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Abstract

Recent advances in generative models have made
it increasingly difficult to distinguish real data
from model-generated synthetic data. Using
synthetic data for successive training of future
model generations creates “self-consuming loops,”
which may lead to model collapse or training in-
stability. Furthermore, synthetic data is often sub-
ject to human feedback and curated by users based
on their preferences. Ferbach et al. (2024) re-
cently showed that when data is curated according
to user preferences, the self-consuming retraining
loop drives the model to converge toward a distri-
bution that optimizes those preferences. However,
in practice, data curation is often noisy or adver-
sarially manipulated. For example, competing
platforms may recruit malicious users to adversar-
ially curate data and disrupt rival models. In this
paper, we study how generative models evolve
under self-consuming retraining loops with noisy
and adversarially curated data. We theoretically
analyze the impact of such noisy data curation
on generative models and identify conditions for
the robustness of the retraining process. Building
on this analysis, we design attack algorithms for
competitive adversarial scenarios, where a plat-
form with a limited budget employs malicious
users to misalign a rival’s model from actual user
preferences. Experiments on both synthetic and
real-world datasets demonstrate the effectiveness
of the proposed algorithms.

1. Introduction
The latest generative models can produce highly realistic
texts (OpenAI, 2024), images (Diffusion, 2025), audio (AI,
2025), and videos (ML, 2025). As synthetic data proliferates
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on the internet, it is inevitably used for training future gener-
ations of models, creating a “self-consuming training loop.”
A line of research has focused on examining the impact
of this self-consuming training loop on generative models’
outputs, both theoretically (Bertrand et al., 2024; Taori &
Hashimoto, 2023) and empirically (Gerstgrasser et al., 2024;
Alemohammad et al., 2024a; Shumailov et al., 2024). These
studies demonstrate that such a self-consuming training loop
may lead to model collapse (Gerstgrasser et al., 2024; Ale-
mohammad et al., 2024a; Shumailov et al., 2024), training
instability (Bertrand et al., 2024), and possibly bias am-
plification (Taori & Hashimoto, 2023; Wyllie et al., 2024;
Xie & Zhang, 2024). Several solutions have also been pro-
posed to mitigate these issues, such as integration of real
data (Bertrand et al., 2024), leveraging cumulative datasets
(Gerstgrasser et al., 2024), and employing Self-Improving
Diffusion Models with Synthetic Data (SIMS) (Alemoham-
mad et al., 2024b).

In contrast to these works, a recent study (Ferbach et al.,
2024) explores a more practical scenario in which synthetic
data is curated by human users. To improve safety, user trust,
and the relevance and quality of generated outputs, mod-
ern generative models are increasingly trained with human
participation and feedback. For example, platforms such as
JourneyDB (Pan et al., 2023) and Pika Labs (Labs, 2025)
provide multiple variations of outputs for users to choose
from, with only selected outputs being upscaled and used
to train next-generation models. As shown in Ferbach et al.
(2024), when synthetic data is curated based on a reward
model representing user preferences, the generative models
trained iteratively on this curated data tend to converge to
an output distribution that maximizes the expected reward.

However, in practice, data curated from users are likely to
be noisy, biased, or even maliciously manipulated. Consider
a scenario where multiple platforms compete for the same
target user population with similar preference distributions
(e.g., ChatGPT (OpenAI, 2025) and Claude (Anthropic,
2025), Stable Diffusion (Diffusion, 2025) and MidJourney
(MidJourney, 2025)). To compete for market share, plat-
forms may leverage their collected datasets, which contain
rich information about actual user preferences, to design
attack algorithms targeting their competitors. For example,
as shown in Fig. 1, a platform may employ malicious users
with limited budgets to deliberately select outputs on a ri-
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Malicious curation using attack algorithms with limited budgets

Figure 1. An example of adversarial data curation in a competitive setting: the adversarial platform and the target platform serve the same
population of users. The adversarial platform can access the data generated by the target platform and obtain real user preferences through
its own preference collection mechanisms. Using the attack algorithm, the adversarial platform employs malicious users to adversarially
curate data on the target platform, preventing its model from aligning with genuine user preferences.

val’s platform that significantly deviate from genuine user
preferences, creating a dataset on the competing platform
that no longer reflects true user preferences. Over time, this
adversarially curated data degrades the competitor’s ability
to train models that align with user preferences, ultimately
reducing their capacity to produce content that attracts users.

This paper takes a first step in examining the impact of adver-
sarially curated data on the iterative retraining of generative
models. We provide a theoretical analysis to understand
how the output distribution of generative models evolves
under adversarially curated data and assess the robustness of
the self-consuming training loop to such manipulations. Our
results demonstrate that under specific conditions, the self-
consuming generative model trained from such adversarially
curated data remains robust that it still converges to output
distribution that optimizes user preferences. However, we
also identify conditions (on the fraction of adversarial data
and its associated reward function) under which this robust-
ness guarantee fails to hold.

Building on this theoretical understanding, we design attack
algorithms for adversarial data curation aimed at disrupting
the alignment of self-consuming generative models with
user preferences. Specifically, we consider a competitive
scenario in which platforms compete for market share by
employing malicious users to curate adversarial data on a
rival’s platform. Given a dataset reflecting genuine user
preferences (collected from the platform’s own users), our
attack algorithms strategically flip a limited number of pref-
erence labels. The modified dataset then guides malicious
users in curating adversarial data on the rival platform. Over
time, the generative models on the targeted platform, when
iteratively trained on such adversarially curated data, fail to
align with genuine user preferences, reducing their ability
to remain appealing to users. To the best of our knowledge,
this is the first attack algorithm for deviating self-consuming
generative models from user preference. The most related

work is Wu et al. (2025), which investigates the vulnera-
bility of reward model learning to preference poisoning.
However, unlike our work that focuses on a self-consuming
training loop, where the attacker aims to gradually misalign
the target model with human preferences, Wu et al. (2025)
considers a static setting where the attacker aims to flip pref-
erence labels to promote or demote specific target outcomes
under the learned reward model. In Appendix A, we discuss
more related works.

Our contributions are summarized as follows:

• In Section 3, we theoretically analyze the long-term per-
formance of self-consuming generative models under ad-
versarial data curation, considering both pure synthetic
data and mixtures of synthetic and real data.

• In Lemma 3.3, we prove that the convergence of the gen-
erative model toward maximizing user-expected rewards
is governed by the covariance of adversarially curated
synthetic data. This result establishes conditions where
convergence remains robust and conditions where adver-
sarial data curation hinders model alignment with human
preferences.

• In Section 4, we model a competitive situation where an
adversarial platform aims to disrupt a competitor’s model
alignment through adversarial data curation, and propose
gradient-based and heuristic attack algorithms.

• In Section 5, we validate the theorems and proposed algo-
rithms through experiments on synthetic and real datasets.

2. Problem Formulation
Consider a platform that iteratively trains generative models
from data curated by users. Denote pdata ∈ P(Rd) as the
real data distribution and for t ∈ N, let pt ∈ P(Rd) be
the data distribution of the generative model at t-th round
of iterative retraining loop. Throughout the paper, we use
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lowercase letters p to denote densities and uppercase letters
P to indicate the associated probabilities.

Adversarially curated data. At every round t ∈ N, the plat-
form presents synthetic data x1, · · · , xK randomly sampled
from current model pt to users, and users select their pre-
ferred outputs that will be upscaled in the dataset for training
next-generation of models. Following Ferbach et al. (2024),
we adopt the generalized Bradley-Terry model (Bradley &
Terry, 1952) to model user’s choice. Specifically, let r(x) be
an underlying reward function that captures user preference
of one data xi over another xj , then the probability that a
data x̂ ∈ {x1, · · · , xK} is curated by the user is as follows:

P (x̂ = xk | x1, . . . , xK) =
er(xk)∑K
j=1 e

r(xj)
, k ∈ [K] (1)

Because curated data in practice may be noisy and adver-
sarially manipulated, we use a mixture model to account
for such adversarial behavior. Specifically, assume another
competing platform employs malicious users to curate noisy
data deviating from actual user preference. Let ϕt ∈ (0, 1)
be the fraction of malicious users at round t and r̃t(x) the un-
derlying reward function. Then the probability x̂ is curated
by a mixture of malicious and benign users is:

P(x̂ = xk | x1, . . . , xK) =(1− ϕt)
er(xk)∑K
j=1 e

r(xj)
(2)

+ ϕt
er̃t(xk)∑K
j=1 e

r̃t(xj)
, k ∈ [K]

We use x̂ ∼ BT (x1, . . . , xK ;ϕt) to denote x̂ is sampled
from x1, . . . , xK according to probability (2).

Self-consuming training loop. Given adversarially curated
data, the platform updates its model at round t+1 according
to the following, either solely on the distribution of curated
synthetic data (λ → ∞) or on a mixture of synthetic and
real data (λ <∞):

pt+1 =argmax
p∈P

1

1 + λ
Ex∼pdata [log (p (x))]

+
λ

1 + λ
E x1,··· ,xK∼pt

x̂∼BT (x1,...,xK ;ϕt)
[log (p (x̂))] (3)

where λ ∈ [0,∞) controls the fraction of real data and P is
the set of achievable distributions with the platform’s model.

Objectives. A recent study (Ferbach et al., 2024) fo-
cused on a special case without malicious users (ϕt = 0).
They showed that if data are curated based on the be-
nign users’ reward function r(x) and the generative model
is updated solely using curated synthetic data, the self-
consuming training loop can result in pt converging to a
distribution that optimizes user preferences, i.e., as t→∞,

Ex∼pt
[er(x)] converges to the maximum reward, and its vari-

ance Varx∼pt [e
r(x)] vanishes. However, in the presence of

malicious users, it remains unclear how the model evolves
and whether pt can align with actual user preferences in the
long run. This paper explores this problem and we first ex-
amine the long-term impact of adversarially curated data on
self-consuming models (Section 3) and then design attack
algorithms that platforms can use to disrupt competitors’
model training processes and misalign their models from
user preferences (Section 4).

3. Impact of adversarially curated data
Next, we examine the evolution of self-consuming genera-
tive models with adversarially curated data. We begin with
the case of purely synthetic data (λ→∞) and then gener-
alize to a mixture of synthetic and real data (λ < ∞). All
proofs can be found in Appendix B.

Iterative retraining only on curated synthetic data. With-
out real data, the iterative retraining process reduces to:

pt+1 = argmax
p∈P

E x1,··· ,xK∼pt

x̂∼BT (x1,...,xK ;ϕt)
[log (p (x̂))] (4)

Lemma 3.1. Consider the asymptotic case where the num-
ber of samples users select from satisfies K →∞. Suppose
Ex∼pt

[er(x)] <∞ and pt+1 follows Eq. (4). Then, we have

pt+1(x)→ pt(x)

[
(1− ϕt)

er(x)

Ez∼pt

[
er(z)

] + ϕt
er̃t(x)

Ez∼pt

[
er̃t(z)

]]

Lemma 3.1 characterizes the relation between pt+1 and pt in
a self-consuming loop with adversarially curated data. Next,
we analyze the evolution of Ept

[er(x)], which quantifies
the expected reward users experience from interacting with
the generative model. We first introduce some technical
assumptions similar to Ferbach et al. (2024).
Assumption 3.2. There exist finite constants rt,min, rt,max,
r̃t,min, r̃t,max ∈ R, such that: pt-almost surely, ∀x ∼ pdata,
rt,min = infx r(x), rt,max = supx r(x), r̃t,min =
infx r̃t(x), r̃t,max = supx r̃t(x).

In most realistic scenarios, this assumption holds because
user preferences typically have finite support or are bounded
in a probabilistic sense. Under this assumption, Lemma 3.3
below examines the impact of adversarially curated data on
Ept+1

[er(x)] and presents its upper and lower bounds.
Lemma 3.3. Let pt+1 be the distribution induced from a
discrete choice model in Eq. (4). Suppose Assumption 3.2
holds, then the following holds:

Ept+1

[
er(x)

]
≥ Ept

[
er(x)

]
+

ṼarVarVar

ert,max
+

C̃ovCovCov

er̃t,min

Ept+1

[
er(x)

]
≤ Ept

[
er(x)

]
+

ṼarVarVar

ert,min
+

C̃ovCovCov

er̃t,max

3



Self-Consuming Generative Models with Adversarially Curated Data

where

ṼarVarVar := (1− ϕt)
(K − 1)

K
Varpt

[
er(x)

]
C̃ovCovCov := ϕt

(K − 1)

K
Covpt

[
er(x), er̃t(x)

]
According to Lemma 3.3, when er(x) and er̃t(x) are pos-
itively correlated, i.e., Covpt

≥ 0, the expected reward
increases, Ept+1

[
er(x)

]
≥ Ept

[
er(x)

]
, allowing the gener-

ative model to align with user preferences despite adversari-
ally curated data. In this case, the expected reward converges
to the maximum, highlighting the model’s inherent robust-
ness against noise and adversarial attacks. However, when
er(x) and er̃t(x) are negatively correlated, i.e., Covpt

< 0,
the convergence is no longer guaranteed. Instead, the ex-
pected reward may oscillate and deviate from the maximum
value. This shows the model’s potential vulnerability in
scenarios where adversarially curated data introduces nega-
tive correlations with the user reward function. The rationale
for the upper bound is discussed in Appendix B.3.

Iterative retraining on mixed real and synthetic data.
Prior works such as Ferbach et al. (2024); Bertrand et al.
(2024); Gerstgrasser et al. (2024); Alemohammad et al.
(2024a) explored the role of real data in self-consuming
generative models. Without data curation, Bertrand et al.
(2024); Gerstgrasser et al. (2024); Alemohammad et al.
(2024a) showed that retraining models with a mix of real
and synthetic data help stabilize the algorithm and prevent
pt from deviating too much from pdata. When synthetic data
is curated by users based on their preferences, pdata is no
longer a fixed point of the retraining loop, as different re-
ward values can occur with positive probability; however,
Ept

[er(x)] still increases compared to Epdata [e
r(x)] (Ferbach

et al., 2024). Next, we study whether incorporating real data
can help defend against adversarially curated data during
iterative model retraining.

Lemma 3.4. Let pt+1 be defined as in Eq. (3), with p0 =
pdata and ϕt = ϕ⋆,∀t. The following holds for all t:

Ept+1

[
er(x)

]
≥ Epdata

[
er(x)

]
(5)

+ ϕ⋆(1 + λ)

(
1−

(
λ

1 + λ

)t
)
Covmin

where Covmin = min
i∈[t]

Covpi

[
er(x), er̃i(x)

]
. As t→∞,

Ept+1

[
er(x)

]
≥ Epdata

[
er(x)

]
+ ϕ⋆(λ+ 1)Covmin (6)

Lemma 3.4 implies that when Covmin > 0, i.e., the ad-
versarial reward values are positively correlated with the
true rewards, model can align with genuine user preferences

and Ept
[er(x)] > Epdata [e

r(x)] still holds. However, when
Covmin < 0, this is no longer the case, suggesting that
simply adding real data is not sufficient to defend against
adversarial curation.

4. Attack algorithms
As shown in Lemma 3.3, adversarially curated data may
result in Ex∼pt

[er(x)] deviating from maximum reward in
the long run. Next, we consider a competitive scenario
illustrated in Fig. 1, where an adversarial platform em-
ploys malicious users to curate data on a target platform
to compete for market share. Our goal is to design attack
algorithms for the adversarial platform that guide malicious
users to act in the most effective way to disrupt the target
platform’s model.

Learning reward model from pairwise comparisons. Un-
like Ferbach et al. (2024) that assumes user reward model
r(x) is known, we consider a more realistic setting that the
adversarial platform does not have access to r(x) but must
learn it from a dataset indicating user preferences. Here,
we consider learning from pairwise comparisons (Wu et al.,
2025; Liu et al., 2024; Zhou et al., 2025) as detailed below.

Let D = {(xi, zi, oi)}ni=1 be the dataset adversarial plat-
form collects from benign users, where xi, zi ∈ Rd are
i-th pair of data samples acquired from the target platform
and oi ∈ {0, 0.5, 1} indicates the user’s preference among
them1. Specifically, oi = 0 if xi is preferred to zi (xi ≻ zi),
oi = 1 if zi is preferred to xi (xi ≺ zi), and oi = 0.5 if
yi and zi are equally preferred. In this paper, we assume
adversarial and target platforms face users with identically
distributed preferences, so that the adversarial platform can
learn r(x) from D.

Let Rθ be a parametric reward model of r(x) learned from
preference data D, where θ ∈ Θ is the parameter. A typical
method is Maximum Likelihood Estimation (MLE) which
minimizes the following loss function:

L(D; θ) = −
∑
i

[(1− oi) log Pr {xi ≻ zi | Rθ}

+oi log Pr {zi ≻ xi | Rθ}] (7)

where preference label oi is generated according to

oi ∼ Pr{zi ≻ xi | r} =
er(zi)

er(xi) + er(zi)
(8)

Objective and constraint of the adversarial platform. To
compete against the target platform, the adversarial platform

1To obtain this dataset, the adversarial platform can first ac-
quire K data samples {x1, · · · , xK} from target platform and then
present them to its users to select. Suppose K = 3 and the user
selects x2, the data pair {(x1, x2, 1), (x2, x3, 0)} is added to D.
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employs malicious users to adversarially curate data on the
target platform, aiming to cause the generative models itera-
tively trained on this curated data to deviate from user pref-
erences. The behavior of malicious users can be formalized
as “flipping the preference label oi of data pairs.” Specifi-
cally, given D = {(xi, zi, oi)}ni=1, malicious users can flip
preference oi to oi + δi, resulting in an adversarial dataset
D̃(δδδ) = {(xi, zi, oi + δi)}ni=1, where δi = {−1, 0, 1}
presents label perturbation and δδδ := {δi}ni=1. In practice,
there is a possibility that malicious users fail to curate data
adversarially on the target platform, or the curated data is
not selected for training the future model. To account for
this, we impose a constraint on the total number of label
flips

∑n
i=1 |δi| ≤ κ · n, where κ ∈ (0, 1) represents the

success rate of perturbing the data on the target platform.

The goal of the adversarial platform is to find δδδ such that the
resulting perturbed dataset D̃(δδδ), when mixed with benign
users’ preference data (via malicious users’ adversarial data
curation), disrupts the target platform’s alignment with user
preferences. Formally, let pt+1 be the self-consuming model
of the target platform trained from such adversarially curated
data, the goal is to reduce the expected reward Ex∼pt

[er(x)]
such that it can deviate from the maximum reward in the
long run, i.e.,

Ept+1

[
eRθ(x)

]
< Ept

[
eRθ(x)

]
(9)

where Rθ is parametric reward model learned from benign
users. Based on Lemma 3.3, we formulate the following
optimization for adversarial platform:

min
δδδ
J (δδδ) := Covpt

[
eRθ(x), eR̃θ̃

(x)
]
+ α dist

(
Rθ, R̃θ̃

)
s.t. θ̃ ∈ argmin

θ′
L
(
D̃(δδδ), θ′

)
(10)

where R̃θ̃ is parametric reward model learned from per-
turbed preference data D̃(δδδ), which may belong to a differ-
ent function family than Rθ. To achieve the objective in
Eq. (9), we aim to make Covpt

[eRθ(x), eR̃θ̃
(x)] as negative

as possible. Meanwhile, to prevent the adversarial behav-
ior from being easily detected as anomalous, we impose a
penalty on the difference between R̃θ̃ and Rθ, quantified by
dist(Rθ, R̃θ̃) and can be defined as Ept [d(Rθ(x), R̃θ̃(x))]
for some distance metric d (e.g., ℓp norm).

Dynamic attack during iterative training. Since the
target platform dynamically updates its model over time, the
adversarial platform must repeatedly solve optimization (10)
as pt evolves. In practice, the adversarial platform can pe-
riodically interact with the target platform to acquire data
pairs x(t)

i , z
(t)
i ∼ pt and collect user preference o(t)i from its

own customers. The dataset D(t) = {(x(t)
i , z

(t)
i , o

(t)
i )}ni=1

can be first used to fine-tune benign reward model Rθ and

then solve for δδδ(t) in optimization (10). The resulting δδδ(t)

can then guide the malicious users in curating data on the
target platform at t. Such adversarially curated data is subse-
quently used by the target platform to retrain its model pt+1.
Over time, this iterative interaction may cause the target
platform to deviate significantly from user preferences.

Challenges to solve optimization (10). The solution to (10)
is difficult to find because it is a bi-level optimization prob-
lem. Moreover, the variables to be optimized are a subset
of preference comparison labels, which involves solving a
combinatorial optimization problem over a discrete space.
Next, we tackle these challenges and introduce two methods
for finding approximated solutions to optimization (10).

4.1. Gradient-based methods

To tackle discrete decision space, we relax the action space
δi ∈ {−1, 0, 1} to interval δi ∈ [−1, 1]. If reward models
are differentiable with respect to θ̃, then we can compute
the gradient of the objective function in (10) as follows:

∇δδδJ (δδδ) = ∇δδδ

(
Covpt

[
eRθ(x), eR̃θ̃

(x)
]
+ α dist

(
Rθ, R̃θ̃

))
= ∇θ̃

(
Covpt

[
eRθ(x), eR̃θ̃

(x)
]
+ α dist

(
Rθ, R̃θ̃

)) dθ̃

dδδδ

Recall that R̃θ̃ is the reward model trained from perturbed
dataset D̃(δδδ), parameter θ̃ is a function of δδδ. Similar to Wu
et al. (2025), we can leverage the implicit function theorem
(Mei & Zhu, 2015; Koh & Liang, 2017) to compute the
implicit derivative dθ̃

dδδδ :

dθ̃

dδδδ
= −

[
Hθ̃L

]−1
[
d∇θ̃L
dδδδ

]
(11)

where Hθ̃L is the Hessian of L with respect to θ̃. Given
the gradient, we can then apply projected gradient descent
to find optimal δδδ∗. Since original action space is δi ∈
{−1, 0, 1} and the total number of flips is constrained by∑n

i=1 |δi| = κ · n, we select the the top κ · n among δδδ∗

based on magnitude |δ∗i | and only flip oi associated to them.
The complete procedure is shown in Algorithm 1.

The efficiency of this algorithm is primarily influenced by
two key factors: batch size and model structure. Batch size
plays a critical role in the accuracy of covariance estimation,
which is essential for aligning the computed covariance with
the true data distribution. While larger batch sizes gener-
ally yield more precise covariance estimates and reduce
the discrepancy between theoretical and practical outcomes,
they also incur greater memory requirements and computa-
tional overhead. Meanwhile, the structure of the initialized
model directly influences the size of the implicit Hessian
matrix, which emerges during gradient computations in-
volving second-order derivatives. These calculations are
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Algorithm 1 Gradient-based attack
Input: Benign preference data D, parameter κ
Train the reward model Rθ of benign users on D;
Randomly initialize δδδ, ensuring (oi + δi) ∈ [−1, 1];
for m = 1 to M do

Create a perturbed dataset D̃(δδδ);
Train a new reward model R̃θ̃ on the dataset D̃(δδδ);
Compute the gradient∇δδδJ (δδδ);
δδδ ← δδδ − η∇δδδJ (δδδ);
Clip δδδ such that (oi + δi) ∈ [−1, 1], ∀i ∈ [n];

end for
Select the top κ · n indices based on |δi|;
Flip the preference label of the corresponding data pair;
Output: Label perturbations δδδ, reward model R̃θ̃

computationally expensive. Although approximate meth-
ods can be used to estimate the Hessian matrix and reduce
the computational burden, models with complex architec-
tures—such as deep neural networks with many layers and
parameters—substantially increase both the computational
time and memory requirements for these calculations.

4.2. Heuristic methods

The high computational costs associated with gradient-based
calculations for complex models present a significant chal-
lenge. To mitigate this issue, we propose leveraging heuris-
tic methods as an alternative. These methods eliminate the
need for explicit gradient computation, providing a more
computationally efficient approach, as detailed below.

Reward-based heuristic method. Instead of directly opti-
mizing perturbations δδδ to minimize Covpt

[eRθ(x), eR̃θ̃
(x)] +

α dist(Rθ, R̃θ̃), we adopt a heuristic approach by flipping
the preference label oi based on the rewards of data samples.
Specifically, given preference data D = {(xi, zi, oi)}ni=1,
we first learn the reward model Rθ from D. The idea is
to identify κ · n data pairs (xi, zi) based on their rewards
Rθ(xi), Rθ(zi) such that flipping their preference label oi
has the greatest impact on the underlying reward model.

We propose two methods for finding such data pairs: (i)
finding (xi, zi) based on dissimilarity between Rθ(xi) and
Rθ(zi); (ii) finding (xi, zi) based on maximum of |Rθ(xi)|
and |Rθ(zi)|. Specifically, define f : Rd × Rd → R+ as

f(x, z) := |Rθ(x)−Rθ(z)| or max{|Rθ(x)|, |Rθ(z)|}.

We select the κ · n data pairs (xi, zi) with the high-
est f(xi, zi) values to flip their preference label. Intu-
itively, a larger |Rθ(xi)− Rθ(zi)| indicates greater differ-
ences in user preferences for the data pair (xi, zi), mak-
ing the preference flip more impactful. Similarly, a larger
max{|Rθ(xi)|, |Rθ(zi)|} suggests that the pair includes a
sample that is either highly favored or strongly disliked by

the user, making the preference flip most effective.

Multi-objective heuristic method. Since optimization
problem (10) simultaneously considers two competing ob-
jectives, we also propose a heuristic method that finds the
Pareto front (Ngatchou et al., 2005) for multi-objective op-
timization. Specifically, a solution is considered Pareto
optimal if no other solution exists that can improve one
objective without degrading at least one other objective; the
set of all Pareto optimal solutions forms the Pareto front.

Our method begins by generating κ ·n random perturbations
δδδ to flip dataD, resulting in D̃(δδδ). For each perturbation, we
record the empirical performances of Covpt

[eRθ(x), eR̃θ̃
(x)]

and dist(Rθ, R̃θ̃). Using a Pareto optimization algorithm,
such as NSGA-II (Deb et al., 2002), we compute the Pareto
front of non-dominated solutions, which represents the best
trade-offs between objectives. Finally, we select the optimal
solution from the Pareto front based on a specific prioritized
objective, and apply the corresponding flip.

5. Experiments
In this section, we conduct experiments on both synthetic
and real data to validate our theorems and proposed algo-
rithms. We first evaluate the evolution of generative model
pt and user reward Ept [r(x)] under self-consuming training
loop (Section 5.1). Then, we demonstrate the effectiveness
of proposed attack algorithms (Section 5.2).

Datasets. Similar to Ferbach et al. (2024), we conduct
experiments on three datasets:

1. Synthetic Gaussian: A dataset following 8-mode Gaus-
sian mixture model, the details are in Appendix C.2.

2. CIFAR-10 (Krizhevsky, 2009): It contains 60,000 im-
ages from 10 classes {airplne := 0, automobile :=
1, bird := 2, cat := 3, deer := 4, dog := 5, frog :=
6, horse := 7, ship := 8, truck := 9}.

3. CIFAR-100 (Krizhevsky, 2009): It contains 100
classes, each with 600 images. Class labels from 0
to 99 are assigned according to the alphabetical or-
der of class names, i.e., {aquatic mammals-beaver :=
0, · · · , vehicles 2-tractor := 99}.

We present the results for CIFAR-10 and CIFAR-100 below,
while the results for the Gaussian data are provided in the
Appendix C.2.

Reward functions and user preference labels. Using
Gaussian, CIFAR-10, and CIFAR-100 datasets, we can
construct user preference dataset D = {(xi, zi, oi)}ni=1 us-
ing a reward function r(x). Specifically, given a data pair
(xi, zi) sampled from Gaussian, CIFAR-10 or CIFAR-100
datasets, we generate the corresponding preference label
oi ∼ Pr{zi ≻ xi | r} based on Eq. (8). r(x) for each
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Figure 2. The proportion of each class generated by the self-consumption model retrained with different data curation methods on
CIFAR-10: benign curation based on actual user preferences (left), adversarial curation using the proposed gradient-based attack algorithm
(middle), and adversarial curation via a random attack (right). The results show that the proposed gradient-based attacks are the most
effective in deviating the model from user preferences.
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Figure 3. The proportion of each ten classes generated by the self-consumption model retrained with different data curation methods
on CIFAR-100: benign curation based on actual user preferences (left), adversarial curation using the proposed gradient-based attack
algorithm (middle). And empirical estimate of Ept [r(x)] from samples generated by the model over iterations (right).

dataset is defined as follows:

1. Synthetic Gaussian: r(x) := −γmax{0, ∥x−µ∗∥−τ},
where ∥x− µ∗∥ is the distance from one Gaussian cen-
ter µ∗, τ is the minimum clipped radius, and γ controls
the scaling of the reward (details are in Appendix C.2).
Intuitively, this function captures user preferences by as-
signing higher rewards to samples farther from Gaussian
center within a threshold.

2. CIFAR-10: First identify the label I(x) ∈ {0, · · · , 9}
of image x by a pretrained VGG11 (Simonyan & Zisser-
man, 2015) classifier with 92.79% test accuracy. Sup-
pose users prefer classes with smaller indices and define
r(x) := 10− I(x). It reflects user’s preference ordering
by assigning higher rewards to images classified closer
to the most preferred class (class 0) in the hierarchy.

3. CIFAR-100: Similar to CIFAR-10, the label I(x) ∈
{0, · · · , 99} of image x is first identified by a pretrained
ResNet56 (He et al., 2016) classifier with 72.63% test ac-
curacy. Suppose users prefer classes with smaller indices
and define r(x) := 100− I(x).

Generative model and reward model. Following Ferbach
et al. (2024), we iteratively retrain a denoising diffusion

probabilistic model (DDPM) (Ho et al., 2020), a generative
framework known for its ability to model complex data dis-
tributions through a reversible diffusion process. In addition
to the generative model, the target and adversarial platforms
leverage user preference data D = {(xi, yi, oi)}ni=1 to train
a reward model Rθ. For the adversarial platform, it also
trains R̃θ̃ using perturbed preference data D̃(δδδ). The reward
models R and R̃ may or may not have the same architecture,
we discuss details in Appendix C.1.

Iterative retraining process. At each iteration, the genera-
tive model produces 50,000 data samples, of which 25,000
are selected (after curation by the reward model) for retrain-
ing the next-generation model. In Appendix C, we provide
details on the process of (adversarial) data curation and
their interaction with the generative model training. The
complete process is presented in Algorithm 2.

5.1. Evolution of model under adversarial data curation

First, we examine the impact of adversarial data curation on
the self-consuming generative model pt and the respective
reward Ept

[r(x)]. Specifically, we employ both the gradient-
based attack (Algorithm 1) and random attack (i.e., flip

7
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Figure 4. Empirical estimate of Ept [r(x)] from model-generated
samples over iterations on CIFAR-10: it increases (resp. decreases)
over iterations under benign (resp. adversarial) data curation.

preference labels uniformly at random) algorithms to target
20% of data pairs.

Fig. 2 shows the evolution of the proportion of each class
generated during the iterative retraining process on CIFAR-
10 and it demonstrates the impact of three types of data
curation on self-consuming models: benign curation, adver-
sarial curation via gradient-based attacks, and adversarial
curation via random attacks. Without adversarially curated
data (left), the generative model gradually aligns with hu-
man preferences, producing an increasing number of sam-
ples from class 0 (airplane), the most preferred class in
CIFAR-10. This observation is consistent with Ferbach et al.
(2024). Under random attacks, while the model does not
align as well with user preferences as in benign curation,
it still generates a reasonable proportion of samples from
the most favored classes, 0 (airplane) and 1 (automobile).
In contrast, with our proposed attack algorithm, the model
becomes highly misaligned with user preferences, generat-
ing samples predominantly from the least favored classes: 7
(horse), 8 (ship), and 9 (frog).

Fig. 4 shows the empirical estimate of Ept
[r(x)] for gen-

erated samples over iterations on CIFAR-10, with observa-
tions consistent with Lemma 3.3. Under benign curation,
the expected reward steadily increases as the model aligns
with user preferences. In contrast, adversarial curation using
the gradient-based attack continuously lowers the reward,
indicating a significant deviation from the optimal reward
distribution. Random attacks initially lead to a slight in-
crease in rewards, suggesting some robustness. However,
as attacks progress, the average reward fluctuates due to
the inherent randomness of this method. Indeed, the out-
comes for random attacks vary significantly across different
runs of experiments, and we provide additional examples in
Appendix C.1.

We extend our experiments to CIFAR-100, which contains
a larger number of classes. Fig. 3 illustrates the different be-
haviors under benign curation and adversarial curation using
the gradient-based attack. With benign curation, the model
progressively generates more samples from user-preferred
classes, reflecting an increasing alignment with user prefer-

Table 1. Effectiveness of one-round attack under different methods
on the same CIFAR-10 dataset: The results are empirical estimates
of Ep1 [r(x)] for generated samples at t = 1; method with a lower
reward is more effective.

METHOD BENIGN GRADIENT #1 GRADIENT #2

AVG. R 6.3606 5.6460 5.5959

METHOD PARETO R-BASED #1 R-BASED #2

AVG. R 5.4740 5.5982 5.5612

ences over time. In contrast, under adversarial curation, the
model generates more samples from less preferred classes
(i.e., classes 60 to 99). The average rewards shown on the
right further highlight this difference: benign curation leads
to a steady increase in expected rewards, whereas adversar-
ial curation causes a continuous decline, indicating growing
misalignment between the model and user preferences.

We also conducted iterative model retraining on a mixture of
adversarially curated synthetic and real data on CIFAR-10,
where adversarial data generated through gradient-based
attacks is combined with real data at varying proportions.
Fig. 5 shows the class proportions of the generated samples
over iterations. The results demonstrate that incorporating
real data helps align the distribution of generated samples
with the real data distribution. However, it does not steer the
model toward the user-preferred distribution. This suggests
that adding a limited amount of real data is insufficient and
fails to defend against adversarially curated data.

To examine model quality, we present synthetic images
generated by self-consuming models under both adversarial
and benign data curation in Fig. 7 (Appendix C.1). The
results show that the image quality does not significantly
degrade during the iterative retraining process.

5.2. Effectiveness of attack methods

To evaluate the effectiveness of various attack algorithms,
we applied different attack methods to the same CIFAR-10
dataset, flipping 20% of the data pairs. Table 1 summa-
rizes the empirical estimates of Ep1

[r(x)] for generated
samples at t = 1. Comparisons include benign curation
(BENIGN), gradient-based attacks that target platform and
adversarial platform using different (GRADIENT #1) or iden-
tical (GRADIENT #2) reward models, reward-based heuris-
tic methods with f(x, z) = |Rθ(x) − Rθ(z)| (R-BASED
#1) or max{|Rθ(x)|, |Rθ(z)|} (R-BASED #2), and multi-
objective heuristic method (PARETO), where we select the
solution from the Pareto front with the lowest sum of the two
metrics. We also show the class proportions of generated
samples over iterations in Fig. 8 (Appendix C.1).

Overall, the results demonstrate the effectiveness of all at-
tack methods in this experimental scenario. Despite employ-
ing different reward model architectures, gradient-based
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Figure 5. The proportion of each class generated by the self-consumption model retrained with a mix of adversarially curated synthetic
and real CIFAR-10 data. It shows that adding real data only helps the model align with the real data distribution pdata but does not defend
against adversarial data curation.

attack methods consistently maintained high efficacy. In
contrast, the relatively weaker performance of heuristic
methods is reflected in their higher average rewards. As
shown in Fig. 8, this is primarily due to heuristic methods
failing to account for all classes comprehensively, resulting
in limited effects on certain classes. The multi-objective
heuristic method performs best by exploring a broader range
of potential solutions, yielding the lowest average reward.
However, this performance comes at the cost of significantly
higher computational time and resource requirements.

It is important to note that the effectiveness of these attack
methods may depend heavily on the specific context, and
no method can be considered “optimal”. Future research
could focus on developing solutions that are more general
and universally applicable.

6. Discussion
In this section, we discuss the robustness of existing defense
strategies and analyze the practical challenges of defending
against our proposed attack. We also discuss key assump-
tions made in our analysis and identify limitations that may
affect applicability in real-world scenarios.

Defense. A common strategy proposed in prior work to
stabilize the self-consuming retraining loop of generative
models is to regularly inject real data during training (Ale-
mohammad et al., 2024a; Bertrand et al., 2024). However,
as shown in the experiments in Fig. 5, adding real data
only partially mitigates adversarial effects by driving the
model closer to the true data distribution pdata. It does not
effectively prevent model misalignment under targeted ad-
versarial curation attacks.

Although outlier detection may assist in identifying and fil-
tering adversarially curated samples, they can inadvertently
remove genuine preferences. When users are heterogeneous
and come from multiple groups, removing genuine pref-
erences from minority groups may potentially introduce

biases. Additionally, our attack algorithm already considers
such defense mechanisms: when formulating in Eq. (10),
we impose a penalty term dist(Rθ, R̃θ̃) to prevent the adver-
sarial behavior from being easily detected as anomalous.

Limitations. Our theoretical analysis assumes that each
model update converges to the global optimum of the train-
ing objective. While our experiments validate the effec-
tiveness of the proposed attack under this assumption, such
convergence may not always hold in practice due to opti-
mization noise, local minima, or limited training budgets.

Additionally, our experiments rely on a known success ratio
κ to control the adversarial curation. In real-world scenar-
ios, however, the attacker may not have direct access to or
precise knowledge of the effective success rate, which could
affect the practical impact of the attack.

7. Conclusion
This paper examines the evolution of self-consuming gen-
erative models under adversarially curated data. We theo-
retically analyze the impact of adversarial data curation on
these models and identify conditions for the (in)stability of
the iterative retraining process. Building on theoretical in-
sights, we develop attack algorithms that effectively disrupt
model training and prevent alignment with user preferences.
The findings highlight the potential vulnerability of self-
consuming generative models to adversarial data curation,
suggesting that developing effective defense mechanisms
could be a promising direction for future work.
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Appendix

A. Related work
A.1. Self-consuming generative models

Generative models have demonstrated remarkable success in synthesizing high-quality data. Recent research has focused on
the challenges faced by generative models trained iteratively on their own synthetic data. Despite slight differences in the
definition of collapse, Alemohammad et al. (2024a); Shumailov et al. (2024); Gerstgrasser et al. (2024) all confirm that
the model collapses when trained exclusively on synthetic datasets, leading to a degradation in quality or diversity over
successive generations. Bertrand et al. (2024); Taori & Hashimoto (2023) theorizes that this collapse arises due to the nature
of the iterative training process. Another potential consequence of this iterative training is bias amplification, where the
generative model amplifies specific features while neglecting other equally important data characteristics (Chen et al., 2024;
Taori & Hashimoto, 2023; Wyllie et al., 2024).

There are two main solutions to this problem. One effective approach to stabilizing generative models is to introduce real
data into the training process at each iteration. Alemohammad et al. (2024a) provided empirical evidence that injecting
fresh real data mitigates model collapse. Bertrand et al. (2024) further substantiated this observation with theoretical proofs,
demonstrating that maintaining a sufficient proportion of real data ensures the stability of iterative training. Gerstgrasser
et al. (2024) leverages cumulative data, where previously generated samples are stored and reused alongside new real data to
stabilize the performance of the generative model. This approach aligns with practical data accumulation strategies. An
alternative strategy is to introduce corrective mechanisms to prevent model collapse. Alemohammad et al. (2024b) proposed
a self-improvement framework for generative diffusion models (SIMS), which mitigates model collapse by employing a
negative guidance mechanism during the generation process. Gillman et al. (2025) introduced a self-correcting generative
model training loop, where synthetic data undergoes transformation through expert-informed correction functions before
being reintroduced into the training set. This method significantly enhances stability by ensuring that synthetic samples
retain high fidelity and do not reinforce existing biases.

Recent studies have also examined the role of human feedback in iterative retraining. Ferbach et al. (2024) explored how
user-curated synthetic samples can implicitly optimize a model’s reward function, aligning generative outputs with human
preferences. While preference alignment improves the user experience, it can also introduce systematic biases that may be
exploited by adversaries. This potential issue forms the basis for the exploration in our work.

A.2. Data poisoning attack

Data poisoning attack is an attack that disrupts model learning by modifying training data (Vorobeychik & Kantarcioglu,
2018). Two major methods of this attack are the injection of poison data and label-flipping attacks.

One common data poisoning technique involves adding maliciously produced samples to the training dataset. In generative
models, Jiang et al. (2024) demonstrates that poisoning even a small fraction of the training data can significantly alter the
model’s output, such as in text summarization or text completion tasks. Carlini et al. (2024) shows how adversaries can
inject poisoned examples into datasets at minimal cost by exploiting web-based data collection mechanisms, which is not
merely a theoretical concern but a practical threat. Furthermore, Baumgärtner et al. (2024) explored the vulnerability of
large language model (LLM) fine-tuning to poisoning attacks. In this scenario, an adversary can skillfully modify a small
portion of the training data, injecting undetectable biases into the generated text, potentially leading to misinformation or
biased outputs.

The label flipping attack modifies the underlying true labels assigned to a subset of training samples. This attack is
particularly effective in classification and regression tasks (Biggio et al., 2011; Liu et al., 2017; Paudice et al., 2019; Suya
et al., 2023), where incorrect labels can mislead the model’s learning process. In recommendation systems, Zhang et al.
(2020) proposed an adversarial reinforcement learning approach that strategically flips labels to manipulate item rankings.
Similarly, in Reinforcement Learning with Human Feedback (RLHF) training, preference poisoning attacks introduce
incorrect label flips in reward datasets, causing reinforcement learning models to produce biased responses (Wu et al.,
2025). Several studies have explored defenses against label flipping attacks. Traditional methods include outlier detection
techniques (Zeng et al., 2023), which identify and discard suspicious training samples. Paudice et al. (2019) introduced
a robust filtering approach that leverages bilevel optimization to identify and remove mislabeled samples from poisoned
datasets, providing an effective solution against label flipping attacks.
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Unlike previous research that focuses on flipping labels to promote or demote a specific target, our approach emphasizes
perturbing the entire alignment process. Notably, our attacker does not require access to data collection pipelines or backend
systems; instead, they can act entirely through public feedback mechanisms, such as voting or ranking systems. This
makes our approach more practical and harder to detect, as it unfolds gradually over time without direct data manipulation.
Whereas traditional poisoning attacks often aim to induce outright model failure, our objective is more subtle: gradually
misaligning the model from genuine user preferences over time in a self-consuming training loop. In competitive settings,
such gradual misalignment can be highly damaging while remaining difficult to trace.

B. Proofs
B.1. Proof of Lemma 3.1

Lemma B.1. Let pt+1 be defined as in Equation (4). If we assume that Ez∼pt [e
r(z)] <∞, then we have for all x ∈ Rd,

pt+1(x)
K→∞−−−−→ pt(x)

[
(1− ϕt)

er(x)

Ez∼pt

[
er(z)

] + ϕt
er̃t(x)

Ez∼pt

[
er̃t(z)

]] (12)

Proof. Consider the limit of K → ∞. By minimization of the cross-entropy, we know that for any distribution q,
argmaxp Ex∼q[log(p(x))] = q.

So, sample K samples from p(t) independently and identically distributed, then sample iK with the following probability:

P(iK = i|x1, ..., xK) = ϕt
er̃t(xi)∑K
j=1 e

r̃t(xj)
+ (1− ϕt)

er(xi)∑K
j=1 e

r(xj)

Noting that the events {iK = i}Ki=1 are disjoint, the resulting density can be written:

pt+1(x) =

K∑
i=1

∫
yj ,j ̸=i

pt (y1, · · · , yi−1, x, yi+1, · · · , yK)P (iK = i | x, yj , j ̸= i)
∏
j ̸=i

dyj

= K

∫
y1,··· ,yK−1

pt (y1, · · · , yK−1, x)P (iK = K | y1, · · · , yK−1, x) dy1 · · · dyK−1

= pt(x)K(1− ϕt)

∫
y1,··· ,yK−1

er(x)

er(x) +
∑K−1

i=1 er(yi)
pt (y1) · · · pt (yK−1) dy1 · · · dyK−1

+ pt(x)Kϕt

∫
y1,··· ,yK−1

er̃t(x)

er̃t(x) +
∑K−1

i=1 er̃t(yi)
pt (y1) · · · pt (yK−1) dy1 · · · dyK−1

= pt(x) ·
[
(1− ϕt)H

K
pt
(x) + ϕtH̃

K
pt
(x)
]

where

HK
pt
(x) =

∫
y1,··· ,yK−1

er(x)

er(x)

K + K−1
K

∑K−1
i=1 er(yi)

K−1

pt (y1) · · · pt (yK−1) dy1 · · · dyK−1

H̃K
pt
(x) =

∫
y1,··· ,yK−1

er̃t(x)

er̃t(x)

K + K−1
K

∑K−1
i=1 er̃t(yi)

K−1

pt (y1) · · · pt (yK−1) dy1 · · · dyK−1

When K →∞:

HK
pt
(x)

K→∞−−−−→ er(x)

Ez∼pt

[
er(z)

]
H̃K

pt
(x)

K→∞−−−−→ er̃t(x)

Ez∼pt

[
er̃t(z)

]
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So,

pt+1(x)
K→∞−−−−→ pt(x)

[
(1− ϕt)

er(x)

Ez∼pt

[
er(z)

] + ϕt
er̃t(x)

Ez∼pt

[
er̃t(z)

]]

B.2. Additional lemma: the reward expectation is not increasing

Without assuming that the reward is bounded, we can show using Jensen inequality that:

Lemma B.2. When performing K-wise filtering, ∀t ≥ 0,the expected reward:

Ept+1 ≥ Ex∼pt

[
er(x)

]
+ ϕt Covx∼pt

[
er(x), er̃t(x)

]
(13)

Proof. Suppose Z = K−1
K

∑K−1
i=1 er(zi)

K−1 , by Jensen inequality, for any x ( a
b+x is convex):

HK
pt
(x) = EZ

[
er(x)

er(x)

K + Z

]
≥ er(x)

er(x)

K + E[Z]
=

er(x)

er(x)

K + K−1
K Ept

[
er(x)

]

H̃K
pt
(x) = EZ

[
er̃(x)

er̃(x)

K + z̃

]
≥ er̃x)

er̃(x)

K + E[Z]
=

er̃(x)

er̃(x)

K + K−1
K Ept

[
er̃(x)

]
So:

Ept+1

[
er(x)

]
=

∫
er(x)pt(x) ·

[
(1− ϕt)H

K
pt
(x) + ϕtH̃

K
pt
(x)
]
dx

= (1− ϕt)

∫
er(x)pt(x)H

K
pt
(x)dx+ ϕt

∫
er(x)pt(x)H̃

K
pt
(x)dx

≥ (1− ϕt)

∫
pt(x)

e2r(x)

er(x)

K + K−1
K Ez∼pt

[
er(z)

]dx+ ϕt

∫
pt(x)

er(x)er̃t(x)

er̃t(x)

K + K−1
K Ez̃∼pt

[
er̃t(z̃)

]dx
(Ex∼pt [f(x)] =

∫
pt(x)f(x)dx)

= (1− ϕt)Ex∼pt

e2r(x)

er(x)

K + K−1
K Ez∼pt

[
er(z)

] + ϕtEx∼pt

er(x)er̃t(x)

er̃t(x)

K + K−1
K Ez̃∼pt

[
er̃t(z̃)

]
(Jensen’s inequality)

≥ (1− ϕt)
Ex∼pt

[
er(x)

]2
Ex∼pt [er(x)]

K + K−1
K Ez∼pt

[
er(z)

] + ϕt

Ex∼pt

[
er(x)er̃t(x)

]
Ex∼pt [er̃t(x)]

K + K−1
K Ez∼pt

[
er̃t(z)

]
= (1− ϕt)Ex∼pt

[
er(x)

]
+ ϕt

Ex∼pt

[
er(x)er̃t(x)

]
Ex∼pt

[
er̃t(x)

]
= (1− ϕt)Ex∼pt

[
er(x)

]
+ ϕt Covx∼pt

[
er(x), er̃t(x)

]
+ ϕtEx∼pt

[
er(x)

]
= Ex∼pt

[
er(x)

]
+ ϕt Covx∼pt

[
er(x), er̃t(x)

]
That is:

Ept+1
≥ Ex∼pt

[
er(x)

]
+ ϕt Covx∼pt

[
er(x), er̃t(x)

]
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B.3. Proof of Lemma 3.3

Lemma B.3. Let pt+1 the distribution induced from a discrete choice model on in Eq.(4). Suppose Assumption 3.2 holds,
then the expected reward,

Ept+1

[
er(x)

]
≥ Ept

[
er(x)

]
+ (1− ϕt)

(K − 1)

K

Varpt

[
er(x)

]
ert,max

+ ϕt
(K − 1)

K

Covpt

[
er(x), er̃t(x)

]
er̃t,min

Ept+1

[
er(x)

]
≤ Ept

[
er(x)

]
+ (1− ϕt)

(K − 1)

K

Varpt

[
er(x)

]
ert,min

+ ϕt
(K − 1)

K

Covpt

[
er(x), er̃t(x)

]
er̃t,max

(14)

Proof.

KEpt+1

[
er(x)

]
=K

∫
x1,··· ,xK

(1− ϕt)
e2r(x1) + · · ·+ e2r(xK)

er(x1) + · · ·+ er(xK)
+ ϕt

er̃t(x1)er(x1) + · · ·+ er̃t(xK)er(xK)

er̃t(x1) + · · ·+ er̃t(xK)

K∏
k=1

pt (xk) dxk

=(1− ϕt)

∫
x1,··· ,xK

K
e2r(x1) + · · ·+ e2r(xK)

er(x1) + · · ·+ er(xK)

K∏
k=1

pt (xk) dxk

+ϕt

∫
x1,··· ,xK

K
er̃t(x1)er(x1) + · · ·+ er̃t(xK)er(xK)

er̃t(x1) + · · ·+ er̃t(xK)

K∏
k=1

pt (xk) dxk

=(1− ϕt)

∫
x1,...,xK

K∑
j=1

[
er(xj)

er(x1) + · · ·+ er(xK)

er(x1) + · · ·+ er(xK)
+ er(xj)

(K − 1)er(xj) −
∑

i ̸=j e
r(xi)

er(x1) + · · ·+ er(xK)

]
K∏

k=1

pt (xk) dxk

+ϕt

∫
x1,...,xK

K∑
j=1

[
er(xj)

er̃t(x1) + · · ·+ er̃t(xK)

er̃t(x1) + · · ·+ er̃t(xK)
+ er(xj)

(K − 1)er̃t(xj) −
∑

i ̸=j e
r̃t(xi)

er̃t(x1) + · · ·+ er̃t(xK)

]
K∏

k=1

pt (xk) dxk

=(1− ϕt)

KEpt

[
er(x)

]
+

∫
x1,...,xK

∑
i<j

(
er(xi) − er(xj)

)2
er(x1) + · · ·+ er(xK)

K∏
k=1

pt (xk) dxk


+ϕt

[
KEpt

[
er(x)

]
+

∫
x1,...,xK

∑
i<j

(
er(xi) − er(xj)

) (
er̃t(xi) − er̃t(xj)

)
er̃t(x1) + · · ·+ er̃t(xK)

K∏
k=1

pt (xk) dxk

]

Suppose

A =

∫
x1,...,xK

∑
i<j

(
er(xi) − er(xj)

)2
er(x1) + · · ·+ er(xK)

K∏
k=1

pt (xk) dxk

and

B =

∫
x1,...,xK

∑
i<j

(
er(xi) − er(xj)

) (
er̃t(xi) − er̃t(xj)

)
er̃t(x1) + · · ·+ er̃t(xK)

K∏
k=1

pt (xk) dxk

Because Varpt

[
er(x)

]
≥ 0, A ≥

∑
i<j

2Varpt [e
r(x)]

Kert,max

When Covpt

[
er(x), er̃t(x)

]
> 0, B ≥

∑
i<j

2Covpt [e
r(x),er̃t(x)]

Ker̃t,max
≥ 0; when Covpt

[
er(x), er̃t(x)

]
< 0, B ≥∑

i<j

2Covpt [e
r(x),er̃t(x)]

Ker̃t,min
< 0, so B ≥

∑
i<j

2Covpt [e
r(x),er̃t(x)]

Ker̃t,min
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Then, we have:

KEpt+1

[
er(x)

]
≥(1− ϕt)

KEpt

[
er(x)

]
+
∑
i<j

2Varpt

[
er(x)

]
Kert,max

+ ϕt

KEpt

[
er(x)

]
+
∑
i<j

2Covpt

[
er(x), er̃t(x)

]
Ker̃t,min


≥(1− ϕt)

[
KEpt

[
er(x)

]
+

K(K − 1)

2

2Varpt

[
er(x)

]
Kert,max

]

+ ϕt

[
KEpt

[
er(x)

]
+

K(K − 1)

2

2Covpt

[
er(x), er̃t(x)

]
Ker̃t,min

]

=KEpt

[
er(x)

]
+ (1− ϕt)

(K − 1)Varpt

[
er(x)

]
ert,max

+ ϕt

(K − 1)Covpt

[
er(x), er̃t(x)

]
er̃t,min

which means:

Ept+1

[
er(x)

]
≥ Ept

[
er(x)

]
+ (1− ϕt)

(K − 1)

K

Varpt

[
er(x)

]
ert,max

+ ϕt
(K − 1)

K

Covpt

[
er(x), er̃t(x)

]
er̃t,min

Similarly,we have: A ≤
∑

i<j

2Varpt [e
r(x)]

Kert,min and B ≤
∑

i<j

2Covpt [e
r(x),er̃t(x)]

Ker̃t,max

So:

Ept+1

[
er(x)

]
≤ Ept

[
er(x)

]
+ (1− ϕt)

(K − 1)

K

Varpt

[
er(x)

]
ert,min

+ ϕt
(K − 1)

K

Covpt

[
er(x), er̃t(x)

]
er̃t,max

We also prove the rationality of the upper bound. That is, the upper bound is always greater than 0.

Proof. Suppose rt,min ≤ r(x) ≤ rt,max and r̃t,min ≤ r̃(x) ≤ r̃t,max.

Then, we have ert,min ≤ Ept

[
er(x)

]
≤ ert,max and e2rt,min ≤ Ept

[
e2r(x)

]
≤ e2rt,max .

Because 0 ≤ Varpt

[
er(x)

]
≤ Ept

[
e2r(x)

]
, then 0 ≤ Varpt

[
er(x)

]
≤ e2rt,max .

Because Covpt

[
er(x), er̃t(x)

]
= Ept

[
er(x)er̃t(x)

]
− Ept

[
er(x)

]
Ept

[
er̃t(x)

]
, so ert,min+r̃t,min − ert,max+r̃tt,max ≤

Covpt

[
er(x), er̃t(x)

]
≤ ert,max+r̃t,max − ert,min+r̃t,min .

Then

Ept

[
er(x)

]
+ (1− ϕt)

(K − 1)

K

Varpt

[
er(x)

]
ert,min

+ ϕt
(K − 1)

K

Covpt

[
er(x), er̃t(x)

]
er̃t,max

≥ ert,min + (1− ϕt)
(K − 1)

K

0

ert,min
+ ϕt

(K − 1)

K

ert,min+r̃t,min − ert,max+r̃t,max

er̃t,max

= ert,min + ϕt
(K − 1)

K

ert,min+r̃t,min − ert,max+r̃t,max

er̃t,max

= ert,min + ϕt
(K − 1)

K
(ert,min+r̃t,min−r̃t,max − ert,max+r̃t,max−r̃t,max)

= ert,min + ϕt
(K − 1)

K
(ert,min+r̃t,min−r̃t,max − ert,max)

= ert,min + ertt,minϕt
(K − 1)

K
(er̃t,min−r̃t,max − ert,max−rt,min)

When Varpt

[
er(x)

]
= 0, ert,min = ert,max

So:

Ept

[
er(x)

]
+ (1− ϕt)

(K − 1)

K

Varpt

[
er(x)

]
ert,min

+ ϕt
(K − 1)

K

Covpt

[
er(x), er̃t(x)

]
er̃t,max

≥ ert,min + ert,minϕt
(K − 1)

K
(er̃t,min−r̃t,max − 1)
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Because 0 < er̃t,min−r̃t,max ≤ 1, −1 < er̃t,min−r̃t,max − 1 ≤ 0

Because 0 ≤ ϕt
(K−1)

K ≤ 1, then −ert,min < ert,min(er̃t,min−r̃t,max − 1) ≤ 0

That is

ert,min + ert,minϕt
(K − 1)

K
(er̃t,min−r̃t,max − 1) > 0

which means

Ept

[
er(x)

]
+ (1− ϕt)

(K − 1)

K

Varpt

[
er(x)

]
ert,min

+ ϕt
(K − 1)

K

Covpt

[
er(x), er̃t(x)

]
er̃t,max

> 0

B.4. Proof of Lemma 3.4

Lemma B.4. Let pt+1 be defined as in Eq. (3). And suppose Covmin = mini∈{0,1,...,t} Covpi

[
er(x), er̃i(x)

]
and ϕt =

ϕt−1 = · · · = ϕ1 = ϕ⋆. With p0 = pdata, for ∀t > 1:

Ept+1

[
er(x)

]
≥ Epdata

[
er(x)

]
+ ϕ⋆(1 + λ)

(
1−

(
λ

1 + λ

)t
)
Covmin (15)

When t→∞,
Ept+1

[
er(x)

]
≥ Epdata

[
er(x)

]
+ ϕ⋆(λ+ 1)Covmin (16)

Proof. According to the Lemma B.2

Ep1
≥ Ep0

[
er(x)

]
+ ϕ⋆ Covp0

[
er(x), er̃0(x)

]
Then

Ep2

[
er(x)

]
≥ 1

1 + λ
Epdata

[
er(x)

]
+

λ

1 + λ
(Ep0

[
er(x)

]
+ ϕ⋆ Covp0

[
er(x), er̃0(x)

]
)

With p0 = pdata

Ep2

[
er(x)

]
≥ Epdata

[
er(x)

]
+

λ

1 + λ
ϕ⋆ Covp0

[
er(x), er̃0(x)

]
Use recursion:

Ept+1

[
er(x)

]
≥ Epdata

[
er(x)

]
+ ϕ⋆

[
(

λ

1 + λ
) Covpt

[
er(x), er̃t(x)

]
+ (

λ

1 + λ
)2 Covpt−1

[
er(x), er̃t−1(x)

]
+ · · ·+ (

λ

1 + λ
)t Covp0

[
er(x), er̃0(x)

]]
Suppose

Covmin = Covmin

[
er(x), er̃m(x)

]
= min

{
Covpt

[
er(x), er̃t(x)

]
,Covpt−1

[
er(x), er̃t−1(x)

]
, . . . ,Covp0

[
er(x), er̃0(x)

]}
Then,

Ept+1

[
er(x)

]
≥ Epdata

[
er(x)

]
+ ϕ⋆

[
(

λ

1 + λ
) Covmin

[
er(x), er̃m(x)

]
+ (

λ

1 + λ
)2 Covmin

[
er(x), er̃m(x)

]
+ · · ·+ (

λ

1 + λ
)t Covmin

[
er(x), er̃m(x)

]]
= Epdata

[
er(x)

]
+ ϕ⋆(1 + λ)

(
1−

(
λ

1 + λ

)t
)
Covmin

When t→∞,
Ept+1

[
er(x)

]
≥ Epdata

[
er(x)

]
+ ϕ⋆(λ+ 1)Covmin
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Algorithm 2 Iterative retraining with adversarially curated data
Input: Real data Ddata = {di}Ni=1, user reward function r, learning procedure of generative model G, learning procedure
of reward modelR, attack algorithms A
Param: Rate of attack κ, proportion of data β, proportion of filtered data λ
p0 = G(Ddata)
for t = 1 to T do
Dgen = {d̃i}Ni=1,where d̃1, . . . , d̃N ∼ pt−1

D={(xi, yi, oi)}ni=1, where xi, yi ∼ pt−1,oi =


1 if r(xi) < r(yi),

0.5 if r(xi) = r(i),

0 if r(xi) > r(yi).

D̃ = A(D,κ)

Rθ = R(D), R̃θ̃ = R(D̃)
Dt = Curate(Dgen, Rθ/R̃θ̃, β) {Using Rθ or R̃θ̃ curated βN data on the generated sample set Dgen}
pt = G(Ddata ∪ λDt)

end for

C. Additional experiments
Algorithm 2 describes the process of iterative retraining on the adversarial curation synthetic dataset and the real dataset.

C.1. Additional experiments on CIRFAR-10 datasets

In this section, we show some additional experiments on the CIRFAR-10 dataset.

Settings. The settings in this section are the same as those described in Section 5. For the reward R and R̃ may share the
same architecture or differ. If they have the same architecture, we use pretrained VGG11 as the feature extractor and a linear
layer containing 10 neurons for both R and R̃. If different architectures are used, R employs a pretrained VGG11 as the
feature extractor, followed by three linear layers with 128, 64, and 10 neurons, respectively.

Two other random attacks experiments. As we mentioned in Section 5.1, the results of the random attacks are not
exactly similar. We show the proportions of each class and the average reward values with iteration number for two other
independent experiments in Fig. 6. These results further highlight the variability of random attacks. RANDOM #1 shows
a case where the average reward continues to increase in the later stages of retraining, indicating partial alignment with
user preferences. RANDOM #2 shows a gradual decrease in the average reward throughout the process, reflecting a more
persistent misalignment.

Additional results of adversarial data curation experiments. As we mentioned in Section 5.1, we show the samples
generated during the retraining process with different curation in Fig 7. It can be seen that the images are not distorted to
the point of being unrecognizable, but there is a noticeable change in the diversity of the generated samples. In the benign
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Figure 6. Iterative retraining of the self-consumption model on the CIFAR-10 dataset with two independent experiments employing a
randomized adversarial curation (20% random): (1) Left side: proportion of each class for the two independent runs. (2) Right side:
average reward values for the two independent runs and benign curation

19



Self-Consuming Generative Models with Adversarially Curated Data

Iteration 1 Iteration 4 Iteration 7 Iteration 10

C
ur

at
io

n
M

al
ic

io
us

(2
0%

)
M

ix
(1

:1
)

Figure 7. Samples generated by self-consumption model with different curation on CIFAR-10 dataset:(1) Top: bengiun curation, filtered
by r(x). (2) Middle: adversarial curation with 20% malicious data injected by gradient algorithm. (3) Bottom: mixed dataset created by
combining real data with adversarially curated synthetic data (1:1).

curation setting, the model generates a large proportion of images from user-preferred classes (airplane and automobile). In
contrast, the malicious curatios are dominated by less favored classes (horse and ship), indicating a significant misalignment
with intended user preferences.

Additional results of the attack algorithm experiments. As we mentioned in Section 5.2, in the experiment we recorded
the proportions of each classification, and the results are shown in Fig 8. Comparisons include benign curation (BENIGN),
gradient-based attacks that target platform and adversarial platform using different reward models (GRADIENT #1) or
identical reward models(GRADIENT #2), reward-based heuristic methods with f(x, z) = |Rθ(x)−Rθ(z)| (HEURISTIC
#1) or max{|Rθ(x)|, |Rθ(z)|} (HEURISTIC #2), and multi-objective heuristic method (PARETO).

An interesting phenomenon is that although the heuristic has a lower average reward value, it has a significantly higher
proportion of automobile (the user’s preferred category) when curated. This may be due to the fact that the heuristics are not
sufficiently global.
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Figure 8. The proportion of each class on at t = 1 under different attack algorithms on the same CIFAR-10 dataset.
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Figure 9. Samples generated by self-consumption model with different curation on synthetic Gaussian dataset:(1) Top: bengiun curation,
filtered by r(x). (2) Middle: adversarial curation with 20% malicious data injected by gradient algorithm. (3) Bottom: adversarial curation
with 50% malicious data injected by gradient algorithm (sever attack).
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Figure 10. Samples generated by self-consumption model on different mixed Gaussian dataset:(1) Top: adversarially curated synthetic
dataset with 50% malicious data injected by gradient algorithm (sever attack). (2) Second to Bottom: mixed dataset created by combining
real data with adversarially curated synthetic data in different proportions (real data : adversarially curated synthetic data)
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C.2. Experiments on Gaussian datasets

This section shows the setting and results of the experiments on the synthetic dataset.

Dataset. The synthetic dataset we generated is a two-dimensional dataset following an 8-mode Gaussian mixture model.
Specifically, we define eight mode centers that are uniformly distributed on a circle of radius 2. The coordinates of these
centers are given by:

µt = 2×
(
cos(

tπ

4
), sin(

tπ

4
)

)
, t = 0, 1, 2, . . . , 7. (17)

Each data point is independently and uniformly sampled from the 8 mode points, and isotropic Gaussian noise with a mean
of 0 and a standard deviation of 0.02 is added:

x = µt + ϵ, ϵ ∼ N (0, 0.022I2). (18)

Settings. For the r(x) := −γmax{0, ∥x − µ∗∥ − τ}, we designate µ∗ = (2, 0) (which is the first center) , τ = 3 and
γ = −10. And the reward model we used consists of two fully connected linear layers with 2 neuron in first layer and 64
neurons in the second layer. In each iteration, the generative model produces 10, 000 random samples, from which 5, 000
samples are filtered for next retraining. The samples generated in each iteration are plotted on two-dimensional coordinates.

Adversarial curation. We explored the long-term performance on purely synthetic data with adversarial curation. The
results are shown as Fig.9, which shows three different curation: benign curation, adversarial curation using gradient descent
algorithms attacking 20% and 50% data pairwise datasets, respectively.

Mixed data. We also explored the long-term performance of adversarial curation on mixed data. The resutls are shown as
Fig.10. Under severe attacks, adding a large amount of real data can align it to the real data distribution, but not to the user
preference distribution.
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