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Abstract. Cyber insurance like other types of insurance is a method of
risk transfer, where the insured pays a premium in exchange for cov-
erage in the event of a loss. As a result of the reduced risk for the
insured and the lack of information on the insurer’s side, the insured
is generally inclined to lower its effort, leading to a worse state of secu-
rity, a common phenomenon known as moral hazard. To mitigate moral
hazard, a widely employed concept is premium discrimination, i.e., an
agent/insured who exerts higher effort pays less premium. This, however,
relies on the insurer’s ability to assess the effort exerted by the insured.
In this paper, we study two methods of premium discrimination that rely
on two different types of assessment: pre-screening and post-screening.
Pre-screening occurs before the insured enters into a contract and can be
done at the beginning of each contract period; the result of this process
gives the insurer an estimated risk on the insured, which then determines
the contract terms. The post-screening mechanism involves at least two
contract periods whereby the second-period premium is increased if a
loss event occurs during the first period.

Prior work shows that both pre-screening and post-screening are gen-
erally effective in mitigating moral hazard and increasing the insured’s
effort. The analysis in this study shows, however, that the conclusion
becomes more nuanced when loss events are rare. Specifically, we show
that post-screening is not effective at all with rare losses, while pre-
screening can be an effective method when the agent perceives them as
rarer than the insurer does; in this case pre-screening improves both the
agent’s effort level and the insurer’s profit.

Keywords: Cyber insurance · Premium discrimination ·
Risk assessment · Rare losses

1 Introduction

Facing increasingly common cyber attacks and data breaches, organizations and
businesses big and small have to invest in cyber self-protection against a myriad
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of losses, such as business interruption induced by such incidents. Organizations
are also increasingly turning to cyber insurance as a form of protection for miti-
gating cyber risks by transferring all or part of their risks to the insurer through
the purchase of a policy [1,2]. Specifically, a cyber insurance contract is between
a risk averse agent and an insurer; the agent pays a premium in exchange for the
insurer to provide certain coverage in the event of a loss. Risk aversion on the
agent’s part makes him willing to buy insurance from the insurer to undertake
the risk, resulting in reduced uncertainty for the insured agent.

One of the challenges in offering an insurance contract is the lack of infor-
mation on the insured, which results in the well-known moral hazard issue. In
other words, the insurer is unaware of the agent’s effort in self-protection and
therefore the latter’s true risk. This, together with the fact that the agent is
now (partially) covered in his loss, typically leads the agent to exert less effort
toward securing himself. This results in a worse state of cyber risk as compared
to a scenario with uninsured agents [3–6].

The problem of designing cyber insurance policies in the presence of moral
hazard has been studied in the literature and it has been shown that the impact
of the insurance contract on the state of the network security depends on the
insurance market [7–10]. The key idea for mitigating moral hazard is premium
discrimination, i.e., the agent who invests more in self-protection gets charged
less premium. Yang et al. [9] consider a competitive insurance market and show
that insurance cannot improve the state of network security in the presence
of moral hazard; on the other hand, in the absence of moral hazard and with
observable agents’ actions, the insurer can premium discriminate and the state
of security can improve as a result. Hofmann [8] studies a monopoly insurance
market in the presence of a welfare-maximizing insurer. In this case, the insurer
premium discriminates among high and low risk agents using imperfect informa-
tion that the insurer has, and the insurance contract can incentivize the agents
to exert higher effort as compared to the no-insurance case.

In practice premium discrimination can be achieved in a number of ways.
Traditional insurance products (e.g., auto, life, home, property) rely on actuar-
ial models that estimate risks based on a variety of inputs obtainable through
questionnaires or surveys. For instance, getting an auto insurance policy requires
the submission of information on the model/year of the car being insured, the
primary driver(s) of the vehicle, their age, gender, marital status, place of res-
idence and so on, a process we refer to as pre-screening throughout the paper.
The estimated risk based on this type of input directly determines the premium
on the policy or a set of policies (with different choices of premium-deductible
combinations) offered by the insurer. Furthermore, when a driver continues to
purchase insurance over multiple years, then his/her previous driving and claims
record also factor into future-year premium calculation. This latter element of
premium discrimination, referred to as post-screening throughout the paper, has
been shown to be effective in general: since an agent faces (potentially signif-
icantly) higher payments in the future, there is incentive for the agent to act
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responsibly (exert high effort) in the present time to avoid a loss event, see e.g.,
Rubinstein et al. [11].

The above in principle applies to the domain of cyber insurance, but with two
challenges. (1) pre-screening is much harder to do for lack of actuarial models,
and (2) while cyber attacks are increasingly common collectively, for a single
organization it remains a relatively rare occurrence with high losses and dam-
ages, which means post-screening may seldom come into effect. In this study
we shall examine these two mechanisms separately and attempt to understand
under what conditions are these effective in incentivizing the agent to exert
higher effort, thereby improving the state of security. Note that rare cyber inci-
dents are different from natural disasters that have been studied in the literature
[12,13]; the latter are also rare incidents with high losses but differ from cyber
incident in the following sense. The agents/insureds cannot prevent natural dis-
asters by exerting effort. For instance, the authors in [12,13] do not consider the
agent’s effort in their models as it does not affect the probability of natural dis-
aster occurrence. On the other hand, an agent can actively and proactively work
toward decreasing his chance of being attacked or an attack being successful by
investing in security and addressing vulnerability.

In this paper, we shall assume that data breach and loss incidents are rare
for each agent but the amount of loss from a breach is extremely large. This
model is reasonably borne out by recent events such as the Equifax data breach,
which affected 143 million American consumers and incurred $68.6 billion in
loss for the company [14]; most of these events have been unprecedented in the
respective victim’s company history.

Our main finding in this paper is that post-screening (which involves at
least two contract periods) is not effective at all with rare loss incidents. On
the other hand, pre-screening can be an effective method if the agent perceives
loss incidents as rarer than the insurer does; in this case sufficiently accurate
pre-screening can be effective and improves the state of security as well as the
insurer’s profit as compared to not using premium discrimination.

The organization of this paper is as follows. In Sect. 2 we introduce the
model and contract design problem. Section 3 summarizes prior results (but
recast under our model) on designing cyber insurance policies when incidents
are not rare. In Sect. 4 we examine the effect of pre-screening and post-screening
on both the state of security and the insurer’s profit with rare losses. Section 5
discusses how pre-screening may be used to enable an active policy, as well as
dependent cyber risks. Section 6 presents numerical results and Sect. 7 concludes
the paper.

2 Model

We consider the cyber insurance design, a principal-agent problem, between
a profit-maximizing, risk-neutral insurer/principal and a risk-averse insured/
agent. The agent exerts effort e toward securing himself, incurring linear cost
c · e.
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Let p(e) denote the probability of a loss incident, assumed to be strictly
decreasing and strictly convex. Decreasing and convexity imply that the initial
effort toward security leads to a considerable reduction in probability of a loss
incident, and strict convexity implies that the probability of the loss incident
cannot be zero even if the agent exerts high effort [15]. Specifically, we assume
that probability of a loss incident has the following form,1

p(e) = t · exp{−α · e}, (1)

where t is the nominal probability of a successful attack to the agent if he exerts
zero effort (e = 0) and α is a constant. Larger α implies that investment in
security is more efficient and p(.) converges to zero faster. Note that t and α
both are constants and cannot be modified by the agent or the insurer.

When a loss occurs, the agent suffers the amount of loss l, also a constant.
This is obviously a simplification; however, our qualitative conclusions remain
the same for a random loss given by a known distribution. The expected utility
of the agent without any insurance contract is given by:

U(e) = p(e)f(−l − ce) + (1 − p(e))f(−ce), (2)

where f(.) is a concave function that captures the agent’s risk aversion. To make
the analysis concrete, we will further assume f(.) is an exponential function with
constant absolute risk aversion γ:

f(y) = 1 − exp{−γ · y}, (3)

where γ is referred to as the agent’s risk attitude; the higher the risk attitude
the more risk averse the agent.

2.1 Agent’s Effort and Utility Without Insurance

Without insurance, the agent exerts an effort level eo to maximize his utility:

eo = arg max
e≥0

U(e). (4)

It is easy to see that if γc ≥ α, then eo = 0. Intuitively, γc ≥ α implies that the
cost of effort is higher than its benefit, and the agent is not able to improve his
utility by exerting effort. If α > γc, then eo is given by the first order condition.
Together, we have

eo =

{
0 if γc ≥ α

( 1
α ln t · (α−γc)(exp{γl}−1)

γc )+ if γc < α
(5)

where (a)+ = max{0, a}. As a result, the maximum utility of the agent outside
the contract is given by,

uo = U(eo) =
{

1 − α
α−γc (t · α−γc

γc (exp{γl} − 1))
γc
α if eo > 0

t · (1 − exp{γl}) if eo = 0.
(6)

1 p(e) can be written as t · (exp{−α})e which is a function consistent with the expo-
nential probability function introduced in [16].
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2.2 Contract Design

We will assume that in the event of a loss, a contract covers the full amount l.
This is again a simplification but it allows us to get to the essence of our anal-
ysis more straightforwardly without affecting the main qualitative conclusions.
Because a loss is covered in full, the agent will exert zero effort after entering an
insurance contract. Thus the insurer will have to use premium discrimination to
incentivize the insured to exert a higher effort in exchange for lower premium. We
next describe in detail the resulting contract design problem under two different
methods of premium discrimination: post-screening and pre-screening.

Post-screening. In this case the contract design problem is framed in a two-
period setting where the insurer is able to assess premium in the second period
based on what happens in the first period. Such a contract is given by three
parameters (π1, π2, π3): π1 is the first-period premium; in the second period, the
agent pays premium π2 if a loss happened (and was covered in full) during the
first period and pays π3 otherwise. Obviously π3 ≤ π2.

In this case, the agent may exert non-zero effort in the first period to decrease
the chance of a loss in order to reduce the likelihood of paying a higher premium
in the second period. In the second period, on the other hand, the agent will
always exert zero effort as the loss is fully covered and he faces no more future
punishment.2

We assume that when an agent enters such a contract he commits to both
periods. The agent’s utility inside a contract (π1, π2, π3) with post-screening is
thus the summation of his utility in each period:

U in(e, π1, π2, π3) = f(−π1 − ce) + p(e)f(−π2) + (1 − p(e))f(−π3), (7)

where e is the effort in the first period.
The insurer’s problem is to maximize her profit subject to the Individual

Rationality (IR) constraint and Incentive Compatibility (IC) constraint:

V = max
{π1,π2,π3,e}

π1 − p(e)l + p(e)(π2 − p(0)l) + (1 − p(e))(π3 − p(0)l)

s.t. (IR) U in(e, π1, π2, π3) ≥ 2 · uo, i = 1, 2
(IC) e ∈ arg max U in(e, π1, π2, π3). (8)

The (IR) constraint ensures that the agent enters the contract only if he gets
no lower utility than his outside option. Note that since the contract covers two
periods, the comparison here is between his utility inside the contract over two
periods and outside the contracts over two periods. The (IC) constraint suggests

2 Our analysis can be extended to a multi-period setting where the premium of each
period depends on the agent’s history of losses, i.e., the agent’s third-period premium
depends on his loss events in the first and second periods and so on.
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that the agent acts in self-interest: he exerts an effort level maximizing his utility
given the policy parameters.

Under the contract (π1, π2, π3), by the first order condition, the agent’s opti-
mal effort ein is given by:

ein(π1, π2, π3) =

{(
1

α+γc ln(t · α
γc

exp{γπ2}−exp{γπ3}
exp{γπ1} )

)+

if π2 > π3

0 if π2 ≤ π3

(9)

For notational convenience, we use ein instead of ein(π1, π2, π3), while noting
the dependency. We have the following lemma on the (IR) constraint.

Lemma 1. The (IR) constraint in the optimization problem (8) is binding.

The above lemma implies that at the optimal solution, the agent is indifferent
between entering vs. not entering the contract, as expected.

Pre-screening. We now turn to the case of pre-screening. We assume the
insurer can conduct a risk assessment prior to determining the contract terms;
the determination mechanism is known to the agent so this is again a game of
perfect information. We assume the outcome of the pre-screening is given by an
assessment S = e + N , where N is a zero-mean Gaussian noise with variance
σ2.3 There are various ways to achieve pre-screening in practice, using surveys,
penetration tests, or advanced Internet measurement techniques, see e.g., [17].

The insurer then offers the agent a contract given by two parameters (π, β),
where π is the base premium and β is the assessment-dependent discount factor:
the agent pays π − βS in exchange for full coverage in the event of a loss. The
agent’s total cost inside the contract (π, β) while exerting effort e is:

Xin = π − β · S + c · e. (10)

As Xin follows a Gaussian distribution, using moment-generating function the
agent’s expected utility under the contract is given by:

U in(π, β, e) = E(f(−Xin)) = 1 − exp{γπ + γ(c − β)e + γ2β2σ2

2 }. (11)

Therefore, the insurer’s design problem using pre-screening is as follows:

max
π,β,e

E{π − βS} − p(e) · l

s.t. (IR) U in(π, β, e) ≥ uo,

(IC) e ∈ arg max
e′≥0

U in(π, β, e′) (12)

Similar as in Lemma 1, we can show that the (IR) constraint is binding in this
case. Thus we have the following relation between optimal contract parameters
(wo = 1

γ ln(1 − uo)):

π = wo + βe − ce − γβ2σ2

2
. (13)

3 The analysis can be extended to other noise distributions.
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Using (13), the insurer’s problem can be simplified as follows:

V (σ) = max
β,e

wo − ce − γβ2σ2

2
− p(e)l

s.t. (IC) e ∈ arg min
e′≥0

(c − β)e′ +
γβ2σ2

2
, (14)

We next summarize (known) results on these two types of premium discrim-
ination in terms of their effectiveness in incentivizing efforts.

3 State of Security and Optimal Contract When Losses
Are Not Rare

Post-screening: Post-screening has been studied in the literature. Rubinstein
et al. in [11] showed that post-screening can improve the agent’s effort inside the
contract compared to the one-period contract without post-screening.

This can be similarly observed in our model. In particular, in Theorem1
below we introduce a sufficient condition under which the agent exerts non-zero
effort in the first period of a contract with post-screening. In Sect. 6, we also
provide an example where the agent inside a contract with post-screening exerts
higher effort as compared to the no-insurance scenario.

Theorem 1. Let (π̂1, π̂2, π̂3, ê) be the solution of the optimization problem (8).
Suppose that t = 1 and

[
(α−γc)(exp{γl}−1)

γc

]
> 1, then ê > 0.

Theorem 1 suggests that post-screening can be an effective mechanism to
incentivize non-zero effort. Note that the condition

[
(α−γc)(exp{γl}−1)

γc

]
> 1 in

Theorem 1 can be satisfied if loss l is sufficiently large.

Pre-screening: Our previous work [4] shows that pre-screening can simulta-
neously incentivize the agent to exert non-zero effort and improve the insurer’s
utility. This is characterized for the present model in the following theorem.
Theorem 2. Pre-screening incentivizes non-zero effort if and only if

c

α · t · l
< 1 (15)

σ2 ≤ − c
α − c

α ln c
α·t·l + t · l

0.5 · c2γ
. (16)

Theorem 2 suggests pre-screening is effective if and only if it is sufficiently accu-
rate (Eq. (16)) and the expected loss t · l is sufficiently large (Eq. (15)). Further,
the next theorem identifies the relation between insurer’s profit and pre-screening
accuracy.
Theorem 3. Let V (σ) be the insurer’s maximum utility. That is,

V (σ) = max
β,e

wo − ce − γβ2σ2

2
− p(e)l s.t. IC constraint (17)

Then, V (σ) is decreasing in σ.
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4 State of Security and Optimal Contract When Losses
Are Rare

We next consider the case when loss events are rare, by assuming its likelihood
diminishes (i.e., t → 0) but that the loss amount is high in such an event (i.e., l →
∞)4. This model is motivated by recent data breaches that result in extremely
high losses and damages but remain relatively rare for a single organization as
mentioned earlier.

Furthermore, we would like to explicitly capture a common asymmetry in
perception between the insurer and the agent, i.e., the latter tends to think of
loss as rarer than the former does. Specifically, let ta and tp denote the nominal
attack probability from the agent and the insurer’s perspective, respectively. By
our assumption, both ta and tp go to zero and l goes to infinity. For tractability,
we adopt the following assumptions on ta and tp and l,

lim{ta→0,l→∞} ta · exp{γl} = exp{γla}
lim{tp→0,l→∞} tp · l = lp,

(18)

where la and lp are the perceived expected loss from the agent and the insurer’s
perspective when the agent exerts zero effort, respectively.5 It is worth noting
that Eq. (18) implies that the expected loss is always limited. Otherwise the
cyber insurance market may not exist. Moreover, (18) implies that ta = exp{γla}

exp{γl}
goes to zero exponentially while tp = lp

l goes to zero slower than ta as l goes to
infinity, i.e, ta > tp as l → ∞. Therefore, the agent thinks the loss is rarer than
the insurer does.

4.1 Post-screening

With the above rare loss assumptions, we have the following theorem on post-
screening.

Theorem 4. Using post-screening and given t → 0,

1. the agent always exerts zero effort inside the contract, and
2. at the optimal contract we have,

π1 = π3 =
1
γ

ln [1 − uo] , π2 ∈ R+

.

Theorem 4 implies that premium discrimination in the second period based on
the first period is not at all effective and the insurer is not able to improve the
agent’s effort or her utility by post-screening as compared to a contract without
premium discrimination.
4 By assuming that t goes to zero, the entire probability of a loss incident (i.e., p(e) =

t exp(α(e)) goes to zero.
5 If the agent exert effort e, then la exp{−α · e} and lp exp{−α · e} are the perceived

expected loss from the agent and the insurer’s perspective.
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4.2 Pre-screening

For pre-screening, it turns out perception asymmetry makes a difference. The
following theorem characterizes the optimal contract and introduces a sufficient
condition under which pre-screening can incentivize the agents to exert non-zero
effort inside the optimal contract.

Theorem 5. Pre-screening can incentivize non-zero effort under the rare loss
model, if and only if

c

αlp
< 1 (19)

σ2 ≤
− c

α − c
α ln

[
c

α·lp

]
+ lp

0.5 · c2γ
. (20)

Note that conditions in Theorem 2 reduce to those in Theorem 5 if we substi-
tute tl with lp in (15) and (16). Theorem 5 implies that pre-screening incentivizes
effort if and only if the pre-screening is sufficiently accurate and insurer’s per-
ceived loss lp is sufficiently large.

5 Discussion

5.1 Contingencies on Periodic Pre-screening: Active Policy

So far we have assumed that the agent exerts a one-shot effort level, which applies
to the entire policy period. Under this assumption, pre-screening helps incen-
tivize non-zero effort. In reality, keeping risk at a certain level typically requires
sustained effort throughout the period, and it is conceivable that the insured
may choose to lower his effort after the initial risk assessment (yet another form
of moral hazard). If so then our results on pre-screening suggests that it has
to be performed more often, whereby premium adjustment is made following
each screening. This effectively means that the initial contract is an active policy
with built-in contingencies, and the actual premium payable is realized over time
dependent on the screening results. We illustrate this idea using the following
example with one additional, mid-term, screening.

Let’s assume that the agent exerts effort e before the first screening, resulting
in assessment outcome S = e + N as before, and then he lowers the effort to e′.
Accordingly, let S′ = e′ +N ′ be the outcome of the second, mid-term screening,
where N ′ is a zero-mean Gaussian noise with variance σ2. We assume that N, N ′

are independent random variables. Below we show that the insurer is able to
incentivize the agent not to decrease the effort level through the second screening,
i.e., to ensure e′ = e. Consider an active contract with three parameters (π, β, β′)
offered to the agent, where β′ is a penalty factor, β a discount factor, and π the
base premium. The total cost of the agent is given by,

Xin = π − β · S + ce + β′(S − S′) − b(e − e′), (21)
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where 0 ≤ b ≤ c and b is the benefit of lowering the effort, and β′(S − S′) is the
penalty that the insured would pay after the second risk assessment.

Similar to (11), the agent’s expected utility under contract (π, β, β′) is:

U in(π, β, e, β′, e′) = E(f(−Xin)) =

1 − exp{γπ + γ(c − b + β′ − β)e + γ(−β′ + b)e′ + γ2σ2 (β − β′)2 + (β′)2

2
}.

(22)

The insurer’s problem can be written as follows:

R(σ) = max
{π,β,e,β′,e′}

[E{π − βS + β′(S − S′)} − p(e′)l] (23)

s.t. (IR) U in(π, β, e, β′, e′) ≥ uo

(IC) (e, e′) ∈ arg max
ẽ,ẽ′

U in(π, β, ẽ, β′, ẽ′), e′ ≤ e

The following theorem shows that the second risk assessment is effective in pre-
venting the agent from lowering his effort.

Theorem 6. Let ê and ê′ be the agent’s effort level at the solution to (23), and
e be the optimal effort level in optimization problem (14). Then, we have ê = ê′,
and the optimal contract parameters are β = c and β′ = b if ê > 0 otherwise
they are β = β′ = 0. Moreover, if e > 0, then ê = e.

Lastly, we have V (σ) ≤ R(σ), where V (σ) is obtained from (14) by assuming
there is only one pre-screening and the agent does not lower his effort afterward,
with equality achieved if b = c.

The last part of the theorem above suggests that performing the second screening
helps the insurer to improve profit even when the agent may be assumed not
to lower his effort. This is because second pre-screening decreases the variance
and uncertainty in agent’s utility. Therefore, a risk averse agent is willing to pay
more premium when the uncertainty and variance on his side decreases.

5.2 Insuring Interdependent Agents

So far we have assumed that the probability of a loss incident is solely determined
by the effort of the agent. On the other hand, risk dependency is a unique
feature of cyber risks: the incident probability for an agent may depend on the
effort levels of other agents (the former’s vendors or service providers, etc.). In
our previous work [4], we considered a cyber insurance market in the presence
of risk dependency, and showed that the insurer can achieve higher profit as
compared to a network of independent agents; moreover, pre-screening in such
a case increases the agents’ efforts as compared to the no insurance scenario. If
we introduce security dependency into our rare loss model, it can be shown that
post-screening is not able to incentivize non-zero effort while pre-screening can.
Table 1 summarizes the role of dependency and rare loss on the agents’ effort,
where (∗) indicates the associated result holds under certain conditions.
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Table 1. Comparing agent’s effort inside (ein) and outside (eo) a contract

Pre-screening Post-screening

Rare loss, dependent agents ein > eo (∗) ein = 0

Rare loss, independent agents ein > eo (∗) ein = 0

Frequent loss, dependent agents ein > eo (∗) ein > eo (∗)

Frequent loss, independent agents eo ≥ ein ≥ 0 ein > eo (∗)

6 Numerical Result

We show a number of numerical examples with the following parameters γ =
c = 1, α = 1.5.

6.1 Frequent Losses: Post-screening

Our first example shows when post-screening may be effective in incentivizing
the agent to exert higher effort as compared to the no-insurance scenario.

Consider a scenario where the nominal probability of attack t = 1. Figure 1
illustrates the agent’s effort in the first period as a function of loss l. We note
that post-screening can be an effective mechanism to incentivize the agents to
exert non-zero effort inside a contract with full coverage. In this example, the
agent exerts higher effort as compared to the no insurance scenario when l ≤ 0.7.
This is because since the loss is relatively low, even without insurance the agent
is not willing to exert substantial effort as the cost of effort is higher than the
actual loss. Within a contract, the insurer is able to incentivize the agent to
exert higher effort by imposing a large penalty (a much higher premium in the
second period).
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Fig. 1. Post-screening: agent’s effort vs. loss (l)
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6.2 Rare Losses: Pre-screening

Our second example examines the effect of pre-screening on the agent’s effort.
Consider a scenario where ta, tp go to zero and l goes to infinity. Moreover,
assume la = 5 and σ = 0.1. Figure 2 illustrates the agent’s effort inside and out-
side the insurance contract with pre-screening. We see that the agent exerts non-
zero effort inside the insurance contract and the effort increases as lp increases.
Note that outside a contract the agent’s effort is a function of his perceived loss
la and does not change with lp. On the other hand, inside the contract, as the
insurer’s perceived loss lp increases, the insurer incentivizes the agent to increase
his efforts using premium discrimination (high premium for low pre-screening
outcomes).

Figure 3 illustrates the insurer’s utility as a function of lp. This figure implies
that the insurer’s utility is negative for lp ≥ 85. Therefore, she does not insure
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Fig. 2. Pre-screening: agent’s effort vs. loss (lp)
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Effective Premium Discrimination for Designing Cyber Insurance Policies 271

the agent if lp ≥ 85. Also, as expected, the insurer’s utility decreases as the
perceived expected loss lp increases. The reason is that as the perceived expected
loss increases, the insurer expects to pay more coverage and make less profit.

7 Conclusion

We studied the problem of designing cyber insurance contracts between a single
profit-maximizing and risk-neutral insurer and a risk-averse agent. We showed
that multi-period contract is an effective method of premium discrimination if
loss incidents are frequent. We then considered rare but severe losses which is a
common theme of cyber risks. In this case, we showed that multi-period contract
is not effective in improving the agent’s effort: the agent exerts zero effort inside
a contract with full coverage. By contrast, pre-screening is shown to allow the
insurer to assess the agent’s state of security and premium discriminates properly
so as to incentivize effort by the agent within the contract.

We further discussed how the pre-screening result enables a type of active
policy where periodic pre-screening within the same contract term can not only
ensure the agent does not lower his effort after the initial assessment but also
allows the insurer to improve her profit.

Appendix

Proof (Lemma 1). Proof by contradiction. Let (π̂1, π̂2, π̂3) be the solution of
optimization problem (8), and assume that the (IR) constraint is not binding at
the optimal contract (π̂1, π̂2, π̂3). Because the (IR) constraint is not binding, the
insurer can increase her utility by increasing π̂2, π̂3 while she keeps exp{γπ̂2} −
exp{γπ̂3} fixed. Therefore, based on (9) the agent’s effort inside the contract
does not change, but the insurer’s profit increases. As a result, (π̂1, π̂2, π̂3) is not
an optimal contract. This is the contradiction implying that the (IR) constraint
is binding. �

Proof (Theorem 1). Proof by contradiction: Assume that ê = 0 and t = 1 and[
(α−γc)(exp{γl}−1)

γc

]
> 1. First we show that under these assumptions, π̂1 = π̂2 =

1
γ ln(1 − uo) := wo. Because ê = 0 and t = 1, the optimization problem for
finding (π̂1, π̂2, π̂3) is as follows,

max{π1,π2,π3} π1 + π2 − 2l
s.t.,
(IR) 1 − exp{γπ1} + 1 − exp{γπ2} = 2uo

(IC) 0 = ein(π1, π2, π3)

(24)

By (IR) constraint we have,

1
γ

ln(2 − 2uo − exp{γπ1}) = π2 (25)
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Therefore, we re-write the optimization problem (24) as follows,

max{π1,π2,π3} π1 + 1
γ ln(2 − 2uo − exp{γπ1}) − 2l

s.t.,
(IC) 0 = ein(π1, π2, π3)

1
γ ln(2 − 2uo − exp{γπ1}) = π2

(26)

Because π3 does not appear in the objective function, we first find π1 and π2

such that they maximize the objective function. Then, we pick π3 such that (IC)
constraint is satisfied. By the first order optimality condition for the objective
function, we have,

π̂1 = π̂2 =
1
γ

ln(1 − uo) (27)

Without loss of generality, we set π̂3 = 1
γ ln(α−γc

α (1 − uo)). By (9), ê = 0

(Notice that α
γc

exp{γπ̂2}−exp{γπ̂3}
exp{γπ̂1} = 1 and a slight decrease in π̂3, increases the

agent’s effort based on (9)).
Now we show that the decrease in π̂3 increases the insurer’s payoff. Notice

that a slight decrease in π̂3, increases the agent’s effort (based on (9)) and
improves agents’ utility and the (IR) constraint is not violated. We write the
insurer’s objective function as a function of π3. Therefore, we have (derivatives
in the following equation are left derivatives),

h(π3) = π̂1 − p(ein(π̂1, π̂2, π3))(l − π̂2) + (1 − p(ein(π̂1, π̂2, π3)))π3 − l

∂h

∂π3
|π3=π̂3 =

∂p(ein(π̂1, π̂2, π3))

∂π3
· (π̂2 − l)

− ∂p(ein(π̂1, π̂2, π3))

∂π3
· π3 + (1 − p(ein(π̂1, π̂2, π3)))

=

(
∂p(ein(π̂1, π̂2, π3))

∂π3
|π3=π̂3 · (−l + π̂2 − π̂3) − (1 − p(ein

1 (π̂1, π̂2, π̂3)))

)

Because
[
(α−γc)(exp{γl}−1)

γc

]
> 1, (5) implies that eo is not zero and π̂2 =

1
γ ln(1−uo) < l. Moreover, ∂p(ein(π̂1,π̂2,π3))

∂π3
|π3=π̂3 > 0 implies that ∂h

∂π3
|π3=π̂3 < 0.

Therefore, the decrease in π̂3 increases the insurer’s payoff. This is a contradic-
tion and the agent exerts non-zero effort in the optimal contract under given
assumptions. �

Proof (Theorem 2). By (14), the agent exerts non-zero effort in a contract if
β = c. If the discount factor β = c, then any positive number satisfies the (IC)
constraint. Therefore, if β = c, then the desired effort maximizes the insurer’s
utility. By (14), we have,

e = arg max
e

wo − ce − tl exp{−α · e} − γc2σ2 (28)
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By the first order condition of optimality, the solution of above optimization
problem is e = ( 1

α ln(α·t·l
c ))+. Moreover, if e > 0, then the maximum insurer’s

profit using pre-screening (i.e., β = c) is given by,{
wo − c

α ln(αtl
c ) − c

α − γc2σ2

2

}
(29)

Without pre-screening (i.e., β = 0), the agent exerts zero effort and the
insurer’s profit is given by,

wo − t · l (30)

Therefore, the insurer uses pre-screening if and only if,

1
α ln(α·t·l

c ) > 0
wo − c

α ln(αtl
c ) − c

α − γc2σ2

2 ≥ wo − tl
(31)

In other words, the insurer uses pre-screening and the agent exerts non-zero
effort if and only if,

α · t · l

c
> 1

σ2 ≤ 2
γc2

(tl − c

α
(1 + ln(

αtl

c
)) (32)

�

Proof (Theorem 3). Assume σ < σ′.
Let g(β, e, σ) =

[
wo − ce − γβ2σ2

2 − p(e)l
]
. It is easy to see that g(β, e, σ′) ≤

g(β, e, σ). Therefore, we have,

max
β,e,IC constraint

g(β, e, σ′) ≤ max
β,e,IC constraint

g(β, e, σ)

Therefore, V (σ′) ≤ V (σ). �

Proof (Theorem 4).

– By (9), the agent exerts zero effort if ta
α
γc

exp{γπ2}−exp{γπ3}
exp{γπ1} ≤ 1. Because ta

goes to zero, ta
α
γc

exp{γπ2}−exp{γπ3}
exp{γπ1} also goes to zero. Therefore, the agent

exerts zero effort under any insurance contract.
– Because the agent exerts zero effort inside the optimal contract, his utility is

given by,

U in(0, π1, π2, π3) = − exp{γπ} − ta exp{γπ2} − (1 − ta) exp{γπ3}
(IR) is binding and ta → 0 ⇒ 1 − exp{γπ1} + 1 − exp{γπ3} = 2uo (33)



274 M. M. Khalili et al.

Therefore, the insurer’s problem (8) can be written as follows,

maxπ1,π2,π3 π1 + π3 − 2 · lp
s.t., exp{γπ1} + exp{γπ3} = 2 − 2uo (34)

or
maxπ1 π1 + 1

γ ln(2 − 2uo − exp{γπ1}) − 2lp (35)

The optimal solution for the above optimization problem is π1 = π3 = 1
γ ln(1−

uo) and also the value of π2 does not affect insurer’s or agent’s utility and
can be any positive value.

�
Proof (Theorem 5). The proof is similar to the proof of Theorem2 except that
we should substitute lp for t · l. �
Proof (Theorem 6). As the (IR) constraint is binding in (23), similar to (14) we
can re-write optimization problem (23) as follows,

R(σ) = max{β,e,β′,e′}
[
wo − ce + b(e − e′) − γ (β−β′)2σ2+(β′)2σ2

2 − p(e′)l
]

s.t., (IC)(e, e′) ∈ arg min(ẽ≥ẽ′) γ(c − b + β′ − β)ẽ + γ(−β′ + b)ẽ′ (36)

First we show that ê = ê′. Proof by contradiction. Assume ê > ê′ ≥ 0.
Then, β′ − β = b − c since otherwise ê = ∞ or ê = 0. As b ≤ c, then the
objective function of (36) can be improved by decreasing ê without violating
(IC) constraint. This contradiction shows that ê = ê′.

By IC constraint, it is easy to see that if ê = ê′ > 0, then β = c, and β′ = b.
Let β = β̄, e = ē be the solution to (14). According to the IC constraint of

(14), two cases can happen:

(i) β = 0 and e = 0. Then, (β = β′ = e = e′ = 0) satisfies the IC constraint in
(36) and is a feasible point. We have,

wo − ce − γβ
2
σ2

2
− p(e)l =

wo − ce + b(e − e) − γ
(β − β

′
)2 + (β

′
)2

2
σ2 − p(e)l (37)

(ii) β = c. Then (β = c, β′ = b, e = e′ = e) is a feasible point for (36) and
satisfies the IC constraint. We have,

wo − ce − γc2σ2

2
− p(e)l ≤

wo − c · e + b(e − e) − γ
(c − b)2 + b2

2
σ2 − p(e)l (38)

Note that in this case (β = c, β′ = b, e = e′ = e) is the solution to (36).
By (37) and (38) we have, V (σ) ≤ R(σ). Notice that if b = c, then (36) and

(14) are equivalent and V (σ) = R(σ) as ê = ê′. �
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