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ABSTRACT
Personal information and other types of private data are valuable

for both data owners and institutions interested in providing tar-

geted and customized services that require analyzing such data. In

this context, privacy is sometimes seen as a commodity: institu-

tions (data buyers) pay individuals (or data sellers) in exchange for

private data. In this study, we examine the problem of designing

such data contracts, through which a buyer aims to minimize his

payment to the sellers for a desired level of data quality, while the

latter aim to obtain adequate compensation for giving up a certain

amount of privacy. Specifically, we use the concept of differential

privacy and examine a model of linear and nonlinear queries on

private data. We show that conventional algorithms that introduce

differential privacy via zero-mean noise fall short for the purpose

of such transactions as they do not provide sufficient degree of

freedom for the contract designer to negotiate between the com-

peting interests of the buyer and the sellers. Instead, we propose

a biased differentially private algorithm which allows us to cus-

tomize the privacy-accuracy tradeoff for each individual. We use a

contract design approach to find the optimal contracts when using

this biased algorithm to provide privacy, and show that under this

combination the buyer can achieve the same level of accuracy with

a lower payment as compared to using the unbiased algorithms,

while incurring lower privacy loss for the sellers.

CCS CONCEPTS
• Security and privacy→ Economics of security and privacy.

1 INTRODUCTION
Advances in data centers have enabled storing large amounts of

data containing private information of individuals/firms. These

data have value for institutions interested in analyzing them for

a variety of purposes such as targeted advertising. Individuals are

not willing to share their data due to privacy concerns; even when

they are not concerned with how institutions use their respective

data, they can still be reluctant to share due to the possibility of
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Figure 1: Interaction of buyer and sellers.

data breaches. Within this context, privacy has become a commod-

ity that institutions often have to pay monetary or non-monetary

compensation for using it. For instance, Datacoup is a new startup

offering monthly payment in return for the access to users’ online

accounts and credit card transactions. While Datacoup protects

users’ identities as well as credit card numbers, it provides aggre-

gated and/or de-identified information about the users to any third

party, including advertisers, data buyers and analytics partners [1].

Studies of privacy as a commodity include arbitrage-free privacy-

preserving pricing mechanisms, see e.g., [11], designing contracts

for data privacy and utility [14], auctions and direct mechanisms

for selling privacy [8, 9], as well as dynamic privacy pricing [15]. A

more detailed literature review is given in Section 2.

In this paper, we consider a single buyer, whose goal is to mini-

mize his payment to data owners, also referred to as sellers, provided

that the purchased data satisfy a certain level of accuracy. The sell-

ers value their privacy, but are willing to sell their data provided the

cost of their privacy loss, measured by the concept of differential

privacy [6], is adequately compensated by the payment.

The transaction takes place as follows. The buyer announces his

desired accuracy level of a certain computational output, e.g., in

the form of a query over certain types of data, to a trusted third

party, also referred as the data broker. The data broker collects rele-
vant data from different individuals/sellers and generates such an

output, which he then releases to the buyer. The buyer pays each

individual, through the broker, an amount commensurate with the

privacy loss the individual experiences as a result of the release of

the computational output. Figure 1 illustrates these interactions. A

data contract among these parties stipulates the payment amount

and quantifies accuracy as well as privacy guarantees associated

with the payment. In the current model the broker is assumed to be

a neural, non-profit entity, but our analysis and conclusions hold

if the broker charges a fixed processing fee. A key component of

this framework is a differentially private algorithm that preserves

the privacy of the input data and returns a differentially private

output for the query. Toward this end, we propose a randomized

algorithm that, in contrast to most commonly used algorithms that

add a zero-mean noise to the data, see e.g., [11], adds not only a

zero-mean noise to the private data, but also a bias. As we will show,

the introduction of this bias allows the broker to add less noise to

https://doi.org/10.1145/3338506.3340273
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the data and increase the accuracy of the output simultaneously.

Furthermore, it provides an additional degree of freedom that the

broker can use to judiciously determine individual privacy losses

based on individual privacy valuations. As a result, we show that by

choosing the bias term carefully, a contract can be designed for the

buyer to obtain the desired accuracy level at a lower cost, as com-

pared to when an unbiased algorithm is used, while at the same time

the sellers experience less privacy loss. In other words, both buyer

and sellers benefit from using this algorithm. It is worth noting

that [9] also introduces a biased differentially private algorithm for

linear queries and one-dimensional data which offers only a single

privacy level to the participant sellers. We generalize the algorithm

introduced by [9] in the following aspects: i) Our algorithm is able

to assign different privacy loss to the sellers, ii) We also extend our

algorithm for nonlinear queries and multidimensional data.

Our main contribution is two-fold. Firstly, we present a new

algorithm for generating differentially private estimates of a fam-

ily of linear and nonlinear queries, and show that this algorithm

allows the data broker to assign different privacy losses to different

individuals. Secondly, we use a contract design approach to derive

optimal data contracts that minimize the buyer’s payment while

satisfying his accuracy requirement and the seller’s privacy con-

straint. This is done under two scenarios, one with full information,

where the data broker knows the sellers’ privacy valuation, and

one with information asymmetry, where the broker does not know

their privacy valuation but its distribution. We show in both scenar-

ios, the broker can leverage the proposed algorithm to guarantee a

lower privacy loss to an individual with higher privacy valuation.

The remainder of the paper is organized as follows. We present

related work in Section 2 and preliminaries on differential privacy

and query in Section 3. A biased differentially private algorithm

is introduced in Section 4. In Section 5 we analyze the contract

design problem between one buyer and one seller, and between

one buyer and multiple sellers under full information. We discuss

the contract design problem for purchasing private data under

information asymmetry in Section 6. Section 7 concludes the paper,

and proofs of the theorems and generalization of our algorithm for

non linear queries as well as multi dimensional data are provided

in online Appendix [2].

2 RELATEDWORK
Studies most relevant to the present paper are [5, 8, 9, 14]. In [14],

contracts are designed for a data market where data utility and

privacy are considered, with the main conclusion that when the

data collector requires a large amount of data, it is better to pur-

chase from those who care the least about their privacy. It, however,

does not provide any algorithm or mechanism to ensure privacy. A

truthful mechanism for purchasing privacy is proposed in [5, 8, 9].

Gosh and Roth [9] introduce a fixed price auction mechanism using

a biased algorithm which offers only a single privacy level to the

sellers participating in the mechanism. This work was extended

in [8], where the cost of privacy loss is correlated with the private

data. Cummings et.al [5] design a truthful mechanism for a data

aggregation problem where a buyer collects unbiased estimate of

each individual’s data and makes a payment based on the variance

of the estimate. The buyer then calculates the average of all un-

biased estimates to find a better estimate. It is worth noting that

this mechanism is only applicable when the expected values of

individuals’ data are the same.

Privacy preserving mechanisms have also been studied in the

context of data aggregation and task bidding in crowd sensing

[10, 13], and in the context of security information exchange [12].

3 PRELIMINARIES
In this section, we review the notion of differential privacy pro-

posed in [6, 7], which is widely used in the machine learning and

optimization literature [3, 16, 17] to quantify privacy leakage. Then

we will introduce a type of linear query.

We consider n individuals indexed by {1, 2, · · · ,n}. Let di ∈ X be

individual i’s private data where X is a subset of real numbers. Ex-

tension to higher dimensional data is discussed in online Appendix

[2]. An individual incurs a cost if his privacy is violated.

Differential privacy and accuracy: Consider database D =
(d1,d2, · · · ,dn ) ∈ X

n
, the collection ofn individuals’ data. Database

D = (d1,d2, · · · ,dn ) and D (i ) = (d
(i )
1
,d

(i )
2
, · · · ,d

(i )
n ) are said to be

neighbors if dj = d
(i )
j for all j , i and di , d

(i )
i . In other words, D

and D (i )
are neighbors if and only if individual i’s data is different

in D and D (i )
.

Definition 3.1 (ϵ-Differential Privacy [6, 7]). An algorithm A :

Xn → R is ϵi -differentially private with respect to individual i , if

for all neighboring databases D ∈ Xn
and D (i ) ∈ Xn

differing only

in element i , and for any S ⊂ R we have,
Pr {A(D )∈S }
Pr {A(D (i ) )∈S }

≤ exp{ϵi } .

This suggests that A(.) is in general a randomized algorithm. A

common method for making an algorithm ϵi -differentially private

is adding Laplace noise to its output. Let N (b) be the symmetric

Laplacian noise with zero mean and parameter b. Then N (b) has a

variance of 2b2 and a distribution given by: f (x ) = 1

2b exp{−
|x |
b } .

Definition 3.2 (Accuracy). We say algorithmA(.) isK-accurate for

queryQ (D) if E
[
(A(D) −Q (D))2

]
≤ K , ∀D ∈ Xn , i.e., algorithmA

is K-accurate if its Mean Squared Error (MSE) is at most K . Smaller

K indicates a more accurate algorithm.

There are other definitions for accuracy (e.g., see [7]), but the

above choice does not affect the applicability of our methodology

and main conclusions.

A type of linear query:

Definition 3.3 (Linear Query). A linear Query Q : Xn → R over

the database D = (d1,d2, · · · ,dn ) is a linear function evaluated as

follows: Q (D) =
∑n
i=1 qi · di , where qi ∈ R are constants.

Without loss of generality, we will assume that X = [0, 1] and

qi = 1,∀i . Note that if qi , 1, then we can assume that di ∈ [0,qi ]
and Q (D) is the summation of di ’s. The generality of a summation

form of query lies in the fact that it is sufficient to implement many

machine learning algorithms in a differentially private manner [4].

Extension to non-linear queries is discussed in Appendix [2].

We next examine the relationship between accuracy K and pri-

vacy loss ϵ in this type of linear query. Intuitively, we expect an

algorithm with high accuracy to also have high privacy loss. Below

we find a lower bound on the total privacy loss

∑n
i=1 ϵi as a function

of K .
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Theorem 3.4 (Lower Bound on Total Privacy Loss). If algo-
rithm A(D) is K-accurate and K < (n/2)2,1 then the total privacy

loss is at least ln (n−
√
K )2

K . Moreover, if K < (m/2)2, then at least
n −m + 1 individuals experience non-zero privacy loss.

Theorem 3.4 implies that as K → 0, privacy loss approaches

infinity logarithmically. We will introduce an algorithm in Section

4 under which the total privacy loss is close to the lower bound

when K is close to (n/2)2.

4 UNBIASED AND BIASED ALGORITHMS
As mentioned, a common way to provide differential privacy to an

algorithm is to add zero-mean noise.

Theorem 4.1 (An unbiased algorithm). Let Au (D) = Q (D) +
N (b). Then Au (D) is 1

b -differentially private with respect to each
individual. Moreover, Au (D) is 2b2-accurate.

Au (D) = Q (D) + N (b) is an unbiased algorithm, as

E [Au (D) −Q (D)] = 0.We next introduce a biased estimateAnew (D)
of Q (D) such that E [Anew (D)] , Q (D).

Theorem 4.2 (A biased algorithm). Let Anew (D) =
∑n
i=1 ai ·

di +
∑n
i=1

1−ai
2
+ N (b) where 0 ≤ ai ≤ 1, ∀i . Then Anew (D)

is
[(∑n

i=1
1−ai
2

)
2

+ 2b2
]
-accurate. Moreover, the algorithm is ai

b -

differentially private with respect to individual i .

Algorithm Anew (D) is a biased algorithm with the following

bound on the bias:

|E [Anew (D) −Q (D)] | = |
n∑
i=1

(ai − 1)di +
1 − ai
2

| ≤

n∑
i=1

1 − ai
2

(1)

Therefore, increase in ai decreases the algorithm’s bias, improves

its accuracy, and increases its privacy loss. Note that the bias does

not depend on parameter b, and that Anew (D) reduces to Au (D)
by setting ai = 1, ∀i .

5 CONTRACT DESIGN UNDER FULL
INFORMATION

5.1 A single buyer and a single seller
We begin by presenting a model of a single buyer and a single seller:

the individual has data D = (d ) and the buyer wants to find an

estimate of d .
The individual has cost function c (v, .) : R+ → R+, where v is

the seller’s type or his valuation of privacy; this is also referred

to as his privacy attitude. The seller incurs a cost of c (v, ϵ ) if he
experiences privacy loss ϵ . We assume that c (v, ϵ ) is increasing in
privacy valuation v and privacy loss ϵ , and the cost of revealing

data is zero if there is zero privacy loss, i.e., c (v, 0) = 0, ∀i .
The data transaction is facilitated by a contract (p, ϵ,K ), whereby

by accepting it the seller receives payment p and reports actual data

d to the data broker, while the broker uses an algorithm to find an

estimate of Q (D) which is ϵ-differentially private and K-accurate;
this estimate is then reported to the buyer.

1
In the next sections, we will show that If K > (n/2)2 , there exists algorithm A(D )
which is K -accurate and 0-differentially private with respect to each individual. More

precisely, A(D ) could be pure noise if K > (n/2)2 .

Under the full information scenario, we assume the seller’s pri-

vacy attitude v is public information. To ensure the seller accepts

contract (p, ϵ,K ), the contract has to satisfy the Individual Ratio-

nality (IR) constraint that the payment it receives sufficiently com-

pensates for its privacy cost, i.e., (IR) : p ≥ c (v, ϵ ) .
The goal is to find a K-accurate estimate of Q (D) = (d ) with

the minimum amount of payment. If algorithm Anew (.) is used to

find an estimate of Q (D), then the contract design problem can be

written as follows:

min

{0≤a≤1,b>0,p,ϵ=a/b }
p

s.t. (IR) p ≥ c (v, ϵ ), (AC ) ((1 − a)/2)2 + 2b2 ≤ K (2)

where AC denotes the accuracy constraint, following the privacy

and accuracy property of Anew (.) derived earlier in Thm 4.2. Note

that in this case minimizing p equals to minimizing privacy loss ϵ .
If we apply the unbiased algorithm Au (.) (setting a = 1), then

the corresponding optimization problem becomes:

min

{b>0,p }
p s.t. (IR) p ≥ c (v, 1/b), (AC ) 2b2 ≤ K (3)

Note that both IR and AC constraints are binding in the above

problems, otherwise one can always increase b and decrease p. As
a result, the optimal solution (p∗,b∗) to (3) is given by b∗ =

√
K/2,

p∗ = c (v,
√
2/K ), while the optimal solution to (2) can be found

using the following theorem.

Theorem 5.1. The optimal solution (p∗,a∗,b∗) to (2) is as follows.
1) If K > 1/4, then p∗ = 0 , a∗ = 0, and b∗ =

√
(4K − 1)/8.

2) If K < 1/4, then a∗ = 1 − 4K , b∗ =
√
(K − 4K2)/2, and p∗ =

c (v, a
∗

b∗ =
√
(2/K ) − 8).

3) If K = 1/4, then there is no solution to (2).

Thm 5.1 implies that at sufficiently low accuracy levels (K ≥ 1/4)

the optimal strategy for the seller is to not provide any data, or

alternatively, for the data broker to report simply the noise. Thm

5.1 also leads to the following result.

1) K > (1/4): Privacy loss under Au (.) is
√
(2/K ) while under

Anew (.) it is zero. ThusAnew (.) decreases the cost from c (v,
√
2/K )

to zero.

2) K < (1/4): Privacy loss under Au (.) is
√
(2/K ) while under

Anew (.) is
√
(2/K ) − 8; thus againAnew (.) reduces privacy loss and

the resulting cost. Notice that as the IR constraint is binding, mini-

mizing p is equivalent to minimizing ϵ . Therefore, ϵ =
√
(2/K ) − 8

is the minimum privacy loss that we can obtain under algorithm

Anew and subject to accuracy K .
As stated earlier, Thm 3.4 suggests that a K-accurate estimate

of Q (D) has privacy loss at least 2 ln(1 −
√
K ) − lnK . The privacy

loss

√
(2/K ) − 8 under Anew (.) approaches this lower bound as

K → 1/4. Figure 2 compares the minimum privacy loss using

algorithms Au (.) and Anew (.). Clearly Anew (.) outperforms Au (.)
in terms of the cost/privacy-accuracy tradeoff: by introducing a

bias,Anew (.) uses less noise (as compared toAu (.)) to reach a given
privacy loss which improves accuracy.

5.2 A model of N sellers
We now consider the scenario with n sellers and a single buyer with

query on database D = (d1,d2, · · · ,dn ), where data di belongs to
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algorithms.

0 0.2 0.4 0.6 0.8 1

K

0

1

2

3

4

5

P
ri
v
a
c
y
 l
o
s
s
 (

)

Figure 3: Privacy loss v.s. accuracy, under full in-
formation. Using Anew individuals experience
less privacy loss than using Au .
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seller i . Moreover, seller i has privacy valuation vi . Without loss

of generality we assume v1 ≤ v2 ≤ · · · ≤ vn . Similar as before, we

assume the individual privacy cost function c (vi , ϵi ) is increasing
in i’s typevi and privacy loss ϵi , and c (vi , 0) = 0. The buyer wishes

to obtain an estimate for query Q (D) =
∑n
i=1 di , with accuracy K

and minimum payment.

If the broker uses algorithm Anew (.) to get an estimate of Q (D),

we have Anew (D) =
∑n
i=1 (ai · di +

1−ai
2

) + N (b) .With this algo-

rithm, individual i experiences privacy loss ϵi = (ai/b). Similar to

the optimization problem (2), we can write the problem for finding

contracts (pi , ϵi ,K ) as follows:

min

{0≤ai ≤1, pi ≥0, ϵi=ai /b, b>0}

n∑
i=1

pi

s.t. (IR) pi ≥ c (vi , ϵi ) i ∈ {1, 2, · · · ,n}

(AC ) *
,

n∑
i=1

1 − ai
2

+
-

2

+ 2b2 ≤ K . (4)

It is easy to verify that the (IR) constraint and (AC) constraint in (4)

are binding and optimization problem (4) can be written as follows,

min

{0≤ai ≤1,b>0,ϵi=
ai
b ,i=1,2, · · · ,n }

n∑
i=1

c (vi , ϵi )

s.t. (AC ) *
,

n∑
i=1

1 − ai
2

+
-

2

+ 2b2 ≤ K (5)

If v1 = v2 = · · · = vn = 1 and c (v, ϵ ) = v · ϵ , then optimization

problem (5) is equivalent to minimizing total privacy loss under

algorithm Anew (.) subject to accuracy K .
A closed form solution is not easy to find in general and depends

on the form of the cost function. We next provide an example to

highlight the salient features of the biased algorithm in the context

of the contract design problem.

Example 5.2. Consider a case of two sellers with privacy attitudes
v1 = 5 and v2 = 10 respectively, and the following cost function:

c (v, ϵ ) = v · (eϵ − 1) .
Using algorithmAnew (.), the broker offers the contract (p1, ϵ1 =

a1/b,K ) to seller 1 and (p2, ϵ2 = a2/b,K ) to seller 2. Figure 3 plots

the privacy loss of each seller as a function of K . It shows that
both individuals experience less loss as compared to using Au (.).
Moreover, we see that Anew (.) allows the broker to take advantage

of the full information and assign different privacy loss to different

individuals to minimize the cost to the sellers (lower loss for those

with higher privacy valuation). Figure 4 shows the optimal values

for parameter a1,a2,b; it suggests that Anew (.) adds less noise to
the output as compared to algorithm Au (.). This example helps

highlight the two reasons why Anew (.) outperforms Au (.):
1) Under Anew (.), the broker is able to assign different privacy

losses to the two individuals. To minimize the total cost, an individ-

ual with higher privacy valuation is afforded lower privacy loss in

the optimal contract.

2) Under Anew (.), the broker uses less noise (as compared to

Au (.)) to provide the same privacy guarantee, which in turn in-

creases accuracy. In other words, as in the case of a single seller,

Anew (.) improves privacy-accuracy tradeoff.

Next we solve (4) under a linear cost model.

Theorem 5.3. Let c (v, ϵ ) = v · ϵ , K < ( n
2
)2 and si+1 = (n − i ) −

4 · K · vi+1
(n−i ) ·vi+1+

∑i
j=1 vj

,∀i ≥ n − 2
√
K , i ≤ n − 1. Letm + 1 be the

first index where sm+1 ≤ 0 (if si ≥ 0, ∀i , then setm = n). Then the
solution to problem (4) is given by:

a∗
1
= a∗

2
= · · · = a∗m−1 = 1, a∗m = min{sm , 1}, am+1 = · · · = an = 0

b∗ =

√
1

2

(K − (
2K · vm

(n −m + 1) · vm +
∑m−1
j=1 vj

)2), p∗i = c (vi ,
a∗i
b∗

)

Note that if K > (n/2)2, then a1 = a2 = · · · = an = 0 and

b =

√
K−(n/2)2

2
give a feasible solution to (4). This point is optimal

because its objective value is zero. Thus, if K > (n/2)2, then the

output will be a pure noise.

6 CONTRACT DESIGN UNDER
INFORMATION ASYMMETRY

We now turn to the scenarios where the sellers’ privacy attitudes

are their private information unknown to the buyer or the broker,

and focus on the case of two sellers.
2
We will assume the broker

knows that the privacy attitudes come from a binary (high and

low types) distribution: vi =

{
vH w.p. π
vL w.p. 1 − π

, i = 1, 2, where

2
This is for simplicity of presentation; results obtained in this section remain valid for

more than two sellers.
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vH ≥ vL . Moreover, we assume that v1 and v2 are independent.
In this case the optimal thing to do for the broker is to design a

menu of contracts {(pH , ϵH ,K ), (pL , ϵL ,K )}, one for each of the

two types, such that a seller of a certain type will choose the con-

tract designed for his type, i.e., he will select (pt , ϵt ,K ) if he is of
type vt , where t ∈ {L,H }. The IR constraint remains the same:

pt ≥ c (vt , ϵt ), t ∈ {H ,L}. An additional constraint in this case is

Incentive Compatibility (IC), which ensures that a seller does not

increase his utility by selecting the contract of the opposing type

(i.e., misrepresenting his own type):

(IC ) pH − c (vH , ϵH ) ≥ pL − c (vH , ϵL ) ,
(IC ) pL − c (vL , ϵL ) ≥ pH − c (vL , ϵH ) .

(6)

The broker has two options, offering the same menu to both sellers,

or offering the menu to one of the sellers and not using data from

the other seller. Which option to invoke depends on which one

results in lower payment, given the problem parameters. We next

examine the contract design problem under each option in detail.

6.1 Broker offers both sellers the menu of
contracts

Given the constraint (6), by accepting a contract the seller essen-

tially reveals his type. AlgorithmAnew (.) is then used by the broker
to obtain an estimate of Q (D). Due to the uncertainty in the seller

types, Anew (.) returns the following possibilities:

Anew (D) =




aHd1 + aHd2 +
1−aH
2
+

1−aH
2
+ N (b) w.p. π 2

aHd1 + aLd2 +
1−aH
2
+

1−aL
2
+ N (b) w.p. π (1 − π )

aLd1 + aHd2 +
1−aL
2
+

1−aH
2
+ N (b) w.p. π (1 − π )

aLd1 + aLd2 +
1−aL
2
+

1−aL
2
+ N (b) w.p. (1 − π )2

and we have ϵH = (aH /b), ϵL = (aL/b).
The goal of the data broker is to provide expected accuracy

K . Under algorithm Anew (.) the expected accuracy is given by:

e (aL ,aH ,b) = π 2 · (2b2 + (1 − aH )2) + (1 − π )2 · (2b2 + (1 − aL )
2)

+ 2π · (1 − π ) · (2b2 + ((1 − aH )/2 + (1 − aL )/2)
2).

Accordingly, the contract design problem can be written as follows:

min

{pi ,ai ,b },i ∈{H,L }
π 2 · (2pH ) + (1 − π )2 · (2pL ) + 2π (1 − π ) · (pH + pL )

s.t. (IR) pi ≥ c (vi ,ai/b), i ∈ {H ,L}

(IC ) pi − c (vi ,ai/b) ≥ pj − c (vi ,aj/b), i, j ∈ {H ,L}

(AC ) e (aL ,aH ,b) ≤ K , i ∈ {H ,L}

0 ≤ ai ≤ 1,pi ≥ 0,b > 0, i ∈ {H ,L} (7)

To solve this problem we use the following lemma.

Lemma 6.1. The following holds for the optimization problem (7):
1) Constraint pH ≥ c (vH ,aH /b) is binding.
2) Constraint pL ≥ c (vL ,aL/b) is redundant.
3) Constraint pL − c (vL ,aL/b) ≥ pH − c (vL ,aH /b) is binding.

It follows that the solution to (7) satisfies the followings:

pH = c (vH ,
aH
b

), pL − c (vL ,aL/b) = pH − c (vL ,aH /b)

=⇒ pL = c (vH ,
aH
b

) + c (vL ,aL/b) − c (vL ,aH /b) (8)

pH − c (vH ,aH /b) ≥ pL − c (vH ,aL/b) =⇒

c (vH ,
aL
b
) − c (vH ,

aH
b

) ≥ c (vL ,
aL
b
) − c (vL ,

aH
b

) (9)

Using (8) and (9) we can remove pH and pL from problem (7) and

rewrite (7) as follows:

min

0≤ai ≤1, b>0, i ∈{H,L }
π 2 · (2c (vH ,aH /b))

+2 · (1 − π )2 · (c (vH ,aH /b) + c (vL ,aL/b) − c (vL ,aH /b))

+2π (1 − π ) · (2c (vH ,aH /b) + c (vL ,aL/b) − c (vL ,aH /b))

s.t. c (vH ,aL/b) − c (vH ,aH /b) ≥ c (vL ,aL/b) − c (vL ,aH /b)

(AC ) e (aL ,aH ,b) ≤ K , i ∈ {H ,L} (10)

Notice that if
∂c (vH ,ϵ )

∂ϵ ≥
∂c (vL,ϵ )

∂ϵ (marginal cost increasing in

privacy valuation), then the constraint c (vH ,
aL
b ) − c (vH ,

aH
b ) ≥

c (vL ,
aL
b ) − c (vL ,

aH
b ) implies aH ≤ aL , i.e., a seller with higher

privacy attitude experiences lower privacy loss. It is also worth

noting that if aH = 0 is the solution to (10), then the broker offers

only a single contract (instead of a menu) and a seller with lower

privacy attitude accepts that.

6.2 Broker offers only one seller the menu of
contracts

As in the previous case, by selecting from themenu the seller reveals

his type. The broker then uses Anew (.) according to the revealed
type, which returns the following:

Anew (D) =

{
aHd1 +

1−aH
2
+ 1

2
+ N (bH ) w.p. π

aLd1 +
1−aL
2
+ 1

2
+ N (bL ) w.p. 1 − π

,

and ϵH = aH /bH , ϵL = aL/bL .
Note in this case the noise parameter b is type-dependent since

only one individual contributes to the input.

The expected accuracy in this case is given by
3
:

e (aL ,aH ,bL ,bH ) = π · (2b2H + ((2 − aH )/2)2)

+ (1 − π ) · (2b2L + ((2 − aL )/2)
2) . (11)

Accordingly, the contract design problem is given by:

min

{0≤ai ≤1,pi ≥0,bi>0, i ∈{H,L } }
π · (pH ) + (1 − π ) · (pL )

s.t. (IR) pi ≥ c (vi ,ai/bi ), i ∈ {H ,L}

(IC ) pi − c (vi ,ai/bi ) ≥ pj − c (vi ,aj/bi ), i, j ∈ {H ,L}

(AC ) e (aL ,aH ,bL ,bH ) ≤ K , i ∈ {H ,L} (12)

Lemma 6.1 also holds for optimization problem (12).

6.3 Broker’s decision
Given problem parameters K ,vH ,vL ,π , the broker compares the

solutions to optimization problems (10) and (12), and chooses an

option that offers the lower payment and the associated menu of

contracts. These solutions are generally found numerically.

As a comparison, under algorithm Au (.) the data broker can

only offer a single contract (asAu (.) requires aH = aL = 1) and the

corresponding optimal contract under algorithm Au (.) is given by:

(AC ) : b∗ =
√
K/2, ϵ∗ = 1/b∗, (IR) : p∗ = c (vH , 1/b

∗).
We next present an example to highlight the comparison:

c (v, ϵ ) = v · ϵ, vH = 5, vL = 1, π = 0.5 .

Figure 5 illustrates the total payment under algorithm Anew (.)
and Au (.); here Anew (.) denotes the optimal choice between the

3
Note that e (aL, aH , bL, bH ) ≥ 1

4
; thus if K < 1

4
then this is not a viable option,

and the broker should offer the menu to both sellers.
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Figure 5: Total payment v.s. accuracy, under infor-
mation asymmetry. The proposedmethod results in
much lower cost.
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Figure 6: Privacy loss v.s. accuracy, under informa-
tion asymmetry. The proposedmethod is able to dif-
ferentiate heterogenous privacy valuations.

two versions of the algorithm presented in the previous two subsec-

tions, as determined by whether the menu is offered to both sellers

(equation (10)) or only one of them (equation (12)). The results show

that the payment is significantly lower by using Anew (.). Figure
6 further illustrates the privacy loss of each seller as a function

of K . As seen, the contract designed for the lower privacy type

carries higher privacy loss (ϵH < ϵL) in order to decrease the total

payment; by contrast, under Au (.) the broker is not able to dif-

ferentiate between the two types. The two peaks in the ϵL curve

under Anew (.) are due to the following reasons. For K ≤ 0.4, it is

optimal for the broker to offer both sellers a menu of contracts, one

for the high privacy type and one for the low privacy type, and a

seller will select the right one. In the region 0.4 < K ≤ 0.65, it is

optimal for the broker to offer each agent a single contract (of the

low privacy type) such that a seller (if of a low type) accepts it, or

(if of a high type) rejects it and walks away. This accounts for the

discontinuity at K = 0.4. In the region K > 0.65, the broker offers

a single contract (of the low privacy type) to only one of the sellers

by random selection, and that seller accepts or rejects it depending

on his type, while the other seller is not offered anything. This

accounts for the discontinuity at K = 0.65.

7 CONCLUSION
In this study, we considered a data contract problem concerning

the purchasing of private data between a single buyer and multi-

ple sellers. We proposed a biased differentially private algorithm

which allows a data broker to assign different privacy losses to

different individuals depending on their privacy valuations. Using

a contract design approach, we found the optimal pricing mech-

anism to minimize the cost of obtaining a K-accurate estimate of

linear and nonlinear queries. We showed that the broker can take

advantage of our proposed algorithm under both full information

and information asymmetric cases, and afford lower privacy loss to

individuals with higher privacy valuations. As a result, the cost to

the buyer is lower and individuals experience lower privacy loss as

compared to using a common unbiased algorithm.
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