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Abstract
Future traffic information through vehicular 

communication allows connected and automat-
ed vehicles to optimize their speed trajectories 
and drive more safely and efficiently through 
predictive controllers. Sharing accurate informa-
tion about the vehicle allows such controllers to 
perform best, but may raise privacy concerns. To 
improve privacy guarantee over the shared infor-
mation while preserving its utility for predictive 
controllers, this article proposes a novel informa-
tion perturbation mechanism, as opposed to the 
baseline of independently perturbing the data in 
each broadcast. Specifically, the mechanism is 
applied to the transmitted vehicle speed, and this 
perturbed data is used in an optimal speed plan-
ner to design a fuel and emissions efficient speed 
trajectory. Results show a deterioration of the 
controller performance when privacy is taken into 
consideration under the baseline method. With 
the proposed method, the controller performance 
is improved while providing the same privacy 
guarantee. It is shown that controller design is 
also affected by the choice of perturbation mech-
anism.

Introduction
A vehicle’s movement on the road is con-
strained by the route, road, and traffic conditions 
it encounters, such as the motion of neighbor-
ing vehicles, traffic signals, and local road and 
weather conditions. Knowing this information and 
future movements of the surrounding vehicles 
would allow an automated vehicle to drive more 
efficiently. In car-following scenarios, knowing 
the future speed profile of the leader vehicle has 
been shown to be beneficial for an automated fol-
lower vehicle to drive more safely and efficiently 
[1, 2], as predictive speed controllers can use this 
information to design an optimal trajectory [2, 3].

Regardless of the optimization objective, most 
of the literature on optimal speed planning using 
predictive controllers for connected and automat-
ed vehicles assumes that the future information 
is available with high accuracy, either obtained 
directly from the leader vehicle or inferred from 
vehicle-to-vehicle (V2V) communication with 
accurate information about the leader vehicle [2, 
4]. In most real traffic scenarios, a vehicle’s speed 
is hard to predict accurately due to uncontrolla-

ble factors. Researchers have shown that inac-
curate speed prediction in predictive controllers 
may increase both the risk of collision and fuel 
consumption compared to the case with accu-
rate information [4]. To address this problem, they 
propose two stochastic model predictive control-
lers and show that with a certain speed predic-
tion, better performance is achieved with these 
stochastic controllers than with the deterministic 
one [4]. However, with prediction error, none 
of these controllers recover performance under 
accurate information.

Even if not knowing the true information may 
degrade performance, it is not practical to assume 
that the true information is available. One poten-
tial reason is drivers’ privacy concerns when their 
vehicular information (e.g., speed, location) is 
transmitted to other untrusted vehicles. Examples 
of these privacy concerns include: 
1. Tracking and stalking: Locations along with 

other publicly available information can be 
used to identify a driver’s personal informa-
tion, thereby enabling stalking. Research 
shows that 5 percent of U.S. workers can 
be uniquely identified by just knowing their 
home and work areas [5].

2. Traffic enforcement: Drivers may be con-
cerned that V2V tracking could facilitate 
automated issuance of traffic citations. If 
certain privacy guarantees can be provid-
ed, however, drivers may be more willing 
to share their personal driving information. 
Government organizations also acknowl-
edge the need to address privacy before 
implementing V2V communication technol-
ogies [6].
Various notions of privacy have been suggest-

ed for applications in vehicular networks. They can 
be roughly classified into anonymity-based and 
perturbation-based methods. The former de-iden-
tifies each vehicle to provide privacy, either by 
replacing the real unique identifier of each vehicle 
with some variable and temporary pseudonyms, 
or by adopting the k-anonymity technique [7], 
where at least k vehicles would share the same 
set of attributes (which are indirectly related to 
identifiers) and form an anonymity set; vehicles 
within the same set cannot be distinguished from 
each other. Solely changing the pseudonym can-
not protect vehicles from being tracked over time 
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[8], and combining pseudonym with k-anonymity 
is therefore preferred [9].

Perturbation-based methods provide privacy 
by perturbing transmitted/shared information. 
Typically, the notion of differential privacy [10] 
is adopted, under which each vehicle transmits 
a noisy version of its actual information. Dif-
ferent from k-anonymity, where an adversary’s 
background knowledge must be predefined, dif-
ferential privacy can protect against adversaries 
with any side information and is much stronger. 
Researchers have applied differential privacy to 
vehicular networks [11, 12]. Most algorithms are 
only applicable to either a specific application 
(e.g., binary classification [12]) or a setting with 
a trustworthy third-party data collector gathering 
speed/location data from all vehicles [11]. There-
fore, designing a more general differentially pri-
vate method that can release any type of data in 
real time is of interest.

This study considers a car-following scenario, 
where a leader vehicle generates its speed profile 
with the differential privacy constraint and broad-
casts it periodically. Based on this information, the 
follower vehicle designs its own optimal speed 
using a planner that aims at reducing fuel con-
sumption and tailpipe emissions. To satisfy the 
differential privacy constraint for the leader while 
achieving a sufficiently accurate speed preview 
for the follower, a new perturbation method is 
introduced to balance the trade-off between pri-
vacy and accuracy. Simulation results show that 
the proposed method can generate differentially 
private speed broadcasts with sufficiently accu-
rate information for improving fuel and emissions 
performance through predictive speed planning, 
while with the baseline method, the perturbed 
information with the same differential privacy 
guarantee is nearly useless for improving perfor-
mance. 

We next present the problem formulation and 
definition of differential privacy followed by the 
two different perturbation mechanisms.

Communication-Aided Speed Planning

Problem Formulation

We focus on the application of predictive speed 
planning through private V2V communication. 
The traffic scenario considered is described in Fig. 
1. We assume that vehicle A is broadcasting its 
information, and other vehicles within the com-
munication range of vehicle A, such as vehicles B 
and C, can receive the broadcast information. The 

information sent is vehicle A’s predicted speed in 
the next few seconds to a minute.

The vehicle that is immediately following vehi-
cle A (e.g., follower vehicle B in Fig. 1) can use 
the leader’s information for predictive speed plan-
ning. The follower is equipped with a communi-
cation receiving unit, an onboard optimal speed 
controller, and a radar to measure the current 
speed of and the inter-vehicular distance to lead-
er vehicle A. The optimal speed controller inte-
grates vehicle A’s future speed received through 
V2V communication and radar measurements 
to estimate the motion of A in the near future, 
and uses it as a traffic constraint for vehicle B to 
optimize its future speed trajectory. For instance, 
if B knows that A is going to perform an accelera-
tion followed by a deceleration and an extended 
stop, B can utilize this information to determine 
the best way to drive in terms of fuel economy, 
driving comfort, and/or emissions through the 
optimal speed planner in Fig. 1. 

However, as mentioned earlier, drivers’ per-
sonal information can further be inferred from the 
vehicles’ speeds/locations. Thus, privacy concerns 
inevitably arise when the vehicles’ information is 
disseminated among connected vehicles. In the 
car-following scenario, the leader’s true speed is 
eventually revealed to the follower completely 
due to radar. The driver of the leader may none-
theless wish to keep their information private 
from other non-follower vehicles or roadside units 
that are within the communication range of the 
leader and can receive the leader’s future speed 
trajectory, but cannot detect the actual speed 
directly with radar. An example is vehicle C in Fig. 
1, which is referred to as the attacker vehicle.

If the precise future speed information of 
vehicle A is transmitted to vehicle C, information 
including whether vehicle A is speeding or not, 
whether its driver is erratic or not, and so on will 
be revealed directly. To keep vehicle A’s speed 
private from attacker vehicle C, A should broad-
cast private versions of the future speed profile 
instead. 

We adopt the perturbation-based method by 
adding noise to trajectories and use differential 
privacy as a notion of privacy to measure the pri-
vacy risk of each vehicle. We assume the attacker 
can have any side information about the leader 
and follower vehicles, including all algorithms they 
implement, the noise distributions the leader uses, 
and so on. The attacker vehicles, by receiving the 
same noisy trajectory broadcasts as the follower, 
can extract almost the same amount of informa-
tion from these trajectories about the leader as 
the follower. We say almost, because the follower 
has additional information from the radar while 
the attackers do not. Therefore, to preserve A’s 
privacy from C, and simultaneously provide useful 
information to B’s optimal speed planner, the per-
turbation should be carefully designed to balance 
the trade-off between privacy and accuracy.

Differential Privacy

Differential privacy [10] centers around the idea 
that the output of a certain mechanism or com-
putational procedure should be statistically similar 
given singular changes to the input, thereby pre-
venting meaningful inference from observing the 
output. 

Figure 1. Traffic scenario considered in this article.
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In our V2V communication context, this differ-
ential privacy is provided by perturbing the true 
information coming from each vehicle. Specifi-
cally, each vehicle transmits a noisy version of its 
future speed trajectory, by either randomizing the 
trajectory directly or randomizing the algorithm 
that generates the trajectory. After randomization, 
the output (trajectory) is no longer deterministic 
but a random vector with a certain distribution 
that depends on the form of the added noise 
(Gaussian, Laplace, etc.). 

When done correctly, the conditional prob-
ability distributions of this random output given 
all possible speed trajectories should be similar, 
and differential privacy guarantees that this holds 
for any possible random output. The bound on 
the differences of those distributions can be used 
to quantify the privacy risk: a smaller discrepancy 
implies stronger privacy. Specifically, this difference 
is characterized by the log-likelihood ratio; thus, the 
privacy risk can vary from zero to infinity. With a 
small privacy risk, an attacker has no confidence in 
guessing the true speed when given a noisy speed, 
as all values after perturbation are likely to give the 
same output, with similar likelihood values. Con-
sider an extreme case where the distributions are 
the same; then the inference that an attacker can 
make from the transmitted output will be the same, 
regardless of its true value, thereby conferring com-
plete privacy protection (zero privacy risk). In con-
trast, if the precise trajectory is transmitted without 
any perturbation, the probability of observing this 
output would be 1 for this particular trajectory 
and 0 for all other possible trajectories, resulting in 
infinite privacy risk.

Differential privacy is a worst case measure, 
that is, the bound is over all possible random out-
puts and all possible inputs. It is a strong guar-
antee, as it can protect against attackers with 
any side information. Moreover, it is immune to 
post-processing; given only the differentially pri-
vate output without additional information about 
the true data, it is impossible for attackers to 
make it less differentially private.

In the next section, two perturbation mecha-
nisms are introduced to preserve differential priva-
cy for vehicle A.

Two Perturbation Mechanisms

A naive method for vehicle A to protect its pri-
vacy is adding independent noise to the data at 
each broadcast, which serves as the baseline. The 
noise we adopt follows zero-mean Gaussian dis-
tribution. However, this method is problematic 
because of the temporal correlation in the data 
(e.g., the speed/location of vehicle A is highly cor-
related in consecutive broadcasts). The attacker 
with statistical knowledge of this correlation can 
be particularly hard to defend against, as it can 
use all transmitted information to make the infer-
ence. As a result, the privacy risk to vehicle A is 
accumulated over all the broadcasts, and the total 
privacy risk can be extremely large. 

To address this issue, one approach is to factor 
this correlation into the perturbation mechanism. 
We propose a new method, where for vehicle A 
the broadcast data in each step is based on both 
the broadcast data in the previous step and the 
true data (Fig. 2). The idea is based on two obser-
vations: 

1. Since the vehicular data generated in two 
consecutive broadcasts is highly correlated, 
and the perturbed data is also correlated 
with the original unperturbed data, we can 
use the perturbed data from the previous 
broadcast to estimate the true data of the 
current broadcast based on the statistical 
properties of the trajectory (e.g., mean, vari-
ance, correlation). Various estimators can be 
used; we adopt the commonly used mini-
mum mean square error (MMSE) estimator.

2. Because the computation over the existing 
differentially private outputs will not leak 
additional privacy (by post-processing prop-
erty), the estimation procedure does not 
increase the privacy risk. Thus, technically, 
vehicle A can broadcast just the estimates 
all the time. 

However, solely relying on estimated speed will 
lead to a fairly inaccurate sequence compared 
to the ground truth; that is, although privacy risk 
does not accumulate, the estimation error does. 
To balance the competing needs of accuracy 
and privacy, we must calibrate the broadcast 
data using the true data. Among the potential 
approaches to this calibration, we simply take 
the convex combination of the estimate and 
true value as a first step. Finally, we add noise 
that follows zero-mean Gaussian distribution 
to this combination to generate the broadcast 
speed. 

Privacy Analysis and Discussion

Note that the proposed method is a generalized 
version of the baseline; it reduces to the baseline 
if estimated speed has zero weight in the convex 
combination. By adjusting the weights of the esti-
mated and true speeds, the proposed method can 
always improve the privacy-accuracy trade-off, 
potentially significantly compared to the baseline. 
By repeatedly using the already transmitted speed 
in the estimation, less information about the real 
speed is revealed in each broadcast. To guaran-
tee the same level of privacy as the baseline, the 
proposed method requires less perturbation since 
it reveals less information than the baseline. Thus, 
the proposed method has higher accuracy under 
the same privacy guarantee (i.e., an improved pri-
vacy-accuracy trade-off).

Once the attacker vehicle receives the pri-
vate trajectory generated by either the baseline 
or the proposed method, it may apply a noise 
reduction algorithm to further improve accuracy 

Figure 2. Two-step illustration of the proposed method: Vehicle A’s perturbed 
speed at each broadcast is determined by the convex combination of the 
true speed and the estimation from the previous broadcast.
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(e.g., by averaging/filtering out the random dis-
turbance). Regardless, the privacy is unaffected 
by these post-processing strategies. Additionally, 
most noise reduction algorithms can only take a 
sequence of data points over multiple broadcasts 
as input, but not a single datum in one broadcast. 
Thus, they do not satisfy the real-time requirement 
in V2V systems. In the rest of this article, we only 
compare the baseline and proposed method with-
out any post-processing.

Note that the concept of sharing noisy infor-
mation in V2V communication is compatible with 
existing standards. Cooperative awareness mes-
sages (CAMs) can be disseminated periodical-
ly in the intelligent transportation systems (ITS) 
network under European Telecommunications 
Standards Institute (ETSI) standards. Specifically, 
vehicular information such as speed, location, and 
their corresponding precision with a confidence 
level of 95 percent are broadcast by each vehicle 
(see Annex B in ETSI EN 302 637-2). However, no 
precision requirement is specified.

Therefore, we can adjust precision purpose-
fully for protecting privacy. As long as the per-
turbation’s magnitude is carefully controlled such 
that the information is still useful, the existing stan-
dards still apply.

Speed Profile after Perturbation

Now we present the speed profile of vehicle A 
after perturbation. We assume that vehicle A has 
its speed profile determined before starting the 
drive cycle, which is shown in the top plot in Fig. 
3 and corresponds to the EPA Federal Test Pro-
cedure. However, this information should be per-
turbed when broadcast to protect privacy. Two 
example trajectories of the randomly perturbed 
drive cycle using the baseline and proposed meth-
ods are also shown in the same plot. The variances 
of added noise in the perturbed cycles are chosen 
such that their privacy guarantees are the same.

Once the trip starts, vehicle A broadcasts its 
perturbed future speed at every second within 
a time interval, the length of which is equal to 
the prediction horizon of the predictive speed 
controller on vehicle B. For illustration, the time 
interval is set to 10 s in the bottom plot of Fig. 
3. The actual length used to obtain the simu-
lation results later is 40 s. Since each speed is 
transmitted multiple times during multiple broad-
casts, the total privacy loss will be accumulated 
if the noisy speed is generated independently 
in every broadcast. Attacker C can use time-av-
eraging to make a better inference about the 
true speed. To address this issue, the same noisy 
speed is reused and transmitted during multiple 
broadcasts instead of generating a new value 
independently in each broadcast. The procedure 
is illustrated in the bottom plot of Fig. 3, where 
every two consecutive broadcasts (i.e., t = 11 s 
and 12 s) overlap, and the information during 
the overlapping portion at t = 12 s repeats what 
is sent at t = 11 s, except for the first second 
of each broadcast, when true information is 
available to the immediate following vehicle B 
from the radar. Based on this, an optimal speed 
planner is designed and used for vehicle B, as 
described in the next section. 

Optimal Vehicle Speed Planner
This section describes the planner we use for 
vehicle B that aims at optimally reducing fuel con-
sumption and tailpipe emissions.

MPC Formulation

A model predictive controller (MPC) is adopted 
as the optimal speed planner for vehicle B. The 
MPC decides the optimal acceleration through 
the following iterative process: 
1. At the current time step, the MPC solves an 

optimal control problem that minimizes a 
cost function over the prediction horizon 
subject to constraints. The cost function rep-
resents a weighted sum of fuel consumption 
and tailpipe NOx emissions calculated from 
a model. The constraints include an inter-ve-
hicular distance constraint, which is gener-
ated from the predicted speed of vehicle 
A, maximum speed and acceleration con-
straints, and system dynamics. 

2. Even though the optimization determines the 
optimal acceleration trajectory for the entire 
prediction horizon, only the solution at the 
current time step is applied to the vehicle. 

3. At the next time step, steps (1) and (2) are 
repeated with the new information available 
to the optimizer.
The model used to simulate fuel consumption 

and tailpipe NOx emissions and the selection of 
cost function are described in the following sub-
sections.

Fuel and Emissions Model

A vehicle with a diesel engine is modeled for this 
work. Both vehicle fuel consumption and tailpipe 
emissions are calculated based on knowledge 
of vehicle speed and acceleration, as well as air 
temperature, which is assumed to be constant at 
25°C. This is done by modeling vehicle longitudi-
nal dynamics, gear shift, engine outputs (e.g., fuel 
consumption and inputs to an aftertreatment sys-

Figure 3. Upper: transmitted information perturbed by the baseline method 
and the proposed method; lower: information available to vehicle B at two 
consecutive time steps.
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tem), aftertreatment thermal dynamics, and NOx 
reduction ratio. The aftertreatment system com-
prises a diesel oxidization catalyst (DOC) and a 
selective catalytic reactor (SCR). The NOx reduc-
tion process happens in the SCR, and the reduc-
tion ratio is determined by the SCR temperature.

MPC Objective Function

The objective for the controller is to reduce fuel con-
sumption and tailpipe emissions. Thus, the objective 
function is designed to be a weighted sum of two 
terms, one for fuel and the other for emissions.

Smoothing the speed trajectory leads to lower 
torque and power demand, which improves fuel 
efficiency when traveling the same distance. Thus, 
squared acceleration is the term in the objective 
function to reduce fuel consumption. On the other 
hand, high NOx reduction ratio is preferred to 
reduce tailpipe NOx consumption. NOx conver-
sion ratio in the SCR reaches its maximum in the 
range of 220–320°C, which, in medium-to-light 
duty drive cycles, corresponds to a requirement 
of turbine temperature staying above the thresh-
old temperature of 240°C. Thus, we include the 
squared difference between the threshold tem-
perature and the turbine temperature if the turbine 
temperature is lower than the threshold as the term 
to reduce tailpipe NOx emissions. The above two 
terms are used as an alternative to fuel consump-
tion and tailpipe emissions to reduce controller 
complexity and computation time. It is shown next 
that this objective function is able to effectively bal-
ance fuel consumption and NOx emissions.

Effects of Privacy on  
Vehicle Performance

In this section, the above-described optimal speed 
planner is applied to vehicle B under different sce-
narios to assess how the perturbation employed 
by vehicle A affects the performance of the speed 
planner.

For comparison, the following three scenarios 
are considered, where vehicle A broadcasts:
•	 True future speed without considering priva-

cy (Case 1)
•	 A private version of future speed using the 

proposed method (Case 2)
•	 A private version of future speed using the 

baseline method (Case 3)
We re-emphasize that speed profiles applied in 
Cases 2 and 3 have the same differential privacy 
guarantee.

The speed planner uses a weight factor w 
to adjust the trade-off between minimizing 
acceleration (to reduce fuel consumption) and 
increasing turbine temperature (to reduce NOx 
emissions). To explore the trade-off, the weight 
is varied between simulations as w = 0, 1, …, 5, 
where larger w means larger penalty on emis-
sions. For all three cases considered, the same 
set of weights is used to produce the simulation 
results in Fig. 4. In all the simulations vehicle A is 
assumed to follow the EPA Federal Test Proce-
dure as the drive cycle.

As observed from Fig. 4, for Case 1, when true 
speed information of vehicle A is available to the 
controller, fuel consumption is reduced by 15 per-
cent when the total tailpipe NOx is no more than 
the nominal trajectory, that is, the case in which 

the follower follows the leader’s true speed trajec-
tory exactly.

Now consider the cases involving pertur-
bations. When comparing Case 2 and Case 3 
with Case 1, the overall performance worsens 
with decreased accuracy of the V2V informa-
tion. Since the speed planner aims to minimize 
two competing costs (i.e., fuel and emissions), 
and it is impossible to achieve the minimum for 
both simultaneously, we evaluate the planner 
performance by looking at the fuel consump-
tion when NOx emissions are the same, or by 
looking at the NOx emissions when the fuel 
consumption is the same (Fig. 4). Graphical-
ly, the controller performance can be approx-
imately viewed as the distance between the 
curve and the nominal point (1, 1). Note that 
the trajectories in Cases 2 and 3 have the same 
privacy guarantee, but Case 2 yields better per-
formance. Hence, with the proposed method, 
the planner performance is improved com-
pared to the baseline without increasing the 
privacy risk. Note that here we assume that the 
desired level of differential privacy guarantee 
is given, and only the perturbation mechanism 
is designed to yield better performance than 
baseline and simultaneously preserve the priva-
cy, as mentioned earlier. However, as far as the 
authors know, it is not easy to come up with a 
maximum level of privacy or to design a per-
turbation mechanism for any privacy level, to 
theoretically guarantee that better performance 
is achieved compared to the nominal trajec-
tory. Monte Carlo simulations can be done to 
approximate the maximum tolerated level for 
differential privacy.

The influence of prediction inaccuracy on fuel 
consumption and emission performance is dif-
ferent. As shown in Fig. 5, with the same weight 
factor selected in the MPC, as the information 
becomes more inaccurate, fuel consumption 

Figure 4. Normalized fuel consumption vs. tailpipe NOx emissions curve for 
trajectories optimized over the FTP drive cycle with different weight factors 
w when the optimal speed planner is using speed profiles from vehicle A 
with different privacy guarantees. The nominal case refers to the scenario 
when vehicle B follows the same speed trajectory as vehicle A. 
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increases, while tailpipe NOx emissions react 
unpredictably. The increase in fuel consumption 
is expected for the following reason. When the 
predictive information is inaccurate, current dis-
tance and speed information from the radar on 
vehicle B, which is accurate and updated at every 
time step, will force B to accelerate or decelerate 
to follow vehicle A. This causes a more oscillatory 
drive cycle. If the information is accurate, there is 
better agreement between the radar information 
and the V2V information, which means B is aware 
of vehicle A’s movement in advance and can be 
more optimal in selecting a smoother trajectory, 
which costs less fuel. 

For the tailpipe NOx emissions, which are 
affected by both the amount of engine emitted 
NOx and aftertreatment reaction ratio, there 
does not exist an as consistently monotonic rela-
tionship with the level of inaccuracy as the fuel 
consumption. In the simulations performed, as 
shown in Fig. 5, overall tailpipe NOx decreas-
es with the level of inaccuracy when w is small, 
while when w is large, Case 3 creates more total 
tailpipe NOx than Case 2. This shows that with a 
small w, increase in reduction ratio is the major 
effect compared to the increase in engine NOx 
emissions under this simulated setting. However, 
with a large w, a higher weight is already used 
in the temperature related term, which leads to 
higher aftertreatment temperature and thus enters 
the temperature range that produces a high-
er reduction ratio. Further temperature increase 
caused by the oscillations mentioned above does 
not improve the reduction ratio as much as the 
engine NOx increase caused by the oscillations. 
Thus, higher engine NOx emissions become the 
major effect and yield worse tailpipe NOx per-
formance. If the control objective is maintaining 
the same tailpipe NOx as the nominal trajectory 
and reducing fuel consumption, these analyses 
show that weight w in Case 2 should be larger 
than in Case 3. This expresses the need for an 
integrated design strategy, in which the tuning of 
the controller weight is done with consideration 

of the perturbation method and requirement for 
guaranteeing privacy.

Conclusion
An application of predictive speed planning in a 
car-following scenario is studied with differential 
privacy considerations. A new perturbation mech-
anism is proposed to guarantee a certain level of 
differential privacy for the leader vehicle while still 
providing sufficiently accurate information to the 
follower vehicle for speed planning with good 
performance. As compared to the baseline meth-
od that independently perturbs speed in every 
broadcast, our method generates the speed pro-
file with the same differential privacy guarantee 
but with higher accuracy. The improved accuracy 
in the broadcast information then leads to better 
overall speed planning performance. Meanwhile, 
for more specific control objectives, selection 
of the control parameter is also affected by the 
selection of the perturbation mechanism.

The main conclusion of this work is that 
inaccuracies in the broadcast information of a 
leader vehicle that are introduced due to pri-
vacy concerns can have a significant impact on 
the performance of predictive speed planners 
the follower vehicles may utilize. This negative 
impact can be reduced through co-develop-
ment of the differential privacy and predictive 
speed planning strategies. The results in this 
article demonstrate the potential benefits of a 
more comprehensive design and analysis per-
spective, and motivates further development of 
integrated strategies.
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