12,λ

i
13, · · · ,λi

1N ,λ
i
21,λ

i
23, · · · ,λi

(N−1)N

]T ∈ RN 2−N
+ and θθθi =

⎡

⎢⎣θi1, · · · , θi1︸ ︷︷ ︸
N−1 t imes

, θi2, · · · , θi2︸ ︷︷ ︸
N−1 times

, · · · , θiN , · · · , θiN︸ ︷︷ ︸
N−1 times

⎤

⎥⎦

T

∈ RN 2−N
+ . Here, λi

jk is the dual vari-

able corresponding to constraint xi j ≥ 0 and θij is the dual variable corresponding
to constraint

∑
k∈V−{ j} x jk ≤ Bj .

Summing (24) over all i in V we get

− (∑
i∈V 
xxxvi (A(xxx))

) − λλλ + θθθ = 0
λλλT xxx = 0,
θ j (−Bj + ∑

k∈V−{ j}, x jk) = 0,
λλλ ≥ 0,
θθθ ≥ 0 .

(25)

whereθθθ = ∑
i∈V θθθi =

⎡

⎣θ1, · · · , θ1︸ ︷︷ ︸
N−1 times

, θ2, · · · , θ2︸ ︷︷ ︸
N−1 times

, · · · , θN , · · · , θN︸ ︷︷ ︸
N−1 times

⎤

⎦
T

,θ j = ∑
i∈V θij

and λλλ = ∑
i∈V λλλi . Note that (25) is the KKT conditions for following convex opti-

mization problem:
max{xxx∈RN (N−1)}

∑
i∈V vi (A(xxx))

s.t.,
xi j ≥ 0 ∀i �= j∑

k∈V−{ j} x jk ≤ Bj ∀ j ∈ V .

(26)

Because (26) is a convex problem, then KKT conditions (25) are necessary and
sufficient for the optimal solution of (26). As a result, xxx is a socially optimal effort
profile. �

As we can see from the proof of Theorem4, socially optimal effort profile X̂(mmm)

is individually optimal at the NE of the induced game. That is,

X̂(mmm) = A(x),where,
xxx = arg max{xxx∈RN (N−1),A(xxx)∈S}vi (A(xxx)) − (πππ(i+1) − πππ(i+2))T xxx .

(27)

Theorem4 implies that the NEs of the game induced by the proposed mechanism
implement a socially optimal effort profile.We next show the converse of Theorem4,
i.e., given any socially optimal effort profile X∗, the induced game has at least one
NE which implements effort profile X∗.

Theorem 5 Let X∗ be a socially optimal effort profile. Then, there is a Nash equi-
librium of game (M, h(.), {ri (.)}) induced by the proposed mechanism which imple-
ments socially optimal effort profile X∗.

Proof The proof is provided in appendix. �
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Theorem4 and5 together imply that the game induced by the proposedmechanism
always has at least a Nash equilibrium and each Nash equilibrium implements a
socially optimal effort profile.

5 Numerical Example

5.1 An Example of Three Interdependent Agents

In this section, we provide an example of three interdependent agents. Consider the
following parameters.

N = 3, gi j = e−1, ∀i �= j, μ1(y) = μ2(y) = μ3(y) = −e−y

B1 = 5, B2 = B3 = 1 .

The utility of the agents without resource pooling is given by

vo1 = −e−5 − 2e−2

vo2 = −e−1 − e−6 − e−2

vo3 = −e−1 − e−6 − e−2 .

(28)

If we consider GP , then the best response of agent i is given by

Br1(xxx−1) =
⎡

⎢⎣

[− ln ν1 − x21 − x31]+

[− ln ν1 − 1 − x22 − x32]+

[− ln ν1 − 1 − x33 − x23]+

⎤

⎥⎦ =
⎡

⎣
x11
x12
x13

⎤

⎦ , (29)

where ν1 is a nonnegative number and is determined by the budget constraint x11 +
x12 + x13 = B1. Similarly,we canwrite the best-response function of the other agents
as follows.

Br2(xxx−2) =
⎡

⎢⎣

[− ln ν2 − 1 − x11 − x31]+

[− ln ν2 − x12 − x32]+

[− ln ν2 − 1 − x33 − x13]+

⎤

⎥⎦ =
⎡

⎣
x21
x22
x23

⎤

⎦ , (30)

Br3(xxx−3) =
⎡

⎢⎣

[− ln ν3 − 1 − x21 − x11]+

[− ln ν3 − 1 − x22 − x12]+

[− ln ν3 − x13 − x23]+

⎤

⎥⎦ =
⎡

⎣
x31
x32
x33

⎤

⎦ . (31)

The fixed point of these three best-response mappings is given by
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⎡

⎣
x11
x12
x13

⎤

⎦ =
⎡

⎣
3
1
1

⎤

⎦ ,

⎡

⎣
x21
x22
x23

⎤

⎦ =
⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
x31
x32
x33

⎤

⎦ =
⎡

⎣
0
0
1

⎤

⎦ , (32)

and the agents’ utility at the NE of game GP is given by

v1(X) = −3e−3

v2(X) = −e−2 − e−4 − e−3

v3(X) = −e−2 − e−4 − e−3

X = [
xi, j

]
3×3 .

(33)

It is easy to check that vi (X) ≥ voi . Therefore, in this example the utility of agents
at the NE of the public good game with resource pooling is higher than that without
resource pooling.

It is also easy to calculate the socially optimal efforts:

X∗ ∈ arg maxX∈Sv1(X) + v2(X) + v3(X) =
−(1 + 2e−1) · (exp{−x11 − x21 − x31}+
exp{−x12 − x22 − x32} + exp{−x13 − x23 − x33})

xxx∗
1 =

⎡

⎢⎢⎣

5
3

5
3

5
3

⎤

⎥⎥⎦ , xxx∗
2 =

⎡

⎢⎢⎣

1
3
1
3
1
3

⎤

⎥⎥⎦ , xxx∗
3 =

⎡

⎢⎢⎣

1
3
1
3
1
3

⎤

⎥⎥⎦ .

(34)

This is one of the socially optimal strategies, and there exits a NE of the induced
game which implements this socially optimal effort profile.

5.2 An Example where Resource Pooling Worsens
Social Welfare

Consider an example of N = 12 interdependent agent, where g21 = e−1 and g1 j =
e−1, ∀ j > 2, gi i = 1, ∀i , and all other edge weights are zero. Moreover, consider the
following parameters:

μi (y) = −e−y, ∀i
B1 = 3, Bi = 0, ∀i ≥ 2 .

The utility of the agents when the first agent does not pool his resource is:

vo1 = −e−3 − e−1

vo2 = −1
voi = −1 − e−4, ∀i ≥ 3 .

(35)
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At the same time, it is easy to see that if the first agent chooses x11 = 2 and x12 = 1,
then his utility is maximized. We have the following utilities at the NE after this
resource pooling:

v1(X) = −2e−2

v2(X) = −e−1

vi (X) = −e−3 − 1, ∀i ≥ 3

x11 = 2, x12 = 1, xi j = 0, ∀i, j and (i, j) �= (1, 1) or (1, 2) .

(36)

In this example,
∑12

i=1 vi (X) <
∑12

i=1 v
o
i . That is, resource pooling worsens the

social welfare without the proposed mechanism. Incidentally, x∗
11 = 3 and x∗

i j =
0, ∀(i, j) ∈ V × V − {(1, 1)} constitute the socially optimal effort profile.

6 Conclusion

We studied a public good provision game with resource pooling. We showed that
resource pooling does not necessarily improve social welfare when agents act self-
ishly. We then presented a tax-based mechanism which incentivizes agents to pool
their resources in a desirablymanner. This mechanism is budget-balanced and imple-
ments the socially optimal solution at the Nash equilibrium of the game it induces.

Appendix

Proof (Lemma2) Let mmm be a Nash equilibrium of the game induced by proposed
mechanism, and mi = (xxx (i),πππ(i)). We need to show that the following term is equal
to zero at NE:

(xxx (i) − xxx (i+1))T diag(πππ(i))(xxx (i) − xxx (i+1))

−(xxx (i+1) − xxx (i+2))T diag(πππ(i+1))(xxx (i+1) − xxx (i+2)) .
(37)

Becausemmm is the Nash equilibrium, we have

ri (X̂(mi ,mmm−i ), t̂i (mi ,mmm−i )) ≤ ri (X̂(mmm), t̂i (mmm)),∀mi ∈ Mi . (38)

We substitute mi = (xxx (i),πππ(i)) in (38). Using (17) and (18), we have,

ri (X̂((xxx
(i),πππ(i)),mmm−i ), t̂i ((xxx

(i),πππ(i)),mmm−i )) =
ri (X̂(mmm), t̂i ((xxx

(i),πππ(i)),mmm−i )) ≤ ri (X̂(mmm), t̂i (mmm)),∀πππ(i) ∈ RN (N−1)
+ .

(39)
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Because ri (., .) is a decreasing function in ti , (39) implies that,

t̂i ((xxx
(i),πππ(i)),mmm−i ) ≥ t̂i (mmm),∀πππ(i) ∈ RN (N−1)

+ . (40)

In other words,

(πππ(i+1) − πππ(i+2))T xxx

+(xxx (i) − xxx (i+1))T diag(πππ(i))(xxx (i) − xxx (i+1))

−(xxx (i+1) − xxx (i+2))T diag(πππ(i+1))(xxx (i+1) − xxx (i+2)) ≤
(πππ(i+1) − πππ(i+2))T xxx

+(xxx (i) − xxx (i+1))T diag(πππ(i))(xxx (i) − xxx (i+1))

−(xxx (i+1) − xxx (i+2))T diag(πππ(i+1))(xxx (i+1) − xxx (i+2)) ,

∀πππ(i) ∈ RN ·(N−1)
+ .

(41)

By simplifying the above equation, we have

(xxx (i) − xxx (i+1))T diag(πππ(i) − πππ(i))(xxx (i) − xxx (i+1)) ≥ 0 ,∀πππ(i) ∈ RN ·(N−1)
+ . (42)

Because the above equation is valid for all πππ(i) ∈ RN (N−1)
+ , it implies

(xxx (i) − xxx (i+1))T diag(πππ(i))(xxx (i) − xxx (i+1)) = 0, ∀i ∈ V . (43)

Therefore, at the NE we have

t̂i (mmm) = (πππ(i+1) − πππ(i+2))T xxx, ∀i ∈ V . (44)

�

Proof (Theorem3) Letmmm be a NE of the proposed mechanism, and mi = (xxx (i),πππ(i))

and xxx = x̂xx(mmm). By definition, we have

ri (X̂((xxx (i),πππ(i)),mmm−i ), t̂i ((xxx (i),πππ(i)),mmm−i )) ≤ ri (X̂(mmm), t̂i (mmm)),

∀mi = (xxx (i),πππ(i)) ∈ Mi

(45)

Let x̃xx (i) be a vector such that 1
N (x̃xx

(i) + ∑
k∈V−{i} xxx

(k)) = 0.Moreover, we setπππ(i) = 000.
By Lemma2, we have

x̂xx((x̃xx (i),000),mmm−i ) = 000
X̂((x̃xx (i),000),mmm−i ) = diag(B1, B2, · · · , BN )

t̂i ((x̃xx
(i)
,000),mmm−i ) = 000

ri (X̂((x̃xx
(i)
,000),mmm−i ), t̂i ((x̃xx

(i)
,000),mmm−i )) = voi .

(46)
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Equations (45) and (46) together imply that ri (X̂(mmm), t̂i (mmm)) ≥ voi . �

Proof (Theorem5) Let us assume X∗ is a socially optimal effort profile. Let xxx =
[x∗

12, x
∗
13, · · · , x∗

1N , x
∗
21, x

∗
23 · · · , x∗

N (N−1)]. First we show that there is vector llli such
that

xxx ∈ arg max
xxx∈RN (N−1),A(xxx)∈S

−lll
T
i xxx + vi (A(xxx)) . (47)

As A(xxx) is the socially optimal effort profile, we have

xxx = arg max{xxx∈RN (N−1),A(xxx)∈S}
∑N

i=1 vi (A(xxx)) → KKT Conditions:

− (∑
i∈V 
xxxvi (A(xxx))

) − λλλ + θθθ = 0
λλλT xxx = 0,

θ j (−Bj + ∑
k∈V−{ j} x jk) = 0

λλλ ≥ 0

θθθ =
⎡

⎣θ1, · · · , θ1︸ ︷︷ ︸
N−1 times

, θ2, · · · , θ2︸ ︷︷ ︸
N−1 times

, · · · , θN , · · · , θN︸ ︷︷ ︸
N−1 times

⎤

⎦
T

≥ 0 .

(48)

We can define llli = 
xxxvi (A(xxx)) + λλλ/N − θθθ/N . Then we have

llli − 
xxxvi (A(xxx)) − λλλ/N + θθθ/N = 000 , (49)

which implies that xxx,λλλ/N ,θθθ/N satisfies the KKT conditions for the following opti-
mization problem:

arg max{xxx∈RN (N−1),A(xxx)∈S} − lll
T
i xxx + vi (A(xxx)) . (50)

As the above optimization problem is convex and the KKT conditions are necessary
and sufficient for optimality, xxx is the solution to (50).

Now let us assume that we have already found llli ,∀i ∈ V . Consider following
system of equations,

1
N

∑N
i=1 xxx

(i) = xxx (51.a)

πππ(i+1) − πππ(i+2) = llli , i = 1, · · · , N (51.b)

(xxx (i) − xxx (i+1))T diag(πππ(i))(xxx (i) − xxx (i+1)) = 0, i = 1, · · · , N (51.c)

πππ(i) ≥ 000, i = 1, · · · , N (51.d)

(51)

First, we show that the above system of equations has at least one solution.
If we set xxx (i) = xxx , then Eqs. (51.a), (51.c) are satisfied. Moreover, the summation

of left-hand side and right-hand side of (51.b) is zero which implies that one of the
equations of type (51.b) is redundant. Therefore, if we choose an arbitrary value
for πππ(1), then πππ(2),πππ(3), · · · ,πππ(N ) can be determined accordingly based on (51.b).
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Moreover, notice that if we add all πππ(i) by a constant vector ccc, then they still satisfy
(51.a), (51.b), (51.c). Therefore, we can select an appropriate constant vector ccc to
satisfy (51.d).

Now,we show the solution introduced above is aNash equilibriumof the proposed
mechanism. We chose llli such that it satisfies the following:

xxx (i) = xxx ∈ arg maxxxx∈RN ·(N−1) − lll
T
i xxx + vi (A(xxx)) . (52)

We use the following change of variable for the above optimization problem: Nxxx −∑
j∈V−{i} xxx

( j) = xxx (i). We have

xxx (i) ∈ xxx ∈ arg maxxxx (i)∈RN ·(N−1) − lll
T
i

1
N (xxx

(i) + ∑
j∈V−{i} xxx

( j))

+vi (A(
1
N (xxx

(i) + ∑
j∈V−{i} xxx

( j)))) .
(53)

By (51.c) and the fact that the users’ utility function is decreasing in tax, we have

(xxx (i),πππ(i)) ∈ arg max{xxx (i)∈RN ·(N−1),πππ(i)} − lll
T
i

1
N (xxx

(i) + ∑
j∈V−{i} xxx

( j))

(xxx (i+1) − xxx (i+2))T diag(πππ(i+1))(xxx (i+1) − xxx (i+2))T

−(xxx (i) − xxx (i+1))T diag(πππ(i))(xxx (i) − xxx (i+1))T

+vi (A(
1
N (xxx

(i) + ∑
j∈V−{i} xxx

( j))))

(54)

The last equation implies that the solution to (51) is thefixedpoint of the best-response
mapping. Therefore, the solution to (51) is a NE of the proposed mechanism. �
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