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Abstract

Although machine learning (ML) algorithms are widely used
to make decisions about individuals in various domains, con-
cerns have arisen that (1) these algorithms are vulnerable to
strategic manipulation and “gaming the algorithm”; and (2)
ML decisions may exhibit bias against certain social groups.
Existing works have largely examined these as two separate
issues, e.g., by focusing on building ML algorithms robust to
strategic manipulation, or on training a fair ML algorithm. In
this study, we set out to understand the impact they each have
on the other, and examine how to design fair algorithms in
the presence of strategic behavior. The strategic interaction
between a decision maker and individuals (as decision takers)
is modeled as a two-stage (Stackelberg) game; when designing
an algorithm, the former anticipates the latter may manipulate
their features in order to receive more favorable decisions. We
analytically characterize the equilibrium strategies of both,
and examine how the algorithms and their resulting fairness
properties are affected when the decision maker is strategic
(anticipates manipulation), as well as the impact of fairness in-
terventions on equilibrium strategies. In particular, we identify
conditions under which anticipation of strategic behavior may
mitigate/exacerbate unfairness, and conditions under which
fairness interventions can serve as incentives/disincentives for
strategic manipulation.

1 Introduction
As machine learning (ML) algorithms are increasingly be-
ing used to make high-stake decisions in domains such as
hiring, lending, criminal justice, and college admissions, the
need for transparency increases in terms of how decisions
are reached given input. However, given (partial) information
about an algorithm, individuals subject to its decisions can
and will adapt their behavior by strategically manipulating
their data in order to obtain favorable decisions. This strategic
behavior in turn hurts the performance of ML models and
diminishes their utility. Such a phenomenon has been widely
observed in real-world applications, and is known as Good-
hart’s law, which states “once a measure becomes a target, it
ceases to be a good measure” (Strathern 1997). For instance,
a hiring or admissions practice that heavily depends on GPA
might motivate students to cheat on exams; not accounting
for such manipulation may result in disproportionate hiring
of under-qualified individuals. A strategic decision maker is

one who anticipates such behavior and thus aims to make its
ML models robust to such strategic manipulation.

A second challenge facing ML algorithms is the grow-
ing concern over bias in their decisions, and various notions
of fairness (e.g., demographic parity (Barocas, Hardt, and
Narayanan 2019), equal opportunity (Hardt, Price, and Sre-
bro 2016)) have been proposed to measure and remedy biases.
These measures typically impose an (approximate) equality
constraint over certain statistical measures (e.g., positive clas-
sification rate, true positive rate, etc.) across different groups
when building ML algorithms.

In this paper, we study the design of (fair) machine learning
algorithms in the presence of strategic manipulation. Specifi-
cally, we consider a decision maker whose goal is to select
individuals that are qualified for certain tasks based on a
given set of features. Given knowledge of the selection pol-
icy, individuals can tailor their behavior and manipulate their
features in order to receive favorable decisions. We shall
assume that this feature manipulation does not affect an indi-
vidual’s true qualification state. We say the decision maker
(and its policy) is strategic if it anticipates such manipulation;
it is non-strategic if it does not take into account individuals’
manipulation in its policies.

We adopt a typical two-stage (Stackelberg) game setting
where the decision maker commits to its policies, following
which individuals best-respond. A crucial difference between
this study and existing models of strategic interaction is that
existing models typically assume features and their manipu-
lation are deterministic so that the manipulation cost can be
modeled as a function of the change in features (Hardt et al.
2016; Dong et al. 2018; Milli et al. 2019; Hu, Immorlica,
and Vaughan 2019; Braverman and Garg 2020; Brückner and
Scheffer 2011; Haghtalab et al. 2020; Kleinberg and Ragha-
van 2019; Chen, Wang, and Liu 2020; Miller, Milli, and
Hardt 2020); by contrast, in our setting features are random
variables whose realizations are unknown prior to an individ-
ual’s manipulation decision. In fact, this is the case in many
important applications, a motivating example is presented in
Sec. 2.

Moreover, among these existing works, only (Milli et al.
2019; Hu, Immorlica, and Vaughan 2019; Braverman and
Garg 2020) studied the disparate impact of ML decisions on
different social groups, where the disparity stems from differ-
ent manipulation costs and different feature distributions. No



fairness intervention was considered in these works. In con-
trast, we study the impact of fairness intervention on different
groups in the presence of strategic manipulative behavior, and
explore the role of fairness intervention in (dis)incentivizing
such manipulation. We aim to answer the following questions:
how does the anticipation of individuals’ strategic behavior
impact a decision maker’s utility, and the resulting policies’
fairness properties? How is the Stackelberg equilibrium af-
fected when fairness constraints are imposed? Can fairness
intervention serve as (dis)incentives for individuals’ manipu-
lation? More related work is discussed in Appendix A.

Our main contributions and findings are as follows.
1. We formulate a Stackelberg game to model the interac-

tion between a decision maker and strategic individuals
(Sec. 2). We characterize both strategic (fair) and non-
strategic (fair) optimal policies of the decision maker, and
individuals’ best response (Sec. 3, Lemmas 1-4).

2. We study the impact of the decision maker’s anticipation
of individuals’ strategic manipulation by comparing non-
strategic with strategic policies (Sec. 4):
• We show that compared to non-strategic policy, strategic

policy always disincentivizes manipulative behavior; it
over (resp. under) selects when a population is majority-
qualified (resp. majority-unqualified)1(Thm. 1).

• We show that the anticipation of manipulation can
worsen the fairness of a strategic policy: when one
group is majority-qualified while the other is majority-
unqualified (Thm. 2); on the other hand, when both
groups are majority-unqualified, we show the possibil-
ity of using strategic policy to mitigate unfairness and
even flip the disadvantaged group (Thm. 3).

3. We study the impact of fairness interventions on policies
and individuals’ manipulation (Sec. 5).
• If a decision maker lacks information or awareness to an-

ticipate manipulative behavior (but which in fact exists),
we identify conditions under which such non-strategic
decision maker benefits from using fairness constrained
policies rather than unconstrained policies (Thm. 4).

• By comparing individuals’ responses to a strategic pol-
icy with and without fairness intervention, we iden-
tify scenarios under which a strategic fair policy can
(dis)incentivize manipulation compared to an uncon-
strained strategic policy (Thm. 5 and Thm. 6).

4. We examine our theoretical findings using both synthetic
and real-world datasets (Sec. 7).

2 Problem Formulation
Consider two demographic groups Ga, Gb distinguished by
a sensitive attribute S ∈ {a, b} (e.g., gender), with frac-
tions ns = Pr(S = s) of the population. An individual
from either group has observable features X ∈ Rd and a
hidden qualification state Y ∈ {0, 1}. Let αs = PY |S(1|s)
be the qualification rate of Gs. A decision maker makes a
decision D ∈ {0, 1} ( “0” being negative/reject and “1” posi-
tive/accept) for an individual using a group-dependent policy

1A group is majority-(un)qualified if the majority of that popula-
tion is (un)qualified.

πs(x) = PD|XS(1|x, s). An individual’s action is denoted
by M ∈ {0, 1}, with M = 1 indicating manipulation and
M = 0 otherwise. Note that in our context manipulation
does not change the true qualification state Y . It is the qualifi-
cation state Y , sensitive attribute S, and manipulation action
M together that drive the realizations of features X .
Best response. An individual in Gs incurs a random cost
Cs ≥ 0 when manipulating its features, with probability
density function (PDF) fs(c) and cumulative density function
(CDF) FCs(c) =

∫ c
0
fs(z)dz. The realization of this random

cost is known to an individual when determining its actionM ;
the decision maker on the other hand only knows the overall
cost distribution of each group. Thus the response that the
decision maker anticipates (from the group as a whole or
from a randomly selected individual) is expressed as follows,
whereby given policy πs, an individual in Gs will manipulate
its features if doing so increases its utility:

wPD|YMS(1|y, 1, s)− Cs ≥ wPD|YMS(1|y, 0, s).
Herew > 0 is a fixed benefit to the individual associated with
a positive decisionD = 1 (the benefit is 0 otherwise); without
loss of generality we will let w = 1. In other words, the best
response the decision maker expects from the individuals of
Gs with qualification y is their probability of manipulation,
denoted by pys and written as:

pys(πs) = Pr
(
Cs ≤ PD|YMS(1|y, 1, s)− PD|YMS(1|y, 0, s)

)
.

We assume that individuals manipulate by imitating the fea-
tures of those qualified, e.g., students cheat on exams by hir-
ing a qualified person to take exams (or copying answers of
those qualified), job applicants manipulate resumes by mim-
icking those of the skilled employees, loan applicants fool
the lender by using/stealing identities of qualified people, etc.
This is inspired by the imitative learning behavior observed
in social learning, whereby new behaviors are acquired by
copying social models’ actions (Ganos et al. 2012; Gergely
and Csibra 2006). Under this assumption, the qualified indi-
viduals do not have incentives to manipulate (as manipulation
doesn’t bring additional benefit but cost) and only those un-
qualified may choose to manipulate, i.e., PM |Y S(1|1, s) = 0.
To simplify the notations, we will use PX|Y S(x|y, s) to de-
note the distributions before manipulation. The feature dis-
tribution of those unqualified after manipulation becomes
(1− p0

s(πs))PX|Y S(x|0, s) + p0
s(πs)PX|Y S(x|1, s).

Motivating Example: The above formulation is fundamen-
tally different from existing literature: 1) we consider un-
certain manipulated outcomes where individuals only have
probabilistic knowledge of how features may change upon
manipulation; 2) the realization of manipulation cost is fixed
and known to each individual, as opposed to being a function
of features before and after manipulation. A prime example is
students cheating on an exam by paying for someone else to
take it, where the exam score is treated as feature (in making
admissions or employment decisions): (i) here individual’s
own score and the manipulated feature outcome (actual score
received upon hiring an imposter) are random, but individu-
als have a good idea from past experience what those score
distributions would be like; (ii) the cost of hiring someone is



more or less fixed, and it is determined by the outcome (the
fake score) rather than the difference in score improvement.
As the real test score was never realized (students who hire
someone actually never take the exam themselves), there is
really no way to compute precisely how much the feature
has improved and put a price on it even after the fact. The
existing model does not fit such applications.

Optimal (fair) policy. The decision maker receives a true-
positive (resp. false-positive) benefit (resp. penalty) u+ (resp.
u−) when accepting a qualified (resp. unqualified) individual.
Its utility, denoted by R(D,Y ), is R(1, 1) = u+, R(1, 0) =
u−, R(0, 0) = R(0, 1) = 0. The decision maker aims to find
optimal policies for the two groups such that its expected
total utility E[R(D,Y )] is maximized.

As mentioned earlier, there are two types of decision mak-
ers, strategic and non-strategic: A strategic decision maker
anticipates strategic manipulation, has perfect information on
the manipulation cost distribution, and accounts for this in
determining policies, while a non-strategic decision maker
ignores manipulative behavior in determining its policies.
Either type may further impose a fairness constraint C, to
ensure that πa and πb satisfy the following:

EX∼PCa [πa(X)] = EX∼PCb [πb(X)] , (1)

where PCs is some probability distribution over X associ-
ated with fairness constraint C. Many fairness notions can be
written in this form, e.g., equal opportunity (EqOpt) (Hardt,
Price, and Srebro 2016) where PEqOpt

s (x) = PX|Y S(x|1, s),
or demographic parity (DP) (Barocas, Hardt, and Narayanan
2019) where PDP

s (x) = PX|S(x|s).
The above leads to four types of optimal policies a decision

maker can use, which we consider in this paper: 1) a non-
strategic policy; 2) a non-strategic fair policy; 3) a strategic
policy; 4) a strategic fair policy. These are detailed in Sec. 3.

The Stackelberg game. The interaction between the deci-
sion maker and individuals consists of the following two
stages in sequence: (i) The former publishes its policies
(πa, πb), which may be strategic or non-strategic, and may or
may not satisfy a fairness constraint, and (ii) the latter, while
observing the published policies and their realized costs, de-
cide whether to manipulate their features.

3 Four types of (non-)strategic (fair) policies
Non-strategic policy. A decision maker who does not ac-
count for individuals’ strategic manipulation maximizes the
expected utility Ûs(πs) over Gs defined as follows:
∫
X

[
u+αsPX|Y S(x|1, s)− u−(1− αs)PX|Y S(x|0, s)

]
πs(x)dx.

Define Gs’s qualification profile as γs(x) = PY |XS(1|x, s).
Then, we can show that the non-strategic policy π̂UNs =

argmaxπsÛs(πs) is in the form of a threshold policy, i.e.,
π̂UNs (x) = 1

(
γs(x) ≥ u−

u++u−

)
(Appendix G). Throughout

the paper, we will present results in the one dimensional
feature space. Generalization to high dimensional spaces is
discussed in Appendix B.

Assumption 1. PX|Y S(x|1, s), PX|Y S(x|0, s) are continu-
ous and satisfy the strict monotone likelihood ratio property,
i.e., PX|Y S(x|1,s)

PX|Y S(x|0,s) is increasing in x ∈ R. Let unique x∗s be
such that PX|Y S(x∗s|1, s) = PX|Y S(x∗s|0, s).

Assumption 1 is relatively mild and can be satisfied by
distributions such as exponential and Gaussian, and has been
widely used (Zhang et al. 2020; Jung et al. 2020; Barman and
Rathi 2020; Khalili et al. 2021; Coate and Loury 1993). It
implies that an individual is more likely to be qualified as their
feature value increases. Under Assumption 1, the threshold
policy can be written as πs(x) = 1(x ≥ θs) for some θs ∈ R.
Throughout the paper, we assume Assumption 1 holds and
focus on threshold policies. We will frequently use θs to
denote policy πs. Under Assumption 1, the thresholds for
non-strategic policies are characterized as follows.

Lemma 1. Let (θ̂UNa , θ̂
UN
b ) be non-strategic optimal thresh-

olds. Then PX|Y S(θ̂UNs |1,s)
PX|Y S(θ̂UNs |0,s)

= u−(1−αs)
u+αs

.

Non-strategic fair policy. Denoted as (π̂Ca , π̂
C
b ), this is found

by maximizing the total utility subject to fairness constraint
C, i.e., (π̂Ca , π̂

C
b ) = argmax(πa,πb)

naÛa(πa)+nbÛb(πb) such
that Eqn (1) holds. It can be shown that for EqOpt and DP
fairness, the optimal fair policies are also threshold policies
and can be characterized by the following (Zhang et al. 2020).

Lemma 2 ((Zhang et al. 2020)). Let (θ̂Ca , θ̂
C
b ) be thresholds

in non-strategic optimal fair policies. These satisfy

∑

s=a,b

ns

(
u+αsPX|Y S(θ̂Cs |1, s)− u−(1− αs)PX|Y S(θ̂Cs |0, s)

PCs (θ̂Cs )

)
= 0.

Strategic policy. Let p0
s := PM |Y S(1|0, s), the probability

that unqualified individuals in Gs manipulate. Under policy
πs(x) = 1(x ≥ θ), the decision maker’s expected utility
Us(θ) over Gs is as follows:

Ûs(θ)− u−(1− αs)
(
FX|Y S(θ|0, s)− FX|Y S(θ|1, s)

)
p0
s

where Ûs(θ) is the expected utility under non-strategic policy,
FX|Y S(x|y, s) =

∫ x
−∞ PX|Y S(z|y, s)dz denotes the CDF.

Define manipulation benefit as

∆s(θ) := FX|Y S(θ|0, s)− FX|Y S(θ|1, s),
representing the additional benefit an individual gains
from manipulation. Then, the unqualified individuals’ best-
response (i.e., manipulation probability introduced in Sec. 2)
to policy πs(x) = 1(x ≥ θ) can be equivalently written as

p0
s(θ) := p0

s(πs) = FCs(∆s(θ)).

The detailed derivation is in Appendix G. This manipulation
probability p0

s(θ) is single-peaked with maximum occurring
at x∗s , and limθ→−∞ p0

s(θ) = limθ→+∞ p0
s(θ) = 0, meaning

that when the threshold is sufficiently low or high, unqual-
ified individuals are less likely to manipulate their features.
Plugging this in the decision maker’s utility, we have

Us(θ) = Ûs(θ)− u−(1− αs)∆s(θ)FCs(∆s(θ))︸ ︷︷ ︸
term 2:=Ψs(∆s(θ))

. (2)



Define a function Ψs(z) := u−(1− αs)FCs(z)z, then term
2 in Eqn. (2) can be written as Ψs(∆s(θ)), and can be inter-
preted as the additional loss incurred by the decision maker
due to manipulation (equivalently, the average manipulation
gain by group Gs). Further, let Ψ′s(z) be denoted as the first
order derivative of Ψs(z), then Ψ′s(∆s(θ)) indicates the deci-
sion maker’s marginal loss caused by strategic manipulation
(equivalently, the marginal manipulation gain of Gs). The
thresholds for strategic policies are characterized as follows.

Lemma 3. For (θUNa , θ
UN
b ), the strategic optimal thresholds,

PX|Y S(θUNs |1,s)
PX|Y S(θUNs |0,s)

=
u−(1−αs)−Ψ′s(∆s(θ

UN
s ))

u+αs−Ψ′s(∆s(θUNs )) .

Strategic fair policy. Strategic fair thresholds (θCa , θ
C
b ) are

found by maximizing the total expected utility subject to fair-
ness constraint C, i.e., (θCa , θ

C
b ) = argmax(θa,θb)

naUa(θa) +

nbUb(θb) such that Eqn. (1) holds. They can be characterized
by the following.

Lemma 4. Let (θCa , θ
C
b ) be thresholds in strategic optimal

fair policies. These satisfy

∑

s=a,b

ns

(PX|Y S(θCs |0, s)− PX|Y S(θCs |1, s)
PCs (θCs )

Ψ′s(∆s(θ
C
s )) +

u+αsPX|Y S(θCs |1, s)− u−(1− αs)PX|Y S(θCs |0, s)
PCs (θCs )

)
= 0.

Note that besides (θUNa , θ
UN
b ) and (θCa , θ

C
b ), the equations in

Lemmas 3 and 4 may be satisfied by other threshold pairs that
are not optimal. We discuss this further in the next section.

4 Impact of anticipating manipulations
Impact on the optimal policy & utility function. We first
compare strategic policy θUNs with non-strategic policy θ̂UNs ,
and examine how the policy and the decision maker’s ex-
pected utility differ. Let ∆s := maxθ ∆s(θ).

Assumption 2. Ψ′s(z) <∞ is non-decreasing over [0,∆s].

For any threshold θ, ∆s(θ) represents the manipulation
benefit of Gs; those in Gs choose to manipulate if Cs ≤
∆s(θ). Therefore, ∆s indicates the maximum additional ben-
efit an individual in Gs may gain from manipulation. As
Ψ′s(∆s(θ)) represents the marginal manipulation gain of Gs
on average, Assumption 2 means that a group’s marginal ma-
nipulation gain does not decrease as manipulation benefit in-
creases. Examples (e.g., beta/uniformly distributed cost) satis-
fying this assumption can be found in Appendix C. Note that
under Assumption 2, Ψ′s(0) = 0 and Ψ′s(∆s(θ)) is single-
peaked with maximum occurring at x∗s . We assume it holds
in Sections 4 and 5. Define νs = max{u+αs, u−(1− αs)}.
Theorem 1. Let Ψ′s = Ψ′s(∆s), δu = u−

u−+u+
, and zs < zs

be defined such that Ψ′s(∆s(zs)) = Ψ′s(∆s(zs)) = νs.

1. If αs = δu, then θUNs = θ̂UNs = x∗s when Ψ′s ≤ νs, and
θUNs ∈ {zs, zs} otherwise.

2. If αs < δu (resp. αs > δu), then θUNs > θ̂UNs > x∗s (resp.
θUNs < θ̂UNs < x∗s). Moreover, if Ψ′s > νs, then θ̂UNs > zs
(resp. θ̂UNs < zs) and Us(θ) may have additional extreme

points in (zs, x
∗
s) (resp. (x∗s, zs)); otherwise θ̂UNs is the

unique extreme point of Us(θ).

Note that although Ûs(θ) (non-strategic utility) and
Ψs(∆s(θ)) are single-peaked with unique extreme points,
their difference Us(θ) (Eqn.(2)) may have multiple extreme
points. As we will see later, this results in strategic and non-
strategic policies having different properties in many aspects.

zs zsx∗
s

−0.2

0.0

0.2

0.4

U
s
(θ

)

An example of Us(θ) is shown
to the right: X|Y = y, S = s ∼
N (µy, 4.72), [µ0, µ1] = [−5, 5],
Cs ∼ Beta(10, 4), αs = 0.6 and
u− = u+. The red star is the op-
timal threshold θUNs < zs; two
magenta dots are other extreme
points of Us(θ), which are in (x∗s, zs). Theorem 1 states that
Us(θ) has multiple extreme points if Ψ′s is sufficiently large,
and it also specifies the range of those extreme points.

Note that the maximum marginal manipulation gain Ψ′s
depends on PX|Y S(x|y, s), αs, and Cs. Given fixed cost
Cs, Ψ′s increases as the maximum manipulation benefit ∆s

increases and/or αs decreases (i.e., when there are more un-
qualified individuals who can manipulate). Given fixed ∆s

and αs, Ψ′s increases as cost decreases (i.e., fs(c) is shift-
ed/skewed toward the direction of lower cost). Theorem 1
shows that as compared to non-strategic policy θ̂UNs , strategic
policy θUNs over(under) selects when a group is majority-
(un)qualified.2 In either case, as shown by Theorem 1, this
means θ̂UNs is always closer to x∗s (the single peak of p0

s(θ))
compared to θUNs . Therefore, the strategic policy always dis-
incentivizes manipulative behavior, i.e., manipulation proba-
bility p0

s(θ
UN
s ) < p0

s(θ̂
UN
s ).

Impact on fairness. The characterization of strategic policy
(θUNa , θ

UN
b ) and non-strategic policy (θ̂UNa , θ̂

UN
b ) allows us to

further compare them against a given fairness criterion C.
Suppose we define the unfairness of threshold policy (θa, θb)
as EC(θa, θb) = EX∼PCa [1(x ≥ θa)]−EX∼PCb [1(x ≥ θb)] =

FCb (θb) − FCa(θa), where the CDF FCs (θ) =
∫ θ
−∞ PCs (x)dx.

Define the disadvantaged group under policy (θa, θb) as the
group with the larger FCs (θs), i.e., the group with the smaller
selection rate (DP) or the smaller true positive rate (EqOpt).
Define group index −s := {a, b} \ s. Note that we measure
unfairness EC(θa, θb) over the original feature distributions
PX|Y S(x|y, s) before manipulation.

We first identify distributional conditions under which the
strategic optimal policy worsens unfairness.
Theorem 2. If αs > δu > α−s and FCs (x∗s) ≤ FC−s(x∗−s),
then strategic policy (θUNa , θ

UN
b ) has worse unfairness com-

pared to non-strategic (θ̂UNa , θ̂
UN
b ), i.e.,

∣∣EC(θUNa , θUNb )
∣∣ >∣∣EC(θ̂UNa , θ̂UNb )

∣∣, C ∈ {EqOpt,DP}. Moreover, the disadvan-
taged group under (θUNa , θ

UN
b ) and (θ̂UNa , θ̂

UN
b ) is the same.

Given the conditions in Thm. 2, G−s is disadvantaged un-
der non-strategic policy. Because the majority-(un)qualified

2We say Gs is majority-unqualified (resp. majority-qualified) if
αs < δu (resp. αs > δu). When u− = u+, a group is majority-
(un)qualified if more than a half of its members are (un)qualified.



group Gs(G−s) is over(under) selected under strategic policy
(Theorem 1), G−s becomes more disadvantaged while Gs be-
comes more advantaged, i.e., the unfairness gap is wider un-
der strategic policy. Note that condition FCs (x∗s) ≤ FC−s(x∗−s)
holds if PX|Y S(x|y, a) = PX|Y S(x|y, b). For the DP fair-
ness measure, it holds for any distribution when αs is suffi-
ciently large or α−s sufficiently small. As shown in Sec. 7, it
is also seen in the real world (e.g., FICO data).

We next identify conditions on the manipulation cost, un-
der which strategic policy (θUNa , θ

UN
b ) can lead to a more equi-

table outcome or flip the (dis)advantaged group compared to
non-strategic (θ̂UNa , θ̂

UN
b ).

Theorem 3. If αa, αb < δu and FC−s(θ̂UN−s) > FCs (θ̂UNs ), i.e.,
G−s is disadvantaged under non-strategic policy, then given
any G−s, there always exists cost Cs for Gs such that Ψ′s is
sufficiently large and
1. (θUNa , θ

UN
b ) mitigates the unfairness; or

2. (θUNa , θ
UN
b ) flips the disadvantaged group from G−s to Gs.

Because αs < δu, we have θUNs > θ̂UNs > x∗s (by Thm. 1).
Moreover, θUNs increases as Ψ′s(∆s(θ)) increases (fs(c) is
skewed toward the direction of lower cost). Intuitively, as
Gs’s manipulation cost decreases, more individuals can afford
manipulation; thus a strategic decision maker disincentivizes
manipulation by increasing the threshold θUNs . For any G−s,
as FCs (θUNs ) increases, either the unfairness gets mitigated
or FCs (θUNs ) becomes larger than FC−s(θUN−s). Proposition 1 in
Appendix E considers a special case when PX|Y S(x|y, a) =
PX|Y S(x|y, b), and gives conditions on Ψ′s(·) under which
(θUNa , θ

UN
b ) mitigates the unfairness or flips the disadvantaged

group when C ∈ {EqOpt,DP}.

5 Impact of fairness interventions
In this section, we study how non-strategic and strategic poli-
cies are affected by fairness interventions C ∈ {DP,EqOpt}.
Impact of fairness intervention on non-strategic policy.
First, we consider a non-strategic decision maker and com-
pare (θ̂UNa , θ̂

UN
b ) with (θ̂Ca , θ̂

C
b ), both ignoring strategic manip-

ulation but the latter imposing a fairness criterion. Theorem
4 identifies conditions under which a fairness constrained
(θ̂Ca , θ̂

C
b ) yields higher utility from both groups compared

to unconstrained (θ̂UNa , θ̂
UN
b ). It is worth noting because had

strategic manipulation been absent, (θ̂UNa , θ̂
UN
b ) by definition

would attain the optimal/highest utility for decision maker.

Theorem 4. Let νs = max{u+αs, u−(1 − αs)}, suppose
Ψ′b(∆b(θ̂

C
b )) > νb and Ψ′a(∆a(θ̂Ca)) > νa. When FCs (θ̂UNs ) <

FC−s(θ̂UN−s) (i.e., G−s is disadvantaged under non-strategic
optimal policy), Ua(θ̂Ca) > Ua(θ̂UNa ) and Ub(θ̂Cb ) > Ub(θ̂

UN
b )

hold under any of the following cases: 1) αs < δu < α−s; 2)
αa, αb > δu and αs → δu; 3) αa, αb < δu and α−s → δu.

Condition αs, α−s → δu means that the qualification rates
αs, α−s are sufficiently close to δu. Thm. 4 says that when
the marginal manipulation gains of the groups under non-
strategic fair policy (θ̂Ca , θ̂

C
b ) are sufficiently large, (θ̂Ca , θ̂

C
b )

may outperform (θ̂UNa , θ̂
UN
b ) in terms of both fairness and util-

ity due to the misalignment of Us(θ) and Ûs(θ) caused by
manipulation. This means that if the decision maker lacks
information or awareness to anticipate manipulative behavior
(but which in fact exists), then it would benefit from using a
fairness constrained policy (θ̂Ca , θ̂

C
b ) rather than (θ̂UNa , θ̂

UN
b ).

Impact of fairness intervention on the strategic policy.
We now compare (θUNa , θ

UN
b ) with (θCa , θ

C
b ). We also explore

their respective subsequent impact on individuals’ manip-
ulative behavior by comparing manipulation probabilities(
p0
a(θUNa ), p0

b(θ
UN
b )
)

and
(
p0
a(θCa), p0

b(θ
C
b )
)
. The goal here is to

understand whether fairness intervention can serve as incen-
tives or disincentives for strategic manipulation. According
to Thm. 1, Us(θ) may have multiple extreme points under
strategic manipulation if the group’s marginal manipulation
gain is sufficiently large. Depending on whether Us(θ) has
multiple extreme points, different conclusions result as out-
lined in Thm. 5 below, which identifies conditions under
which fairness intervention may increase the manipulation
incentive for one group while disincentivizing the other, or it
may serve as incentives for both groups.

Theorem 5 (Fairness as (dis)incentives). Denote pCs :=
p0
s(θ
C
s ) and pUNs := p0

s(θ
UN
s ), we have:

1. When both Ua(θ) and Ub(θ) have unique extreme points,
then θUNs > θCs and θUN−s < θC−s must hold. Moreover,

i) If αs > δu > α−s, then ∀α−s, ∃κ, τ ∈ (0, 1) such that
∀αs > κ and ∀ns > τ , we have pUNs < pCs , pUN−s > pC−s.

ii) If αa, αb > δu (resp. αa, αb < δu), then ∀α−s, there
exists κ ∈ (δu, 1) (resp. κ ∈ (0, δu)) such that ∀ αs >
κ (resp. αs < κ), we have (pUNa − pCa)(pUNb − pCb ) < 0.

2. When at least one of Ua(θ), Ub(θ) has multiple extreme
points, then it is possible that ∀s ∈ {a, b}, θUNs > θCs or
θUNs < θCs , i.e., both groups are over/under selected under
fair policies. In this case,

i) If αs > δu > α−s, then (pUNs − pCs )(pUN−s − pC−s) < 0.
ii) If αa, αb > δu (or αa, αb < δu), then either pUNa < pCa ,

pUNb < pCb or (pUNa − pCa)(pUNb − pCb ) < 0.

When not accounting for strategic manipulation, Ûs(θ)
has a unique extreme point, and imposing a fairness con-
straint results in one group getting under-selected and the
other over-selected. In contrast, when the decision maker
anticipates strategic manipulation, Us(θ) may have multi-
ple extreme points. One consequence of this difference is
that both Ga and Gb may be over- or under-selected when
fairness is imposed, resulting in more complex incentive re-
lationships. Specifically, if one group is majority-qualified
while the other is majority-unqualified, then under-selecting
(resp. over-selecting) both groups under fair policies will
increase (resp. decrease) the incentives of the former to ma-
nipulate, while disincentivizing (resp. incentivizing) the latter
(by 2.(i)); if both groups are majority-(un)qualified, then the
fair policy may incentivize both to manipulate (by 2.(ii)).

If the marginal manipulation gain of both groups are not
sufficiently large, i.e., Us(θ) has a unique extreme point,
then fairness intervention always results in one group get-
ting over-selected and the other under-selected. However,



its subsequent impact on incentives may vary depending on
PX|Y S(x|y, s), ns. Thm. 5 identifies two scenarios under
which fair policies incentivize one group (say Gs) while dis-
incentivizing the other (G−s): when Gs is majority-qualified,
G−s majority-unqualified, and Gs sufficiently qualified (αs >
κ) and represented in the entire population (ns > τ) (by
1.(i)); or, when both are majority-(un)qualified and Gs suffi-
ciently (un)qualified (by 1.(ii)).

Next, we identify conditions under which fairness inter-
vention can disincentivize both groups. Let xUNs be defined
s.t. ∆s(x

UN
s ) = ∆s(θ

UN
s ) and xUNs 6= θUNs when θUNs 6= x∗s .

Note that xUNs is the point at which p0
s(x

UN
s ) = p0

s(θ
UN
s ). Be-

cause manipulation probability is single-peaked, fairness in-
tervention incentivizes manipulative behavior of Gs if θCs falls
between xUNs and θUNs .
Theorem 6 (Disincentives for both groups). Suppose Ua(θ)
and Ub(θ) have unique extreme points. If αa, αb > δu (resp.
αa, αb < δu) and FC−s(xUN−s) < FCs (x∗s) (resp. FC−s(xUN−s) >
FCs (x∗s)), then ∃κ, τ ∈ (0, 1) s.t. ∀αs ∈ (δu, κ) (resp. αs ∈
(κ, δu)) and ∀ns > τ , we have pUNa > pCa and pUNb > pCb .

Note that x∗s depends on PX|Y S(x|y, s) and xUN−s is deter-
mined by u−, u+, PX|Y S(x|y,−s) and α−s. Thm. 6 says
that when both groups are majority-(un)qualified, for certain
population distributions and G−s, fair policies disincentivize
both groups if Gs is sufficiently unqualified(qualified) and
sufficiently represented in the population. For a special Gaus-
sian case, conditions for satisfying FC−s(xUN−s) ≶ FCs (x∗s) in
Thm. 6 are given in Proposition 2 in Appendix E.

Theorems 5 and 6 suggest that the impact of fairness in-
tervention on the individuals’ manipulative behavior highly
depends on manipulation costs, feature distributions, group
qualification and representation. This complexity stems from
the misalignment in manipulation probability p0

s(θ), utility
Us(θ), and fairness C. In particular, the manipulation proba-
bility of Gs is single-peaked with maximum at x∗s , which does
not depend on group qualification and representation, but on
which the decision maker’s total utility depends, as varying
αs and ns will affect the policies. As a result, depending on
which region θUNs falls into, i.e., smaller or larger than x∗s , and
how it may change under constraint C, fairness intervention
will have different impacts on incentives.

Although Theorems 5 and 6 hold for both EqOpt and DP
fairness, there are scenarios under which they have different
impact on incentives. Proposition 3 in Appendix E considers
a special case when PX|Y S(x|y, a) = PX|Y S(x|y, b) and
one group is majority-qualified while the other majority-
unqualified, in which EqOpt never disincentivize both
groups while DP can disincentivize both.

6 Discussion
In practice, individual strategic behavior can be much more
complicated than modeled here: those considered qualified
may also have an incentive to manipulate, and manipula-
tion may only lead to partial improvement in features. The
latter can be modeled by introducing a sequence of progres-
sively “better” distributions (each with a different manipula-
tion cost), and the goal of manipulation is to imitate/acquire
a distribution better than one’s own. The model studied in
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Fig. 1: αs, αb > δu, Ca = Cb ∼ Beta(10, 1), u+

u−
= 1

2 . Grey
region is (αa, αb, na) satisfying FCb (xUNb ) < FCa(x∗a) in Thm.
6; meanwhile both groups are disincentivized under (θCa , θ

C
b ).

this paper is essentially the two-distribution (one for the un-
qualified, one for the qualified) version of this more general
model. Even in this simplified model, there exists a complex
relationship between fairness intervention and incentives for
strategic manipulation as we have shown. Our results provide
insights and build a foundation for analyzing more compli-
cated models in future work.

Our present model is limited to scenarios where individual
qualification states and manipulation actions are binary. In
reality, qualification states can be on a continuous spectrum,
and individuals may face more complex manipulation de-
cisions such as what features to manipulate, what types of
actions to take, etc., than a binary decision of whether to
manipulate or not. Going beyond the binary settings is also a
direction of future research.

7 Experiments
We conduct experiments on both a Gaussian synthetic dataset,
and the FICO scores dataset (Reserve 2007). Due to the
lack of real-world data on manipulation cost, we consider
manipulation costs following either uniform (Cs ∼ U [0, c])
or beta distributions (Cs ∼ Beta(a, b), smaller b and larger a
lead to larger manipulation costs, see Fig. 7 in Appendix F).3
Note that these are examples for illustration, our results do
not rely on these choices.

Gaussian data. Suppose X|Y = y, S = s is Gaussian dis-
tributed. Fig. 1 shows an example where fairness intervention
can serve as disincentive for manipulation for both groups.
It shows ∀αb > δu satisfying condition FCb (xUNb ) < FCa(x∗a),
there exist sufficiently small αa and sufficiently large na
under which p0

a(θUNa ) > p0
a(θCa) and p0

b(θ
UN
b ) > p0

b(θ
C
b ), i.e.,

both groups are disincentivized under strategic fair policy.
This verifies Thm. 6. Detailed parameters and more experi-
ments (e.g., verification of Theorems 2, 3, and 5) on Gaussian
data can be found in Appendix F.

FICO scores (Reserve 2007). FICO scores are widely used
in the US to assess an individual’s creditworthiness. The is
a dataset pre-processed by (Hardt, Price, and Srebro 2016)

3Uniformly distributed Cs has been adopted in (Liu et al. 2020).
In economics, a choice of generalized beta distribution is common to
model costs (e.g., healthcare costs (Jones, Lomas, and Rice 2014)).
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Table 1: Unfairness EC(θUNa , θUNb ) and EC(θ̂UNa , θ̂UNb ) for C ∈
{EqOpt,DP}: Gb = African-American, u+ = u−, Ca ∼
Beta(10, 2). When cost Ca 6= Cb, Cb ∼ Beta(10, 6).

Ga strategic non-strategic
Ca = Cb Ca 6= Cb

EqOpt
Caucasian 0.355 0.556 0.136
Hispanic 0.292 0.493 0.034

Asian 0.333 0.533 0.123

DP
Caucasian 0.611 0.680 0.449
Hispanic 0.421 0.490 0.242

Asian 0.634 0.703 0.522

to generate CDF of scores FX|S(x|s) and qualification pro-
file PY |XS(1|x, s) for different social groups (Caucasian,
African-American, Hispanic, Asian). We use these to esti-
mate the conditional feature distribution PX|Y S(x|y, s) by
fitting the simulated data to a Beta distribution. This allows us
to derive the various equilibrium strategies studied in this pa-
per. We further calculate repayment rates αs and proportions
ns. These are summarized in Figs. 14 & 15 and Table 3 in
Appendix F. Here we focus on beta distributed costs, results
for the uniformly distributed Ca, Cb are in Appendix F.

We first compare strategic (θUNa , θ
UN
b ) and non-strategic pol-

icy (θ̂UNa , θ̂
UN
b ) in terms of their fairness. Let Ga denote Cau-

casian, Hispanic or Asian, and Gb denote African-American.
As shown in Table 1, Gb is always disadvantaged compared to
other groups, and strategic policy worsens unfairness. When
Ca 6= Cb, the manipulation cost of Gb is shifted lower. It
further shows that this gets worse when it is less costly for
those in Gb to manipulate their features. Since αa > δu > αb,
this is consistent with Thm. 2.

Fig. 2 illustrates how unfairness can be mitigated and how
the disadvantaged group can gain advantage under strate-
gic policy. Specifically, let Ga,Gb be Hispanic and African-
American respectively. We fix Gb and vary Ga’s manipulation
cost. It shows while Gb is disadvantaged under non-strategic
policy (EC(θ̂UNa , θ̂UNb ) > 0), unfairness can be mitigated under
strategic policy as Ga’s manipulation cost decreases, and the
disadvantaged group may gain an advantage in the process
(EC(θUNa , θUNb ) < 0). This is an example of Thm. 3.

According to Thm. 4, under strategic manipulation, non-

Table 2: Ga = Caucasian(αa = 0.758), Gb = Asian(αb =
0.804), C = EqOpt. Cb ∼ Beta(10, 10). The first (resp.
second) row corresponds to case 1 (resp. case 2) in Thm. 4.

δu Ca Ua(θ̂UNa ) Ua(θ̂Ca) Ub(θ̂
UN
b ) Ub(θ̂

C
b )

0.8 Beta(10, 10) -0.190 -0.189 0.024 0.034
0.756 Beta(10, 1) 0.396 0.397 0.181 0.201

strategic fair policy (θ̂Ca , θ̂
C
b ) may yield higher utilities from

both groups compared to (θ̂UNa , θ̂
UN
b ). We verify this in Table 2,

in which Ga, Gb denote Caucasian and Asian respectively,
with EqOpt as the fairness constraint. It illustrates two cases
corresponding to cases 1 and 2 in Thm. 4, and Ua(θ̂Ca) >

Ua(θ̂UNa ), Ub(θ̂Cb ) > Ub(θ̂
UN
b ) hold in both cases, i.e., (θ̂Ca , θ̂

C
b )

satisfies fairness and attains higher utility than (θ̂UNa , θ̂
UN
b ).
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Fig. 3: Manipulation probabilities under strategic (fair) policy:
Ca = Cb ∼ Beta(a, b), a, b ∈ [1, 15].

Lastly, we examine how fairness intervention acts as incen-
tives for manipulation. Manipulation probabilities p0

s(θ
UN
s ),

p0
s(θ

EqOpt
s ), and p0

s(θ
DP
s ) are compared under different ma-

nipulation costs in Fig. 3. Here groups have the same ma-
nipulation costs Ca = Cb ∼ Beta(a, b) and u− = u+. Ex-
periments on different manipulation costs (Ca ∼ U [0, ca],
Cb ∼ U [0, cb]) are shown in Appendix F. Black, red and
blue surfaces indicate the manipulation probabilities p0

s(θs)

under (θUNa , θ
UN
b ), (θEqOpta , θEqOptb ) and (θDPa , θ

DP
b ) policies as

manipulation costs change. It shows that fairness interven-
tion can incentivize both groups to manipulate (Fig. 3a), and
that EqOpt and DP may have contrarian impact (Fig. 3b).
More experiments on other group pairs are in Appendix F.
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