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ABSTRACT
We consider an InterDependent Security (IDS) game with net-

worked agents and positive externality where each agent chooses an

effort/investment level for securing itself. The agents are interdepen-

dent in that the state of security of one agent depends not only on

its own investment but also on the other agents’ effort/investment.

Due to the positive externality, the agents under-invest in security

which leads to an inefficient Nash equilibrium (NE). While much

has been analyzed in the literature on the under-investment issue,

in this study we take a different angle. Specifically, we consider

the possibility of allowing agents to pool their resources, i.e., al-

lowing agents to have the ability to both invest in themselves as

well as in other agents. We show that the interaction of strategic

and selfish agents under resource pooling (RP) improves the agents’

effort/investment level as well as their utility as compared to a

scenario without resource pooling. We show that the social welfare

(total utility) at the NE of the game with resource pooling is higher

than the maximum social welfare attainable in a game without

resource pooling but by using an optimal incentive mechanism.

Furthermore, we show that while voluntary participation in this

latter scenario is not generally true, it is guaranteed under resource

pooling.

CCS CONCEPTS
•Networks→Network economics; • Security and privacy→
Network security.

1 INTRODUCTION
The increasing rate and scale of cyber crime is placing significant

pressure on organizations to improve their security posture. At the

same time, the interdependent nature of cyber risks means one’s

state of security is not just the result of one’s own security practices

and investments, but of others’ connected to it, e.g., through attack

propagation and supply chain relationships. Decision making in

such a scenario has often been modeled as an InterDependent

Security (IDS) game [18]. The most critical issue that arises in IDS

games is free-riding where an entity under-invests in security and
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takes advantage of others’ efforts. As a result, the Nash equilibrium

(NE) in IDS games is inefficient and individuals’ investment in

security is below the optimum [14, 27].

To address the free-riding issue and incentivize individuals to

improve their security investment, various mechanisms have been

proposed. [7] shows that bonus and penalty based on agents’ se-

curity outcome can improve network security. [13] and [15] show

that cyber insurance in the presence of a quantitative security as-

sessment (pre-screening) is able to improve the security investment

and address the free-riding issue. Ioannidis et al. in [11] show that

public coordination under the guidance of a well-informed steward

can improve the resilience of the system to attacks. In [20], the

Pivotal (VCG) and Externality mechanisms are analyzed (both are

in the form of a taxation/subsidy mechanism) to induce socially

optimal outcome in IDS games; however, it also shows that no tax

mechanism can simultaneously satisfy both budget balance and

voluntary participation constraints. This is because security is a

non-excludable public good and individuals continue to benefit from
other’s effort even if they unilaterally opt out of the mechanism.

All of the above studies assume the existence of a central entity,

a social planner, a coordinator, or a steward. In this study, differ-

ent from existing literature, we shall take a different approach to

inducing socially desirable or optimal outcomes in this type of IDS

games. Specifically, we consider the absence of such a central en-

tity, and instead model the presence of resource pooling (RP) by

allowing agents to have the ability to both invest in themselves as

well as in other agents, so that they can choose to not only improve

its own but also others’ state of security. This modeling choice

leads to a different IDS game, referred to as the RP-augmented IDS

game, or simply RP-IDS below. In practice, exerting efforts on other

agents’ behalf has context dependent interpretations, such as pro-

viding product/service discounts to customers by a service provider,

as well as funding open source development. Note that both IDS

game and RP-IDS are non-cooperative games where agents selfishly

choose their actions to maximize their own utility. Thus our model

is different from that of a cooperative game [24–26] where players

form coalitions and choose actions to maximize the utility of the

coalition they belong to. A cooperative game can lead to improved

network security as compared to a non-cooperative one if the cost

of forming coalitions is sufficiently low, but forming coalition is

not always possible due to cultural, economical, or social reasons

[22].

Specifically, we study the IDS game with a weighted total effort

and quadratic cost model under two scenarios: (i) no RP (the original

IDS game), where each agent exerts effort only to improve his own

security; and (ii) with RP (RP-IDS), where selfish agents pool their

resources. Our main findings are summarized as follows.

https://doi.org/10.1145/3338506.3340272
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1) Both games have a unique NE. At the NE of the RP-IDS game,

every agent obtains higher utility as compared to that under the

NE of the IDS game.

2) The social welfare (measured by total utility) at the NE of

the RP-IDS game is higher than that under the socially optimal
outcome of the IDS game, induced by mechanisms such as VCG

and externality mechanisms [20]. In other words, as a mechanism,

RP outperforms these tax-based mechanisms.

3) While the VCG and externality mechanisms cannot guarantee

voluntary participation while imposing budget balance [20], we

show that in the RP-IDS game no agent will unilaterally opt out

of resource pooling (while continue to be part of the IDS game),

thereby ensuring voluntary participation.

Related Works
Distributed mechanism framework has been proposed to induce

socially optimal outcome in a distributed manner, i.e., message

transmission is performed locally, and mechanism/tax functions de-

pend on messages from neighboring agents [8, 9, 23]. Even though

distributed mechanisms are viable options to implement the socially

optimal outcome without a central planner, they still cannot be used

in IDS games because they are in the form of taxation mechanism

and not able to satisfy the notion of voluntary participation [20].

Outside the incentive context, IDS games have been extensively

studied in the literature [2, 10, 12, 17, 19]; we reference some of

the more relevant ones below. Ann Miura-Ko et al. [19] consider a
linear influence network and find a condition on the dependence

matrix to guarantee the existence and uniqueness of the NE. Hota

and Sundaram in [10] consider IDS games under behavioral prob-

ability weighting and show that security risk can be reduced by

such weighting strategies. [2] shows that the under-investment

issue similarly exists in a two-stage game model. [17] examines

the relationship between risk exposure and agents’ degrees in the

dependence graph.

The most related work to the present paper is [16] which studies

the role of resource pooling in public good provision games with

limited resources. The main conclusion of [16] is that resource pool-

ing under limited resources is not able to induce socially optimal

outcomes, for which an incentive mechanism is needed.

In the remainder of the paper, we present the IDS game model

without RP, and the RP-IDS game model, and their associated anal-

ysis, in Sec. 2 and 3, respectively. A number of discussions are given

in Sec. 4. Sec. 5 concludes the paper.

2 INTERDEPENDENT SECURITY GAME
WITHOUT RESOURCE POOLING (IDS)

Consider n agents on a directed, weighted graph denoted by G =

(V, E,X ), where V = {1, 2, · · · ,n} is the set of n agents, E ⊆

{(i, j ) |i , j, i, j ∈ V} the set of edges between them, and X =
[xi j ]n×n the adjacency weight matrix of this graph, where xi j >
0, (i, j ) ∈ E is the edge weight, xi j = 0, (i, j ) < E, and xii = 0, i ∈ V .

An edge (i, j ) ∈ E indicates that agent i depends on agent j (or agent
j influences i) with the degree of dependence given by edge weight

xi j . Dependence need not be symmetrical, i.e., xi j , x ji in general.

We assume xii = 0, i ∈ V . Agent i exerts effort ei ≥ 0 towards

securing himself, incurring cost bi · e
2

i (bi > 0 a constant). Given

effort profile eee = [e1, e2, · · · , en]
T
, agent i has utility

ui (ei , e−i ) = −li + ai · ei + ei ·
*.
,

n∑
j=1

xi jej
+/
-
− bi · e

2

i , (1)

where e−i denotes all elements in eee excluding ei , −li a nominal

loss agent i suffers without any effort, ai · ei , ai ≥ 0, the benefit

it derives from effort ei , and ei · xi j · ej the benefit it derives from
other agents’ efforts. This term suggests that an agent who does

not exert effort also does not benefit from other’s efforts. This may

be interpreted as implying that the type of security products or

technologies agents use are complementary. Note that xi j ≥ 0

indicates a case of positive externality between agents i and j; see
e.g., [6] for IDS games with negative externalities. This is a form

of the quadratic utility function widely used in the literature of

network games [3, 5] and IDS games [4, 21]; it can be viewed as a

second-order approximation of any utility function.

The interaction of agents induces a game, denoted as

G =
{
V, {ui (.)}i ∈V ,A = [0,+∞)n

}
, where A is the action space.

In the rest of the paper, we shall use the terms exerted effort, ac-
tions and security investments interchangeably. For convenience
of notation, when comparing two games given by the sameV, E

but different weight matrices X1 and X2, we will denote the result-

ing games as G (X1) and G (X2), respectively. Next we analyze the
equilibrium of game G.

2.1 Equilibrium Analysis
Let Bri (e−i ) denote the best response function of agent i . Using the
first order condition we have

Bri (e−i ) = argmax

e≥0
ui (e, e−i )

=
ai
2bi
+

1

2bi

n∑
j=1

xi jej . (2)

We will primarily focus on pure strategy Nash equilibrium (NE),

and for simplicity of exposition for the rest of the paper Nash

equilibrium refers to a pure strategy NE. An NE is the fixed point

of the best response mapping. Let ê̂êe denote the agents’ effort at the
NE of game G; then ê̂êe satisfies the following equations:

2bi êi −
n∑
j=1

xi j êj = ai , i = 1, 2 · · · ,n

or (2 · B − X ) · ê̂êe = aaa, (3)

where B is a matrix with bi ’s on its main diagonal and zeros every-

where else, and aaa = [a1,a2, · · · ,an]
T
.

We make the following assumption on cost bi to ensure that

the effort levels are bounded at the NE. More discussion on this

assumption is provided in Section 4.1.

Assumption 1. 2bi ≥
∑n
j=1 xi j , ∀i ∈ V .

Under this assumption, we have the following lemma on the best

response mapping and the NE of game G.

Theorem 2.1. Under Assumption 1, matrix (2B − X ) is invertible
and ê̂êe = (2 · B − X )−1 · aaa is the unique NE of game G.

Proof. See Appendix. ■
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Note that Theorem 2.1 holds for any non-negative vector aaa,
which leads to the following corollary.

Corollary 2.2. Under Assumption 1, all entries of matrix (2 · B −
X )−1 are non-negative. Furthermore, let X and X̃ be two adjacency
matrices over the same V and E. Consider the games G (X ) and
G (X + X̃ ), and their respective NE ê̂êe and ẽ̃ẽe . If 2bi ≥

∑n
j=1

[
xi j + x̃i j

]
,

then ẽ̃ẽe ⪰ ê̂êe .1 In other words, agents exert higher effort at the NE given
stronger externality.

Proof. Let 000 ∈ Rn be a zero vector. By Theorem 2.1, we know that

(2 · B − X )−1 · ã̃ãa ⪰ 000 for any non-negative vector ã̃ãa. Set ãi = 1 and

ãj = 0, ∀j , i and ã̃ãa = [ã1, · · · , ãn]
T
. Then, (2 · B −X )−1 · ã̃ãa ⪰ 000 is

the ith column of (2 · B − X )−1. Because i is arbitrary, all columns

of (2 · B − X )−1 are non-negative. Moreover, we have,

(2B − X ) · ê̂êe = aaa

(2B − X − X̃ ) · ẽ̃ẽe = aaa =⇒

ẽ̃ẽe = (2B − X )−1 · aaa + (2B − X )−1 · X̃ · ẽ̃ẽe

= ê̂êe + (2B − X )−1 · X̃ · ẽ̃ẽe︸                ︷︷                ︸
⪰000

⪰ ê̂êe (4)

■

2.2 Socially Optimal Outcome
We now consider the socially optimal effort levels for the IDS game.

Denote by eee∗ = [e∗
1
, e∗

2
, · · · , e∗n], the socially optimal effort profile

maximizes the total utility:

eee∗ ∈ argmax

eee ∈A

n∑
i=1

ui (ei , e−i ) . (5)

To ensure the existence of a socially optimal strategy, we make the

following assumption (see Section 4.1 for more discussion).

Assumption 2. 2bi ≥
∑n
j=1

[
xi j + x ji

]
, ∀i ∈ V .

Theorem 2.3. Let ê̂êe be the effort level at the NE of game G and eee∗

be the socially optimal effort level. Under Assumption 2 we have:

(1) eee∗ = (2B − X − XT )−1 · aaa;
(2) e∗i ≥ êi , ∀i .

That is, every agent exerts higher effort at the socially optimal solution
compared to the NE.

Proof. See Appendix. ■
Remark: The above shows that the socially optimal effort pro-

file of gameG (X ), given by eee∗ = (2B −X −XT )−1 ·aaa, also happens
to be the NE of game G (X + XT ). Also note that for game G (X ),
while the total utility under eee∗ is higher than that under the NE ê̂êe ,
this may or may not be true for agents’ individual utility, as the

following example shows.

1ννν = [ν1 · · · νn ]T ⪰ θθθ = [θ1 · · · θn ]T means that νi ≥ θi , ∀i .

Example 2.4. Consider the following IDS game:

n = 2, b1 = b2 = 1, a1 = a2 = 1

x12 = 0.1, x21 = 0.9, l1 = l2 = 1

ê̂êe = (2B − X )−1 · aaa = [0.5371 0.7417]T

u1 (ê̂êe ) = −0.7115, u2 (ê̂êe ) = −0.4499

eee∗ = (2B − X − XT )−1 · aaa = [1 1]
T

u1 (eee
∗) = −0.9000, u2 (eee

∗) = −0.1000 (6)

In this example, agent 1 has higher influence on agent 2 (x21 > x12);
agent 2 benefits from socially optimal effort (u2 (eee

∗) > u2 (ê̂êe )), while
agent 1’s utility worsens even though it exerts higher effort under

eee∗.

Example 2.5. Consider the following IDS gamewhere both agents

benefit from the socially optimal outcome:

n = 2, b1 = b2 = 1, a1 = a2 = 1

x12 = x21 = 0.5, l1 = l2 = 1

ê̂êe = (2B − X )−1 · aaa = [

2

3

,
2

3

]
T

u1 (ê̂êe ) = u2 (ê̂êe ) = −
5

9

= −0.5555

eee∗ = (2B − X − XT )−1 · aaa = [1 1]
T

u1 (eee
∗) = u2 (eee

∗) = −0.5 (7)

These examples show that socially optimal outcome is not nec-

essarily desirable to all agents. Mechanism design in the context

of IDS games aims to incentivize agents to exert higher effort than

that under the NE. In the next section, we will examine the impact

of introducing resource pooling as a mechanism to improve agents’

effort and social welfare.

3 INTERDEPENDENT SECURITY GAME
WITH RESOURCE POOLING (RP-IDS)

Consider the same IDS game setting. Let eeei = [ei1, ei2, · · · , ein]
T

be the action of agent i where ei j ≥ 0 denotes the effort exerted by

agent i on behalf of agent j . Moreover, agent i incurs cost bj · e
2

i j by

exerting effort ei j on behalf of agent j, i.e., the cost of exerting an

effort on behalf of agent j depends on j . 2 Let E = [eee1,eee2, · · · ,eeen]
T

be an n × n matrix that denotes the effort profile, and let Ei =∑n
j=1 eji denote the total effort exerted on behalf of agent i . Agent

i’s utility given profile E is:

vi (eeei ,eee−i ) = −li + ai (
n∑
j=1

eji ) −
n∑

k=1

bk · e
2

ik

+ (
n∑
j=1

eji ) ·
n∑

k=1

xik · (
n∑
r=1

erk )

= −li + aiEi + Ei ·
n∑
j=1

xi jEj −
n∑

k=1

bk · e
2

ik .

The interaction of agents induces the RP-IDS game

Grp =
{
V, {vi }i ∈V ,Arp = [0,+∞)n

2
}
, where Arp is the action

2
An example of this is one firm providing security training for employees of another

firm; the incurred training cost depends on the trainees’ education level.
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space under resource pooling. By first order condition the best

response function of agent i satisfies the following:

eeei = Bri (eee−i )

eii =
ai
2bi
+

∑n
k=1 xik · Ek

2bi

ei j =
xi j · Ei

2bj
, ∀j , i (8)

Let Ê = [êi j ]n×n be the NE of game Grp and Êi =
∑n
j=1 êji the

total effort exerted on behalf of agent i at the NE. We have the

following lemma on effort profile Ê.

Lemma 3.1. Assume that gameGrp has at least one Nash equilib-
rium. The effort profile Ê at the NE satisfies the following system of
equations,

(2B − X − XT ) ·



Ê1
...

Ên



= aaa .

Proof. As effort profile Ê is the fixed point of the best response

mapping, we have,

êii =
ai
2bi
+

∑n
k=1 xik · Êk

2bi

êji =
x ji · Êj

2bi
∀j , i =⇒

by adding above equations:

2bi · Êi = ai +
n∑
j=1

(xi j + x ji )Êj ∀i ∈ V

=⇒ aaa = (2B − X − XT ) ·



Ê1
...

Ên



(9)

■

Theorem 3.2. Under Assumption 2, (2B − X − XT ) is invertible
and game Grp has a unique NE given as follows:



Ê1
...

Ên



= (2B − X − XT )−1 · aaa

êii =
ai
2bi
+

∑n
k=1 xik · Êk

2bi

êi j =
xi j · Êi

2bj
, ∀j , i (10)

Proof. Similar to the proof of Theorem 2.1, we can show that if

2bi ≥
∑n
j=1 xi j+x ji ,∀i , then all eigenvalues of matrix (2B−X−XT )

are non-zero. Therefore, matrix (2B − X − XT ) is invertible. By
Corollary 2.2, all entries of (2B − X − XT )−1 are non-negative

and

[
Ê1 · · · Ên

]T
= (2B − X − XT )−1 · aaa is a non-negative vector.

Moreover, by the best response mapping provided in (8), we know

that êi j can be calculated by the following,

êii =
ai
2bi
+

∑n
k=1 xik · Êk

2bi
≥ 0

êi j =
xi j · Êi

2bj
≥ 0, ∀j , i (11)

Therefore, the fixed point of the best response mapping is non-

negative and unique, implying the NE of game Grp is unique and

can be found by (10). ■
Remark: It is worth pointing out that for the same weight

matrixX , the total effort exerted by each agent, [Ê1, Ê2, · · · , Ên], at
the NE of the RP-IDS game Grp is the same as the socially optimal

effort of the IDS game G. That is,



Ê1
...

Ên



= (2B − X − XT )−1 · aaa = eee∗ ⪰︸︷︷︸
By Theorem 2.3

ê̂êe . (12)

In other words, the introduction of resource pooling incentivizes

agents to boost their effort to the socially optimal levels for game

G. Note that the game Grp has its own socially optimal solution as

we discuss in Section 4.3.

Next we show that every agent at the NE of game Grp obtains a

higher utility than that attained at the NE of game G, i.e., resource
pooling improves the utility for all agents.

Theorem 3.3. Let Ê = [êi j ]n×n be the NE of Grp and ê̂êe be the
effort profile at the NE of game G. Under Assumption 2, We have:

vi (Ê) ≥ ui (ê̂êe ), ∀i ∈ V . (13)

Proof. Let ẽ̃ẽei be a vector with length n and all its elements are

zero except entry i which is equal to êi (effort level of agent i at NE
of game G). By definition of Nash equilibrium we have,

vi (Ê) ≥ vi (ẽ̃ẽei , ê̂êe−i ). (14)

As Êi ≥ êi , ∀i , by (10) and (3) we have êii ≥ êi . Moreover,

vi (ẽ̃ẽei , ê̂êe−i ) = −li + ai · êi + ai

n∑
k,i

êki − bi · (êi )
2

+(êi +
n∑
k,i

êki ) ·
n∑
j=1

*.
,
xi j · (

∑
k,i

êk j )
+/
-
≥

−li + ai · êi − bi · (êi )
2 + êi ·

n∑
j=1

xi j · êj = ui (êi , ê−i )

(15)

By (14) and (15), vi (Ê) ≥ ui (ê̂êe ) ∀i ∈ V . ■
The following theorem shows that social welfare at the NE of

game Grp is higher than the maximum social welfare of game G,
even though the total effort exerted by each agent is the same under

both as noted earlier.

Theorem 3.4. Let Ê be the effort profile at the NE of gameGrp and
eee∗ be the socially optimal effort profile in gameG . Under Assumption
2 we have,

n∑
i=1

vi (Ê) ≥
n∑
i=1

ui (eee
∗) .
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Proof.

n∑
i=1

vi (Ê) =
n∑
i=1

*.
,
−li + ai Êi − bi ·



n∑
j=1

ê2ji


+ Êi ·



n∑
j=1

xi j · Êj



+/
-

By (12), (e∗i )
2 = Ê2i = (

∑n
j=1 êji )

2 ≥
∑n
j=1 (êji )

2
, and Êi = e∗i .

Therefore,

n∑
i=1

vi (Ê) ≥

n∑
i=1

*.
,
−li + ai Êi − bi · Ê

2

i + Êi ·



n∑
j=1

xi j · Êj



+/
-

=

n∑
i=1

ui (eee
∗). (16)

■
We conclude this section by highlighting the role of resource

pooling in the IDS game.

1) At the NE, with resource pooling (game Grp ) agents exert

higher effort (for themselves and for others) and experience higher

utility than the case without resource pooling (gameG); i.e., Êi ≥ êi ,

and vi (Ê) ≥ ui (ê̂êe ).
2) Resource pooling induces agents to exert socially optimal

levels of effort (under game G), while improving the social welfare

as it allows more judicious spreading of efforts; e.g., Ê = eee∗ and∑n
i=1vi (Ê) ≥

∑n
i=1 ui (eee

∗).

4 DISCUSSION
4.1 On Assumption 2bi >

∑n
j=1 xi j

Throughout the analysis we have used the following assumptions:

• Existence and uniqueness of NE for game G:
2bi >

∑n
j=1 xi j ,∀i

• Existence and uniqueness of socially optimal strategy profile

in game G: 2bi >
∑n
j=1 xi j + x ji ,∀i

• Existence and uniqueness of NE profile in game Grp : 2bi >∑n
j=1 xi j + x ji ,∀i

The reason behind these assumptions is to prevent the model from

becoming pathological: if the cost of effort is sufficiently low, then

there may not exist NE or socially optimal strategy, and it may be

beneficial for the agents to exert very high effort with unbounded

utility.

Example 4.1. Consider a network with xii = 0, xi j =
1

n−1 ∀i, j ∈
V , i , j and bi = 1. Under these parameters Assumption 2 does

not hold. Moreover, set ei = r , ∀i ∈ V . We have:

n∑
i=1

ui (eee ) =
n∑
i=1

*.
,
−li + (r )ai − bi · r

2 + r2
n∑
j=1

xi j
+/
-

= *
,
−

n∑
i=1

li+
-
+ r · *

,

n∑
i=1

ai+
-
,

which is a linear function in r and is unbounded. In this case the

socially optimal effort does not exist.

4.2 Voluntary Participation in RP
As investment in security is a non-excludable public good, an agent

can benefit even if it chooses not to participate in an incentive mech-

anism. As a result, designing a mechanism which incentivizes the

agents to voluntarily participate and exert socially optimal effort

levels is not straightforward. In [20] it was shown that no taxation

mechanism is able to implement the socially optimal solution while

guaranteeing both weak budget balance and voluntary participa-

tion. For this reason, it is important to check whether agents will

voluntarily participate in resource pooling. In what follows, we first

define this notion and then show that under resource pooling the

voluntary participation property is satisfied.

Definition 4.2 (Voluntary Participation (VP)). Consider game

Gk
rp where agent k opts out of RP and only invests in himself and

nobody else invest in agent k (ek j = ejk = 0, ∀j , k), while other

agents participate in RP. Let E̊ = [e̊i j ]n×n be the NE of game Gk
rp

and vi (E̊) be the utility of agent i at the NE. We say that resource

pooling has the voluntary participation property with respect to

agent k , if

vk (E̊) ≤ vk (Ê), (17)

where Ê is the effort profile at the NE of game Grp .
3
If the above

is true for all k ∈ V , then we say that resource pooling has the

voluntary participation property.

By the definition of NE, effort profile Ê = [êi j ]n×n satisfies the

following,

vi (ê̂êei , ê̂êe−i ) ≥ vi (eeei , ê̂êe−i ) ∀eeei ∈ R
n , (18)

where ê̂êei = [êi1, · · · , êin]. It is worth noting that the above defi-

nition does not imply VP defined in (17). The following theorem

suggests that resource pooling always satisfies the VP property.

Theorem 4.3. If Assumption 2 holds, then agent i achieves higher
utility at the NE of game Grp , than his utility at the NE of game
Gi
rp for all i ∈ V . That is, resource pooling always satisfies the VP

property.

Proof. See Appendix. ■
As no one has incentive to deviate from resource pooling unilat-

erally, resource pooling is a better way to improve social welfare

as compared to taxation mechanisms which are not able to satisfy

the voluntary participation and budget balance constraint simulta-

neously [20].

4.3 On the Socially Optimal Outcome of Game
Grp

While the NE of the RP-IDS game Grp achieves socially optimal

levels of effort defined for the IDS game G, the introduction of

resource pooling means that each agent now has a bigger action

space, thereby giving rise to a different social optimum for this new

game. We next show how this new optimum can be computed. Let

E∗ = [e∗i j ]n×n be the socially optimal effort profile for the RP-IDS

game:

E∗ = arg max

E∈Rn×n+

n∑
i=1

vi (E)

= arg max

E∈Rn×n+

n∑
i=1


−li + aiEi − bi · (

n∑
j=1

e2ji ) + Ei

n∑
j=1

xi jEj


.

3
Under Assumption 2, bothGrp and Gk

rp have an NE.
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The assumption below ensures the existence of a solution.

Assumption 3. 2bi > n ·
∑n
j=1 (xi j + x ji ), ∀i ∈ V

Under Assumption 3, it is easy to check that д(E) =
∑n
i=1vi (E)

is strictly concave in E. By the first order condition, E∗ satisfies the
following:

∂д(E)

∂eii
|E=E∗ = ai − 2bie

∗
ii +

n∑
j=1

(xi j + x ji ) · E
∗
j = 0

∂д(E)

∂eki
|E=E∗ = ai − 2bie

∗
ki +

n∑
j=1

(xi j + x ji ) · E
∗
j = 0

=⇒ n · ai − 2biE
∗
i + n ·

n∑
j=1

(xi j + x ji ) · E
∗
j = 0, ∀i ∈ V,

=⇒ (2B − n · (X + XT )) ·



E∗
1

...

E∗n



= n · aaa . (19)

Similar as before, we can show that under Assumption 3, (2B − n ·
(X + XT )) is invertible. Thus the optimal outcome E∗ is given by:



E∗
1

...

E∗n



= n · (2B − n · (X + XT ))−1 · aaa

e∗ki =
ai
2bi
+

∑n
j=1 (xi j + x ji ) · E

∗
j

2bi
, ∀i,k ∈ V (20)

By Corollary 2.2, (2B−n · (X +XT ))−1 ·aaa ⪰ (2B− (X +XT ))−1 ·aaa

which implies that E∗i ≥ Êi , ∀i , i.e., the total effort exerted on behalf
of agent i improves under the social optimum compared to that

under the NE of game Grp . As before, not all agents may attain

higher individual utility under E∗ as compared to their utility under

NE Ê. Examples are provided in the Appendix.

5 CONCLUSIONS
We considered an IDS game with positive externality, and intro-

duced a resource pooling augmented IDS game, the RP-IDS game,

to examine the effect of using resource pooling as a mechanism

to incentivize higher effort levels by interdependent agents. We

showed that (1) resource pooling increases the total effort exerted

on behalf of each agent as compere to no resource pooling, (2) each

agent experiences higher utility under resource pooling as com-

pared to no resource pooling, (3) social welfare at the NE of the

RP-IDS game is higher than the optimal social welfare under the

IDS game, and (4) agents voluntarily participate in resource pooling.

An interesting future direction is to consider the case where agents

only pool their resources within an alliance or coalition.

Appendix: Proofs are given in [1].
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