
Chapter 18
Fairness in Learning-Based Sequential
Decision Algorithms: A Survey

Xueru Zhang and Mingyan Liu

Abstract Algorithmic fairness in decision-making has been studied extensively in
static settings where one-shot decisions are made on tasks such as classification.
However, in practice most decision-making processes are of a sequential nature,
where decisions made in the past may have an impact on future data. This is par-
ticularly the case when decisions affect the individuals or users generating the data
used for future decisions. In this survey, we review existing literature on the fairness
of data-driven sequential decision-making. We will focus on two types of sequential
decisions: (1) past decisions have no impact on the underlying user population and
thus no impact on future data; (2) past decisions have an impact on the underlying
user population, and therefore the future data, which can then impact future deci-
sions. In each case the impact of various fairness interventions on the underlying
population is examined.

18.1 Introduction

Decision-making algorithms that are built from real-world datasets have been widely
used in various applications. When these algorithms are used to inform decisions
involving human beings (e.g., college admission, criminal justice, and resume screen-
ing), which are typically done by predicting certain variable of interest from observ-
able features, they may inherit the potential, pre-existing bias in the dataset and
exhibit similar discrimination against protected attributes such as race and gender.
For example, the COMPAS algorithm used by courts for predicting recidivism in
the United States has been shown to be biased against black defendants [11]; job
searching platform XING ranks less qualified male applicants higher than female
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applicants who are more qualified [29]; a nationwide algorithm used for allocating
medical resources in US is biased against black patients [35].

There are various potential causes for such bias. It may have been introduced
when data is collected. For instance, if data sampled from a minority group is much
smaller in size than that from a majority group, then the model could be more in
favor of the majority group due to this representation disparity (e.g., more than a
third of data in ImageNet and Open Images, two datasets widely used in machine
learning research communities, is US-based [37]). Another example is when the data
collection decision itself reflects bias, which then impacts the collected data (e.g., if
more police officers are dispatched to places with higher crime rate to begin with,
then crimes are more likely to be recorded in these places [12]). Even when the data
collection process is unbiased, bias may already exist in the data. Historical prejudice
and stereotypes can be preserved in data (e.g., the relationship between “man” and
“computer programmers” were found to be similar to that between “woman” and
“homemaker” [7]). An interested reader can find more detailed categorization of
bias in the survey [34].

The problem does not merely stop here. On one hand, decisions made about
humans can affect their behavior and reshape the statistics of the underlying pop-
ulation. On the other hand, decision-making algorithms are updated periodically to
assure high performance on the targeted populations. This complex interplay between
algorithmic decisions and the underlying population can lead to pernicious long-term
effects by allowing biases to perpetuate and reinforcing pre-existing social injustice.
For example, [2] shows that incarceration can significantly reduce people’s access
to finance, which in turn leads to substantial increase in recidivism; this forms a
credit-driven crime cycle. Another example is speech recognition: products such as
Amazon’s Alexa and Google Home are shown to have accent bias with native speak-
ers experiencingmuch higher quality than non-native speakers [18]. If this difference
in user experience leads to more native speakers using such products while driving
away non-native speakers, then over time the data used to train the algorithms may
become even more skewed toward native speakers, with fewer and fewer non-native
samples. Without intervention, the resulting model may become even more accurate
for the former and less for the latter, which then reinforces their respective user expe-
rience [19]. Similar negative feedback loops have been observed in various settings
such as recommendation system [9], credit market [13], and policing prediction [12].
Preventing discrimination and guaranteeing fairness in decision-making is thus both
an ethical and a legal imperatives.

To address the fairness issues highlighted above, a first step is to define fairness.
Anti-discrimination laws (e.g., Title VII of the Civil Rights Act of 1964) typically
assess fairness based on disparate impact and disparate treatment. The former hap-
pens when outcomes disproportionately benefit one group while the latter occurs
when the decisions rely on sensitive attributes such as gender and race. Similarly,
various notions of fairness have been formulatedmathematically for decision-making
systems and they can be categorized roughly into two classes:
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• Individual fairness: this requires that similar individuals are treated similarly.
• Group fairness: this requires (approximate) parity of certain statistical measures
(e.g., positive classification rate, true positive rate, etc.) across different demo-
graphic groups.

In Sect. 18.2 we present the definitions of a number of commonly used fairness
measures. Their suitability for use is often application dependent, and many of them
are incompatible with each other [28].

To satisfy the requirement of a given definition of fairness, various approaches
have been proposed and they generally fall under three categories:

1. Pre-processing: by changing the original dataset such as removing certain fea-
tures, reweighing, and so on, e.g., [8, 15, 26, 42].

2. In-processing: by modifying the decision-making algorithms such as imposing
fairness constraints or changing objective functions, e.g., [1, 5, 40, 41].

3. Post-processing: by adjusting the output of the algorithms based on sensitive
attributes, e.g., [17].

While the effectiveness of these approaches have been shown in various domains,
most of these studies are done using a static framework where only the immediate
impact of the learning algorithm is assessed but not its long-term consequences.
Consider an example where a lender decides whether or not to issue a loan based on
the applicant’s credit score. Decisions satisfying an identical true positive rate (equal
opportunity) across different racial groups can make the outcome seem fairer [17].
However, this can potentially result in more loans issued to less qualified applicants
in the group whose score distribution skews toward higher default risk. The lower
repayment among these individuals causes their future credit scores to drop, which
moves the score distribution of that group further toward higher default risk [31].
This shows that intervention by imposing seemingly fair decisions in the short term
can lead to undesirable results in the long run [43]. As such, it is critical to understand
the long-term impacts of fairness interventions on the underlying population when
developing and using such decision systems.

In this survey, we focus on fairness in sequential decision systems. We introduce
the framework of sequential decision-making and commonly used fairness notions
in Sect. 18.2. The literature review is done in two parts. We first consider sequen-
tial settings where decisions do not explicitly impact the underlying population in
Sect. 18.3, and then consider sequential settings where decisions and the underlying
population interact with each other in Sect. 18.4. The impact of fairness interventions
is examined in each case. For consistency of the survey, wemay use a set of notations
different from the original works.
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18.2 Preliminaries

18.2.1 Sequential Decision Algorithms

The type of decision algorithms surveyed in this paper are essentially classifica-
tion/prediction algorithms used by a decision-maker to predict some variable of
interest (label) based on a set of observable features. For example, judges predict
whether or not a defendant will re-offend based on its criminal records; college
admission committee decides whether or not to admit an applicant based on its SAT;
lender decides whether or not to issue a loan based on an applicant’s credit score.

To develop such an algorithm, data are collected consisting of both features and
labels, from which the best mapping (decision rule) is obtained, which is then used
to predict unseen, new data points. Every time a prediction is made, it can either
be correct (referred to as a gain) or incorrect (referred to as a loss). The optimal
decision rule without fairness consideration is typically the one that minimizes losses
or maximizes gains.

In a sequential framework, data arrive and are observed sequentially and there
is feedback on past predictions (loss or gain), and we are generally interested in
optimizing the performance of the algorithm over a certain time horizon. Such a
sequential formulation roughly falls into one of two categories.

P1: The goal of the algorithm is to learn a near-optimal decision rule quickly, noting
that at each time step only partial information is available, while minimizing
(or maximizing) the total loss (or gain) over the entire horizon. Furthermore,
within the context of fairness, an additional goal is to understand how a fairness
requirement impacts such a decision rule.

P2: This is a setting where not only do data arrives sequentially, but decisions made
in the past can affect the feature space of the underlying population, thereby
changing the nature of future observations. The goal in this case is to learn an
optimal decision rule at each time step and understand the impact it has on the
population and how fairness requirement further adds to the impact.

18.2.2 Notions of Fairness

As mentioned in Sect. 18.1, different notions of fairness can be generally classified
into individual fairness and group fairness.

Group fairness: For simplicity of exposition and without loss of generality, we
will limit ourselves to the case of two demographic groups Ga , Gb, distinguished
based on some sensitive attribute Z ∈ {a, b} representing group membership (e.g.,
gender and race). Group fairness typically requires certain statistical measures to be
equal across these groups. Mathematically, denote by random variable Y ∈ {0, 1} an
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individual’s true label and Ŷ its prediction generated from a certain decision rule.
Then the following is a list of commonly used group fairness criteria.

1. Demographic Parity (DP): it requires that the positive prediction rate be equal
across different demographic groups, i.e., P(Ŷ = 1|Z = a) = P(Ŷ = 1|Z = b).

2. Equal of Opportunity (EqOpt): it requires true positive rate (TPR)1 be equal
across different demographic groups, i.e., P(Ŷ = 1|Y = 1, Z = a) = P(Ŷ =
1|Y = 1, Z = b).

3. Equalized Odds (EO): it requires both the false positive rate and true positive rate
be equal across different demographic groups, i.e., P(Ŷ = 1|Y = y, Z = a) =
P(Ŷ = 1|Y = y, Z = b),∀y ∈ {0, 1}.

4. Equalized Loss (EqLos): it requires different demographic groups experience
the same total prediction error, i.e., P(Ŷ �= Y |Z = a) = P(Ŷ �= Y |Z = b).

Individual fairness: Such a criterion targets the individual, rather than group
level. Commonly used examples are as follows.

1. Fairness through awareness (FA): this requires that similar individuals be treated
similarly.

2. Meritocratic fairness (MF): this requires that less qualified individuals not be
favored over more qualified individuals.

The above definitions do not specify how similarity among individuals or quali-
fication of individuals are measured, which can be context dependent.

18.3 (Fair) Sequential Decision When Decisions Do Not
Affect Underlying Population

We first focus on a class of sequential decision problems (P1) where the decision
at each time step does not explicitly affect the underlying population; a list of these
studied are summarized inTable 18.1.Most of theseworks have developed algorithms
that can learn a decision rule with sufficient accuracy/performance subject to certain
fairness constraint, and the impact of fairness on these sequential decision-making
problems is reflected through its (negative) effect on the achievable performance.

18.3.1 Bandits, Regret, and Fair Regret

We begin with [4, 16, 20] on online learning problems, where a decision-maker at
each time t receives data from one individual and makes decision according to some
decision rule. It then observes the loss (resp. utility) incurred from that decision. The

1Based on the context, this criterion can also refer to equal false negative rate (FNR), false positive
rate (FPR), or true negative rate (TNR).
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Table 18.1 Summary of related work when decisions do not affect the underlying population. �

represents the use of fairness definitions or interventions not included in Sect. 18.2.2

Fairness definition Data type Problem type

Group fairness Individual
fairness

Reference [20] FA i.i.d. P1

Reference [16] FA non-i.i.d. P1

Reference [4] EqOpt i.i.d. P1

Reference [25] MF i.i.d. P1

Reference[24] MF i.i.d. P1

Reference [33] FA i.i.d. P1

Reference [38] � i.i.d. P1

Reference [6] EqOpt, EO,
EqLos

non-i.i.d. P1

Reference [10] � i.i.d. P1

Reference [30] � i.i.d. P1

Reference [36] � i.i.d. P1

Reference [14] FA non-i.i.d. P1

goal is to learn a decision rule from a set of data collected over T time steps under
which (1) the accumulated expected loss (resp. utility) over T steps is upper (resp.
lower) bounded and (2) certain fairness criterion is satisfied. Specifically, [16, 20]
focus on individual fairness which ensures that similar individuals (who arrive at
different time steps) be treated similarly, by comparing each individual with either
all individuals within a time epoch [16, 20] or only those who have arrived in the
past [16]. By contrast, [4] focuses on group fairness (EqOpt), where at each time
the arriving individual belongs to one demographic group and the goal is to ensure
different demographic groups in general receive similar performance over the entire
time horizon. Moreover, [4] considered a partial feedback scenario where the loss
(resp. utility) is revealed to the decision-maker only when certain decisions are made
(e.g., whether an applicant is qualified for a certain job is only known when he/she
is hired). In each of these settings, the impact of fairness constraint on accumulated
expected loss/utility is examined and quantified and an algorithm that satisfies both
(approximate) fairness and certain loss/utility is developed.

In some applications, the decision-maker at each timemakes a selection frommul-
tiple choices. For example, hiring employees from multiple demographic groups,
selecting candidates from a school for certain competitions, etc. Specifically, the
decision-maker at each time receives features of multiple individuals (potentially
from different demographic groups) and the corresponding sequential decision prob-
lems can be formulated as a multi-armed bandit problem, where each arm represents
either one specific individual or one demographic group and choosing an arm repre-
sents selecting one individual (from one demographic group). In a classic stochastic
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bandit problem, there is a set of arms Z = {1, · · · , K }. The decision-maker selects
an arm kt at time t fromZ and receives a random reward rktt , drawn fromadistribution
rktt ∼ P

kt (·; gkt ) with unknown mean E(rktt ) = gkt ∈ [0, 1].
Let ht = {(ks, rkss )}t−1

s=1 represent all history information received by the decision-
maker up to time t . Then the decision rule τt at t is a probability distribution over all
arms. Denote by τt (k|ht) the probability of selecting arm k at time t given history
ht . The regret of applying the decision rule {τt }Tt=1 over T time steps is defined as

RegretT ({τt }t ) =
T∑

t=1

max
k

gk −
T∑

t=1

Ekt∼τt

[
gkt

]
.

The goal of a fair decision-maker in this context is to select {τt }Tt=1 such that the
regret over T time steps is minimized, while certain fairness constraint is satisfied.

Joseph et al. in [25] proposed the use of meritocratic fairness in the above bandit
setting as follows. Consider amulti-armed bandit problemwhere each arm represents
an individual and the decision-maker selects one individual at each time. Let the
mean reward E(rkt ) represent the average qualification of individuals (e.g., hiring
more qualified applicant can bring higher benefit to a company); then it is unfair if
the decision-maker preferentially chooses an individual less qualified in expectation
over another. Formally, the decision-maker is defined to be δ-fair over T time steps
if with probability 1 − δ, for all pairs of arms k, k ′ ∈ Z and ∀t , the following holds.

τt (k|ht) > τt (k
′|ht) only if gk > gk

′
. (18.1)

Reference [25] developed an algorithm to find optimal decision rules in classic
stochastic setting that is δ-fair. To ensure δ-fairness, for any two arms k, k ′, they
should be selected with equal probability unless gk > gk

′
. Let ukt , l

k
t be the upper

and lower confidence bounds of arm k at time t . Then arms k and k ′ are linked if
[lkt , ukt ] ∩ [lk ′

t , uk
′

t ] �= ∅; arms k and k ′ are chained if they are in the same component
of the transitive closure of the linked relation. The algorithm in [25] first identifies
the armwith the highest upper confidence bound and finds all arms chained to it (St ).
For arms not in St , the decision-maker has sufficient confidence to claim that they
are less qualified than others, while for arms in St , the decision-maker randomly
selects one at uniform to ensure fairness.

Reference [25] shows that if δ < 1/
√
T , then the algorithm can achieve

RegretT ({τt }t ) = O(

√
K 3T ln T K

δ
). In contrast, without fairness consideration, the

original upper confidence bound (UCB) algorithm proposed by Auer et al. [3]
achieves regretRegretT ({τt }t )= O(K log T/�a),where�a is the differencebetween
the expected rewards of the optimal arm and a sub-optimal arm. The cubic depen-
dence on K (the number of arms) in the former is due to the fact that any fair decision
rule must experience constant per-step regret for T 
 K 3 steps on some instances,
i.e., the average per-step regret is 
 1 for T = �(K 3).
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The idea of this chaining strategy can also be adapted to develop fair algorithms
for more general scenarios such as contextual bandit problems [25] and bandits with
different (or even infinite) number of arms at each time among which multiple arms
can be selected [24]. Similar to constraint (18.1), fairnessmetrics in these generalized
settings are also defined in terms of individual’s expected qualification, and stipulate
that two similar individuals with the same expected reward be treated similarly, even
though their reward distributions can be significantly different.

In contrast, Liu et al. [33] proposes smooth fairness based on individuals’ reward
distributions rather than expected reward,which requires that individualswith similar
reward distributions be selected with similar probabilities. Formally, ∀ε1, ε2 ≥ 0 and
∀δ ∈ [0, 1], the decision rule τ = {τt }Tt=1 is (ε1, ε2, δ)-smooth fair w.r.t. a divergence
function D, if ∀t and for any pair of arms k, k ′, the following holds with probability
at least 1 − δ:

D
(
Ber(τt (k|ht))

∣∣∣∣Ber(τt (k ′|ht ))
)

≤ ε1D
(
P
k(·; gk)∣∣∣∣Pk ′

(·; gk ′
)
)

+ ε2 , (18.2)

where Ber(τt (k|ht)) denotes a Bernoulli distribution with parameter τt (k|ht).
Compared withmeritocratic fairness, smooth fairness is weaker in the sense that it

allows a worse arm to be selected with higher probability. To quantify such violation,
[33] further proposes a concept of fairness regret, where a violation occurs when the
arm with the highest reward realization at a given time is not selected with the
highest probability. Based on this idea, the fairness regret of decision rule τt at time
t is defined as

R f air
t = E

[
K∑

k=1

max
(
P

∗(k) − τt (k|ht), 0
)∣∣∣{gk}Kk=1

]
,

and the cumulative fairness regret is defined as R f air
1:T = ∑T

t=1 R
f air
t , where P∗(k) =

P(k = argmax
k ′∈Z

rk
′

t ) is the probability that the reward realization of arm k is the highest

among all arms.
Two algorithms were developed in [33] for special types of bandit problems: (1)

Bernoulli bandit, where the reward distributions satisfy Pk(·; gk) = Ber(gk) and (2)
Dueling bandit: ∀t the decision maker selects two arms k1t , k

2
t and only observes the

outcome 1(rk
1
t

t > r
k2t
t ). These algorithms satisfy smooth fairness w.r.t. total variation

distance with low fairness regret.
In satisfying FA that similar individuals be treated similarly, one challenge is to

define the appropriate context-dependent metric to quantify “similarity”. Most stud-
ies in this space assume such a metric is given. Reference [14] proposes to learn
such a similarity metric from the decision process itself. Specifically, it considers a
linear contextual bandit problemwhere each arm corresponds to an unknown param-
eter θ ∈ R

d . At each time t , the decision-maker observes K arbitrarily and possibly
adversarially selected contexts x1t , · · · , xK

t ∈ R
d from K arms, each representing

features of an individual. It selects one (say arm i) among them according to some
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decision rule τt and receives reward r it with mean E(r it ) = 〈xit , θ〉. Reference [14]
focuses on individual fairness that individuals with similar contexts (features) be
selected with similar probabilities, i.e., |τt (k|ht ) − τt (k ′|ht )| ≤ D(xkt , x

k ′
t ), ∀k, k ′,

for some unknown metric D(·, ·). Similar to reference [33] and reference [14] also
defines a fairness regret to quantify fairness violation over T time steps. Specifically,
let R f air

t (�) = ∑K−1
i=1

∑K
j=i+1 1(|τt (i |ht ) − τt ( j |ht)| > D(xit , x

j
t ) + �)be the total

number of arm pairs violating �-fairness and the total fairness regret over T steps is
R f air
1:T (�) = ∑T

t=1 R
f air
t (�), where � represents the error tolerance. The goal is to

find a decision rule with low fairness regret that is also near-optimal (w.r.t. the best
fair decision rule).

However, since D(·, ·) is unknown, to achieve the above objective, D(·, ·) also
needs to be learned. To do so, it assumes that in addition to reward r it , the decision-
maker at each time receives feedback {(k, k ′) : |τt (k|ht ) − τt (k ′|ht )| > D(xkt , x

k ′
t )},

i.e., the set of all pairs of individuals for which the decision rule violates the fair-
ness constraint. With such (weak) feedback, a computationally efficient algorithm
is developed in [14] that for any metric D(·, ·) following the form of Mahalanobis
distance, i.e., D(x1, x2) = ||Ax1 − Ax2||2 for some matrix A, any time horizon T
and any �, with high probability it (i) obtains regret Õ(K 2d2 log(T ) + d

√
T ) w.r.t.

the best fair decision rule; and (ii) violates unknown fairness constraints by more
than � on at most O(K 2d2 log(d/�)) steps.

Other studies, such as [10, 30, 36] also use a bandit formulation with fairness
consideration, where the fairness constraint requires either each arm be pulled for at
least a certain fraction of the total available steps, or the selection rate of each arm
be above a threshold. Algorithms that satisfy both (approximate) fairness and low
regret are developed in these studies.

18.3.2 Fair Experts and Expert Opinions

In some sequential decisionproblems, decision-maker at each timemay followadvice
from multiple experts V = {vk}Kk=1 and at each t it selects expert according to a
decision rule τt where τt (k) denotes the probability of selecting expert vk at time
t . Blum et al. [6] considers a sequential setting where at each time a set of experts
V all make predictions about an individual (possibly based on sensitive attribute
Zt ∈ {a, b}). Let Yt ∈ {0, 1} be the individual’s true label and expert vk’s prediction
be Ŷ k

t , then the corresponding loss of expert vk is measured as l(Yt , Ŷ k
t ) ∈ [0, 1].

By following decision rule τt , the decision-maker takes vk’s advice with probability
τt (k), and the overall expected loss at time t is given by

∑
vk∈V τt (k)l(Yt , Ŷ k

t ). The

decision-maker is assumed to observe l(Yt , Ŷ k
t ) ∈ [0, 1], ∀vk ∈ V and ∀t .

In [6], each expert in isolation is assumed to satisfy certain fairness criterion
C ∈ {EqOpt,EO,EqLos} over a horizon. Specifically, given a sequence of indi-
viduals {(yt , zt )}Tt=1, let T

y
z = {t |zt = z, yt = y} be the set of time steps at which

corresponding individuals are from Gz and have label y ∈ {0, 1}, expert vk satisfies
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EqOpt if 1
|T 1

a |
∑

t∈T 1
a
l(yt , ŷkt ) = 1

|T 1
b |

∑
t∈T 1

b
l(yt , ŷkt ) holds. The decision-maker fol-

lowing τ = {τt } is said to be �-fair w.r.t. EqOpt if the following holds,

∣∣∣E
[ 1

|T 1
a |

∑

t∈T 1
a

∑

vk∈V
τt (k)l(Yt , Ŷ

k
t )

] − E
[ 1

|T 1
b |

∑

t∈T 1
b

∑

vk∈V
τt (k)l(Yt , Ŷ

k
t )

]∣∣∣ ≤ � .

Similar formula can be derived for the EO and EqLos criteria. The goal of the
decision-maker is to find �-fair τ w.r.t. C from a set of fair experts that all satisfy
fairness C in isolation, and at the same time perform as (approximate) good as the
best expert in hindsight. Formally, define ε-approximate regret of τ over T time steps
with respect to decision-maker vi ∈ V as follows:

RegretT (τ, vi , ε) =
T∑

t=1

∑

vk∈V
τt (k)l(yt , ŷ

k
t ) − (1 + ε)

T∑

t=1

l(yt , ŷ
i
t ) . (18.3)

Then the goal is to achieve vanishing regret E[RegretT (τ, vi , ε)] = o(T ), ∀ε > 0
and ∀vi ∈ V.

When the input is i.i.d., the above setting is trivial because the best expert can
be learned in O(log |V|) rounds and the decision-maker can follow its advice after-
wards. Because each expert is fair in isolation, this also guarantees vanishing dis-
crimination.

However, when input is non-i.i.d., achieving such objective is challenging. Ref-
erence [6] considers an adversarial setting where both Zt and Yt can be adaptively
chosen over time according to {(Zs,Ys, Ŷs)}t−1

s=1. It first examines the property of
EqOpt and shows that given a set of experts that satisfies EqOpt, it is impossible
to find a decision rule τ with vanishing regret that can also preserve �-fairness w.r.t.
EqOpt. This negative result holds for both the cases when group identity infor-
mation Zt is used in determining τ (group-aware) and the cases when the group
information is not used (group-unaware). Specifically, for both cases, [6] constructs
scenarios (about how an adversarial selects (Zt ,Yt ) over time) under which for any
� that is smaller than a constant c < 0.5, ∃ε > 0 such that for any τ that satisfies
E[RegretT (τ, vi , ε)] = o(T ), ∀vi ∈ V, violates the �-fairness w.r.t. EqOpt.

Since EqOpt is strictly weaker than EO, the above impossibility result in EqOpt
naturally generalizes to EO. In contrast, under EqLos, given a set of experts that sat-
isfies EqLos fairness, ∀� > 0, there exists group-aware τ that can simultaneously
attain�-fairness and the vanishing regret. The idea is to run two separate multiplica-
tive weights algorithms for two groups. Because one property of the multiplicative
weights algorithm is that it performs no worse than the best expert in hindsight but
also no better. Therefore, the average performance of each group is approximately
equal to the average performance attained by the best expert for that group. Because
each expert is EqLos fair, the average performance attained by best experts of two
groups are the same. Consequently, both vanishing regret and�-fairness are satisfied.
This positive result is due to the consistency between performance and fairness mea-
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sure for EqLos. However, such positive result does not generally hold for EqLos. If
only one multiplicative algorithm is performed without separating two groups, i.e.,
run in group-unaware manner, then it can be shown that ∀ε > 0 and ∀� > 0, any
algorithm satisfying vanishing regret also violates �-fairness w.r.t. EqLos.

Valera et al. [38] studied a matching problem in a sequential framework, where a
set of expertsV need tomake predictions aboutm individuals from two demographic
groups over T time steps, where at time step t individual i’s decision is made by
expert vi (t) ∈ V. Different from [6] where experts are all fair (w.r.t. a particular
metric) over a horizon and at each time only one expert’s advice is followed on
one individual, experts in [38] can be biased and at each time predictions from m
decision-makers are all used and each is assigned to one individual. The algorithms
for finding the optimal assignments are developed for cases with and without fairness
intervention, which can improve both the overall accuracy and fairness as compared
to random assignment, and fairness is guaranteed even when a significant percentage
(e.g., 50%) of experts are biased against certain groups.

18.3.3 Fair Policing

Ensign et al. [12] studied a predictive policing problem, where the decision-maker
at each time decides how to allocate patrol officers to different areas to detect crime
based on historical crime incident data. The goal is to send officers to each area in
numbers proportional to the true underlying crime rate of that area, i.e., areas with
higher crime rate are allocated more officers. Reference [12] first characterizes the
long-term property of existing predictive policing strategies (e.g., PredPol software),
in which more officers are sent to areas with the higher predicted crime rates and the
resulting incident data is fed back into the system. By modeling this problem using
Pólya urn model, [12] shows that under such a method, one area can eventually
consume all officers, even though the true crime rates may be similar across areas.
This is because by allocating more officers to an area, more crimes are likely to be
detected in that area; allocating more officers based on more detected crimes is thus
not a proper method. To address this issue, effective approaches are proposed in [12],
e.g., by intentionally normalizing the detected crime rates according to the rates at
which police are sent.

18.4 (Fair) Sequential Decision When Decisions Affect
Underlying Population

We next examine a second class of sequential decision problems (P2) where the
decisions affect the underlying population; a list of these studied are summarized in
Table 18.2. We will start with a set of papers that use a two-stage model, followed
by a set of papers focusing on finite-horizon and infinite-horizon models.
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Table 18.2 Summary of related work when decisions affect underlying population. � represents
some other fairness notions or interventions that are not introduced in Sect. 18.2.2

Fairness notion Problem type

Group fairness Individual fairness

Reference [31] EqOpt, DP P2

Reference [21] � P2

Reference [27] EqOpt, · · · P2

Reference [34] DP P2

Reference [32] � P2

Reference [22] DP,· · · P2

Reference [19] � P2

Reference [44] EqOpt, DP P2

Reference [23] MF P1

Reference [39] DP P1

18.4.1 Two-Stage Models

To examine the long-term impact of fairness intervention on the underlying popula-
tion, some studies [21, 27, 31] construct two-stage models, whereby the first stage
decisions (under certain fairness criterion) are imposed on individuals from two
demographic groups Ga , Gb, which may cause individuals to take certain actions,
and the overall impact of this one-step intervention on the entire group is then exam-
ined in the second stage.

Let αk be the size of Gk as the fraction of the entire population and αa + αb = 1.
Reference [31] focuses on a one-dimensional setting where an individual from either
group has feature X ∈ X with X = {1, 2, · · · , M} and sensitive attribute Z ∈ {a, b}
representing his/her group membership. Let π(x |k) = P(X = x |Z = k), x ∈ X be
Gk’s feature distribution and Y ∈ {0, 1} the individual’s true label. The decision-
maker makes predictions on individuals using the decision rule τ(x, k) = P(Ŷ =
1|X = x, Z = k) and receives expected utility u(x) for making a positive prediction
Ŷ = 1 of an individual with feature x (e.g., average profit of a lender by issuing a loan
to applicants whose credit score is 760). The expected utility of the decision-maker
under τ is given by

U (τ ) =
∑

k∈{a,b}
αk

∑

x∈X
u(x)τ (x, k)π(x |k) .

Define the selection rate of Gk under a decision rule as γ (k) = P(Ŷ = 1|Z =
k) = ∑

x∈X τ(x, k)π(x |k). Then given feature distributions, the relationship between
γ (k) and τ(·, k) can be described by an invertible mapping g(·) so that γ (k) =
g(τ (·, k);π(·, k)) and τ(·, k) = g−1(γ (k);π(·, k)).
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In [31], decision rules for Ga , Gb are selected such thatU (τ ) is maximized under
fairness constraints defined as follows:

• Simple: it requires the same decision rule be used by Ga , Gb, i.e., τ(·, a) =
τ(·, b).

• Demographic Parity (DP): it requires the selection rates of Ga , Gb are equalized,
i.e., γ (a) = γ (b).

• Equal of Opportunity (EqOpt): it requires the true positive rate (TPR) of Ga , Gb

are equalized, i.e., P(Ŷ = 1|Y = 1, Z = a) = P(Ŷ = 1|Y = 1, Z = b) .

Once an individual with feature X = x is predicted as positive (Ŷ = 1) in the
first stage, its feature may be affected; denote the average of such change as �(x).
For example, consider a lending scenario where a lender decides whether or not
to issue loans to applicants based on their credit scores. Among applicants who
are issued loans, those with the higher (resp. lower) credit score are more likely
to repay (resp. default); as a result, the credit scores may increase for applicants
who can repay the loans (�(x) > 0) but decrease for those who default (�(x) < 0).
Consequently, the feature distribution of the entire group can be skewed. Let the
impact of a decision rule τ(x, k) on Gk be captured by the average change of X in
Gk , defined as�μ(τ, k) = ∑

x∈X τ(x, z)π(x |k)�(x). It can be shown that�μ(τ, k)
is a concave function in the selection rate γ (k).

Let the optimal fair decision rule that maximizes U (τ ) under fairness criterion
C ∈ {Simple,DP,EqOpt} be noted as τC, and the corresponding selection rate be
noted as γ C. Let group labels a, b be assigned such that Gb is the disadvantaged
group in the sense that γ Simple(a) > γ Simple(b). Given �μ(τ, b), a decision rule
τ causes

• active harm to Gb if �μ(τ, b) < 0;
• relative harm if �μ(τ, b) < �μ(τSimple, b);
• relative improvement if �μ(τ, b) > �μ(τSimple, b).

Due to the one-to-one mapping between the decision rule and the selection rate,
the notation �μ(τ, k) = �μ(g−1(γ (k);π(·, k)), k) in the following is simplified as
�μ̃(γ (k), k). Let γ0(b) be the harmful threshold forGb such that�μ̃(γ0(b), b) = 0;
letγ ∗(b)be themax-improvement threshold such thatγ ∗(b)= argmaxγ �μ̃(γ, b); let
γ̄ (b) be the complementary threshold such that �μ̃(γ̄ (b), b) = �μ̃(γ Simple(b), b)
and γ Simple(b) < γ̄ (b).

The goal of [31] is to understand the impact of imposing DP or EqOpt fairness
constraint on �μ(τ, k), whether these fairness interventions can really benefit the
disadvantaged group Gb as compared to the Simple decision rule.

Reference [31] first examined the impact of Simple decision rule, and showed
that if u(x) > 0 =⇒ �(x) > 0, then Simple threshold does not cause active harm,
i.e.,�μ(τ Simple, b) ≥ 0. In lending example, the condition u(x) > 0 =⇒ �(x) > 0
means that the lender takes a greater risk by issuing a loan to an applicant than the
applicant does by applying.
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For DP and EqOpt fairness, [31] showed that both could cause relative improve-
ment, relative harm and active harm, under different conditions.We summarize these
results below, for C ∈ {DP,EqOpt},
1. Under certain conditions, there exists α0 < α1 < 1 such that ∀αb ∈ [α0, α1], τC

causes relatively improvement, i.e., γ Simple(b) < γ C(b) < γ̄ (b).
2. Under certain conditions, positive predictions can be over-assigned to Gb for

satisfying C. There exists α0 such that ∀αb ∈ [0, α0], τC causes relatively harm
or active harm, i.e., γ C > γ̄ (b) or γ C > γ0(b).

These results show that although it seems fair to impose DP and EqOpt con-
straints on decisions (e.g., by issuing more loans to the disadvantaged group), it may
have unintended consequences and harm the disadvantaged group (e.g., features of
disadvantaged group may deteriorate after being selected).

Reference [31] makes further comparisons between DP and EqOpt fairness.
Generally speaking, DP and EqOpt cannot be compared in terms of �μ(τ, b).
Because there exist both settings when DP causes harm while EqOpt causes
improvement, and settings when EqOpt causes harm while DP causes improve-
ment. However, for some special cases when π(·|a) and π(·|b) satisfy a spe-
cific condition, there exists α0, α1 such that ∀αb ∈ [α0, α1], DP causes active harm
while EqOpt causes improvement. Moreover, if under Simple decision rule,
γ Simple(a) > γ Simple(b) and P(Ŷ = 1|Y = 1, Z = b) > P(Ŷ = 1|Y = 1, Z = a)

hold, then γ EqOpt(b) < γ Simple(b) < γ DP(b) can be satisfied, i.e.,EqOpt can cause
relative harm by selecting less than Simple rule.

An interested reader is referred to [31] for details of the specific conditions men-
tioned above. It shows that temporal modeling and a good understanding of how
individuals react to decisions are necessary to accurately evaluate the impact of dif-
ferent fairness criteria on the population.

18.4.1.1 Effort-Based Fairness

Essentially, the issues of unfairness described in the preceding section may come
from the fact that different demographic groups have different feature distributions,
leading to different treatments. However, this difference in feature distributions is
not necessary because one group is inherently inferior to another; rather, it may be
the result of the fact that advantaged group can achieve better features/outcomes
with less effort. For example, if changing one’s school type from public to private
can improve one’s SAT score, then such change would require much higher effort
for the low-income population. From this point of view, Heidari et al. [21] proposes
an effort-based notion of fairness, which measures unfairness as the disparity in
the average effort individuals from each group have to exert to obtain a desirable
outcome.

Consider a decision-maker who makes a prediction about an individual using
decision rule h(·) based on its d-dimensional feature vector X ∈ X. Let Y ∈ Y be the
individual’s true label, Z ∈ {a, b} its sensitive attribute, and Ŷ = h(X) the predicted
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label. Define a benefit function w(h(X),Y ) ∈ R that quantifies the benefit received
by an individual with feature X and label Y if he/she is predicted as h(X).

For an individual from Gk who changes his/her data from (x, y) to (x ′, y′), the
total effort it needs to take is measured as Ek

(
(x, y), (x ′, y′)

) = 1
d

∑d
i=1 e

i
k(xi , x

′
i ),

where x = (x1, · · · , xd), x ′ = (x ′
1, · · · , x ′

d) and eik(xi , x
′
i ) denote the effort needed

for an individual from Gk to change its i th feature from xi to x ′
i . Accordingly, the

change in the individual’s benefit by making such an effort is �w
(
(x, y), (x ′, y′)

) =
w(h(x), y) − w(h(x ′), y′), and the total utility received by an individual from Gk in
changing his/her data is

Uk
(
(x, y), (x ′, y′)

) = �w
(
(x, y), (x ′, y′)

) − Ek
(
(x, y), (x ′, y′)

)
.

Define Ûk = E
[
max(x ′,y′)∈X×YUk

(
(x, y), (x ′, y′)

)|Z = k
]
as the expected high-

est utility Gk can possibly reach by exerting effort. Reference [21] suggests the use
of the disparity between Ûa and Ûb as a measure of group unfairness.

The microscopic impact of decisions on each individual can be modeled using
the above unfairness measure. Intuitively, if individuals can observe the behaviors of
others similar to them, then they would have more incentive to imitate behaviors of
those (social models) who receive higher benefit, as long as in doing so individuals
receive positive utility.

Let Dk be the training dataset representing samples of population in Gk . Then
(x∗, y∗) = argmax

(x ′,y′)∈Dk

Uk
(
(x, y), (x ′, y′)

)
can be regarded as a social model’s profile

that an individual (x, y) fromGk aims to achieve, as long asUk
(
(x, y), (x∗, y∗)

)
> 0.

Given the change of each individual in Dk , a new dataset D′
k in the next time step

can be constructed accordingly.
GivenDk ,D′

k , the datasets before and after imposing decisions according to h(·),
the macroscopic impact of decisions on the overall underlying population can be
quantified. Reference [21] adopts the concept of segregation from sociology to mea-
sure the degree to which multiple groups are separate from each other. Specifically,
the segregation ofDk andD′

k are compared from three perspectives: Evenness, Clus-
tering and Centralization. The details of each can be found in [21]; here we only
introduceCentralization as an example: this is measured as the proportion of individ-
uals from a minority group whose prediction h(X) is above the average. The impact
of decisions on the entire group is examined empirically by comparing Evenness,
Clustering, and Centralization of Dk and D′

k .
Reference [21] first trained various models h(·) such as neural network, linear

regressor, and decision tree over a real-world dataset without imposing a fairness
constraint. It shows that individuals by imitating social model’s data profile can
either increase or decrease the segregation of the overall population, and different
models may shift the segregation toward different directions. Next, [21] examined
the impact of imposing fairness constraint on a linear regression model. Specifically,
the fairness constraint requires each group’s average utility be above the same thresh-
old, a higher threshold indicating a stronger fairness requirement. Empirical results
show that segregation under different levels of fairness can change in completely
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different directions (decrease or increase), and impacts on Evenness, Centralization,
and Clustering are also different.

Indeed, fairness intervention affects segregation in two competing ways. If more
desirable outcomes are assigned to a disadvantaged group intentionally, then on one
hand individuals from the disadvantaged group may have less motivation to change
their features, on the other hand, the same individuals may serve as social models,
which in turn can incentivize others from the same disadvantaged group to change
their features. Both impacts are at play simultaneously and which one is dominant
depends on the specific context. This paper highlights the fact thatmodifying decision
algorithm is not the only way to address segregation and unfairness issues; imposing
mechanisms before individuals enter the decision system may be another effective
way, e.g., by decreasing the costs for individuals from the disadvantaged group to
change their features.

18.4.1.2 A Two-Stage Model in College Admissions

Kannan et al. [27] studied a two-stage model in the case of college admissions and
hiring. In the first stage, students from two demographic groups are admitted to
a college based on their entrance exam scores; in the second stage an employer
chooses to hire students from those who were admitted to the college based on their
college grades. Specifically, let Z ∈ {a, b} denote a student’s group membership
and Y ∼ N(μk, σ

2
k ), k ∈ {a, b} his/her qualification drawn from a group-specific

Gaussian distribution. Let variable X = Y + ν be the student’s entrance exam score
with independent noise ν ∼ N(0, 1),∀k ∈ {a, b}.

Denote by Ŷ c ∈ {0, 1} the college’s admissions decision about a student. Let
τ c(x, k) = P(Ŷ c = 1|X = x, Z = k) ∈ [0, 1] be the admissions rule representing
the probability a student from Gk with score x gets admitted, which is monotone
non-decreasing in x for k ∈ {a, b}. Consider a threshold decision rule of the following
form:

τ c(x, k) =
{
1, if x ≥ θk

0, if x < θk .
(18.4)

For a student who is admitted, he/she receives a grade G = Y + μ with μ ∼
N(0, σ 2

c ), ∀k ∈ {a, b}, where the variance σ 2
c > 0 is determined by some grading

rule. Specifically, σ 2
c → ∞ can be regarded as a case where students’ grades are

not revealed to the employer, whereas σ 2
c → 0 represents a case where the employer

has perfect knowledge of the students’ qualifications. The employer decides whether
or not to hire a student based on his/her grade. Let c ∈ [c−, c+] be the cost for
the employer for hiring a student, which can either be known or unknown to the
college. Then a student from Gk with grade g gets hired if the employer can achieve
a non-negative expected utility, i.e., E[Y |G = g, Ŷ c = 1, Z = k] ≥ c.
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The goal of [27] is to understand what admission rules and grading rules should
be adopted by the college in the first stage so that the following fairness goals may
be attained in the second stage:

• Equal of Opportunity (EqOpt): it requires the probability of a student being hired
by the employer conditional on the qualification Y is independent of group mem-
bership Z .

• Irrelevance of Group Membership (IGM): it requires the employer’s hiring deci-
sion, conditional on Ŷ c and G, should be independent of group membership, i.e.,
∀g ∈ R,E[Y |G = g, Ŷ c = 1, Z = a] ≥ c ⇐⇒ E[Y |G = g, Ŷ c = 1, Z = b] ≥ c.

• Strong Irrelevance of Group Membership (sIGM): it requires the employer’s pos-
terior about students’ qualifications, conditional on Ŷ c and G, should be indepen-
dent of group membership, i.e., ∀g ∈ R and ∀y ∈ R, P[Y = y|G = g,
Ŷ c = 1, Z = a] = P[Y = y|G = g, Ŷ c = 1, Z = b].
Below, we present two simple scenarios found in [27], in which both EqOpt and

IGM can be satisfied in the second phase under some admission rules.

1. Noiseless entrance exam score, i.e., X = Y .
In this scenario, the admission decision is determined by the student’s qualification
Y completely. Reference [27] shows that as long as the threshold in the admission
decision rule is set as θk = c+,∀k ∈ {a, b} in Eq. (18.4), then ∀[c−, c+] ⊂ R and
with any grading rule, both EqOpt and IGM can be satisfied.

2. No grade is revealed to the employer, i.e., σ 2
c → ∞.

In this case, as long as the threshold in the admission decision rule is set as
θa = θb = θ for some sufficiently large θ (e.g., highly selective MBA programs)
in Eq. (18.4), then ∀[c−, c+] ⊂ R, both EqOpt and IGM can be satisfied.

Reference [27] also studiedmoregeneral scenarioswhennoisesμ andν are both of
finite variance, i.e., noisy entrance exam scores and when colleges report informative
grades to the employer. When employer’s hiring cost c is known to the college,
∀c ∈ R, there always exist two thresholds θ∗

a , θ
∗
b and a grade g∗ for college, under

which E[Y |G = g∗, X ≥ θ∗
a , Z = a] = E[Y |G = g∗, X ≥ θ∗

b , Z = b] = c always
holds, i.e., IGM can always be satisfied.

However, ifwe consider the employer’s posterior distributions on students’ qualifi-
cation, as long as two groups have different prior distributions, for any two thresholds
θa, θb in the admission rule, there always exists y such that P[Y = y|G = g, X ≥
θa, Z = a] �= P[Y = y|G = g, X ≥ θb, Z = b], i.e., satisfying sIGM is impossible.

Moreover, suppose prior distributions of two groups’ qualifications are Gaus-
sian distributed with different mean but the same variance, then ∀c, there exists no
threshold decision rule τ c that can satisfy both EqOpt and IGM simultaneously.
For EqOpt under some fixed hiring cost c, in cases when grading rule has variance
σ 2
c �= 1, there is no threshold decision rule τ c such that EqOpt can be satisfied. For

cases when σ 2
c = 1, EqOpt can be satisfied only if the admission rule and grading

rule can satisfyE[Y |G = θb, X ≥ θa, Z = a] = E[Y |G = θa, X ≥ θb, Z = b] = c.
Such condition is generally impossible to hold. It concludes that EqOpt is generally
is impossible to achieve.
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If employer’s hiring cost c is uncertain that college only knows the interval
[c−, c+], when two groups have different priors, [27] shows that ∀c ∈ [c−, c+], nei-
ther EqOpt nor IGM can be satisfied even in isolation under a threshold admission
rule.

The above results show that even with a simple model studied in [27], many
commonandnatural fairness goals are impossible to achieve in general. Suchnegative
results are likely to hold true in more complex models that capture more realistic
aspects of the problem.

18.4.2 Long-Term Impacts on the Underlying Population

Decisions made about humans affect their actions. Bias in decisions can induce
certain behavior, which is then captured in the dataset used to develop decision
algorithms in the future. The work [21, 27, 31] introduced in the previous section
studied such one-step impact of decisions on the population. However, when newly
developed algorithms are then used to make decisions about humans in the future,
those humans will be affected and biases in the datasets generated by humans can
perpetuate. This closed feedback loopbecomes self-reinforcing and can lead to highly
undesirable outcomes over time. In this section, we focus on the long-term impacts
of decisions on population groups. The goal is to understand what happens to the
underlying population when decisions and people interact with each other and what
interventions are effective in sustaining equality in the long run.

18.4.2.1 Effects of Decisions on the Evolution of Features

One reason why decisions are made in favor of one group is that the favored group
is believed to bring more benefit to the decision-maker. For example, a lender issues
more loans to a group believed to be more likely to repay, a company hires more
from a group perceived to be more qualified, and so on. In other words, disparate
treatment received by different groups is due to the disparity in their (perceived)
abilities to produce good outcomes (qualifications). From this perspective, the ulti-
mate social equality is attained when different demographic groups possess the same
abilities/qualifications. In this section, we present studies reported in [22, 32, 34]
to understand how qualifications of different groups evolve over time under various
fairness interventions, and under what conditions social equality may be attained.

LetGa ,Gb be two demographic groups, αk the size ofGk as a fraction of the entire
population and assumed constant, and αa + αb = 1. Each individual has feature X ,
sensitive attribute Z ∈ {a, b}, and label Y ∈ {0, 1} representing his/her qualification
or the ability to produce certain good outcome. Define the qualification profile of
Gk at time t as the probability distribution πt (y|k) = Pt (Y = y|Z = k), y ∈ {0, 1}.
Changes in feature X induced by decisions are captured by change in the qualification
profile.
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Using the definition of qualification profiles of two groups, social equality can be
defined formally as equalized qualification profiles, i.e.,

lim
t→∞ |πt (1|a) − πt (1|b)| = 0. (18.5)

Reference [32, 34] assume that the qualification profiles at each time are known to
the decision-maker, who makes prediction about each individual according to a deci-
sion rule τt (y, k) = Pt (Ŷ = 1|Y = y, Z = k) and receives utility u(y) for making
positive prediction Ŷ = 1, where u(0) ≤ 0 and u(1) ≥ 0 correspond to the loss and
benefit, respectively. Define the selection rate of Gk under a decision rule at time t
as γt (k) = Pt (Ŷ = 1|Z = k) = ∑

y∈{0,1} γt (y|k) = ∑
y∈{0,1} Pt (Ŷ = 1|Y = y, Z =

k)Pt (Y = y|Z = k). Then the expected utility of the decision-maker at t is

Ut (τt ) =
∑

k∈{a,b}
αk

∑

y∈{0,1}
u(y)Pt (Ŷ = 1|Y = y, Z = k)Pt (Y = y|Z = k)

=
∑

k∈{a,b}
αk

∑

y∈{0,1}
u(y)τt (y, k)πt (y|k) . (18.6)

Upon receiving a decision, a qualified individual can either remain qualified or
become unqualified, and an unqualified individual can either become qualified or
remain unqualified for the next time step. In [34], the evolution of a group’s qualifi-
cation profile is modeled as a dynamical system as follows:

πt+1(1|k) = πt (1|k)ν
(
γt (0|k), γt (1|k)

) + πt (0|k)μ
(
γt (0|k), γt (1|k)

)
, (18.7)

where ν(·, ·) : [0, 1] × [0, 1] → [0, 1] represents the retention rate of subgroup who
are qualified (Y = 1) in time t that are still qualified in t + 1, while μ(·, ·) : [0, 1] ×
[0, 1] → [0, 1] represents the improvement rate of subgroup who are unqualified
(Y = 0) at time t but make progress to be qualified (Y = 1) at time t + 1. Due to the
mapping between the decision rule and the selection rate, the impact of decisions on
individuals’ future qualifications are captured by the impact of selection rates on the
overall qualification profiles via some general functions ν(·, ·) and μ(·, ·) in model
(18.7).

The goal of the decision-maker is to find a decision rule τt with or without fairness
consideration, so as tomaximizeUt (τt ). It examineswhat happens to the qualification
profiles of two groups when these decisions are applied at each time, and under what
conditions social equality is attained under these decisions.

Without fairness considerations, the corresponding optimal decision at time t for
Gk , k ∈ {a, b}, is given by2:

2Note that such an ideal decision rule assumes the knowledge of y, which is not actually observable.
In this sense this decision rule, which has 0 error, is not practically feasible. Our understanding is
that the goal in [34] is to analyze what happens in such an ideal scenario when applying the perfect
decision.
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τ ∗
t (y, k) = argmax

τt

Ut (τt ) =
{
0, if y = 0

1, if y = 1
. (18.8)

Using this decision rule, the selection rate γt (k) = πt (1|k). Since the decision rules
for the two groups are not constrained by each other, the dynamics (18.7) can be
simplified as follows: ∀k ∈ {a, b},

πt+1(1|k) = �(πt (1|k)) with �(π) = πν(0, π) + (1 − π)μ(0, π) . (18.9)

Social equality can be attained for any starting profiles π0(1|a), π0(1|b) in this
unconstrained case if and only if the system πt+1 = �(πt ) has a unique globally
attracting equilibrium point π∗ and a sufficient condition is given in [34].

Reference [34] also studied impact of fairness intervention on dynamics. It focuses
on the notion of demographic parity (DP), which requires the selection rates of two
groups to be equal, i.e., γt (a) = γt (b),∀t . Depending on group proportions αa, αb

and utilities u(1), u(0), there are two possibilities for the fair optimal decision rule
τ ∗
t . If group labels a, b are assigned such that Ga is the advantaged group, i.e.,

πt (1|a) ≥ πt (1|b), then we have

if αau(1) + αbu(0) ≤ 0 :τ ∗
t (0, a) = τ ∗

t (0, b) = 0 (18.10)

(under-selected) τ ∗
t (1, a) = πt (1|b)

πt (1|a)
; τ ∗

t (1, b) = 1 (18.11)

if αau(1) + αbu(0) ≥ 0 :τ ∗
t (0, a) = 0; τ ∗

t (0, b) = πt (1|a) − πt (1|b)
1 − πt (1|b) (18.12)

(over-selected) τ ∗
t (1, a) = τ ∗

t (1, b) = 1. (18.13)

To guarantee equalized selection rates, Eqs. (18.10), (18.11) show the case where
Ga is under-selected, while Eqs. (18.12), (18.13) show the case where Gb is over-
selected. Dynamics (18.7) can then be expressed as follows:

πt+1(1|a) = �a(πt (1|a), πt (1|b))
πt+1(1|b) = �b(πt (1|a), πt (1|b)).

Similar to the unconstrained case, sufficient conditions for reaching social equality
in these case can also be derived and are given in [34].

By comparing these sufficient conditions, [34] shows that unconstrained optimal
decision rulesmay reach social equality on its own in some cases. However, if DP fair
decisions are used instead in these special cases, then the equality may be violated.
Specifically, if disadvantaged group Gb is over selected, social equality may or may
not be attained by using DP fair decisions. Moreover, for settings where equality can
be attained under both types of decisions, [34] further shows that DP fair decisions
may lead to the higher total utility as well as the more qualified population in the
long run. In contrast, if advantaged group Ga is under-selected, social equality will
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definitely be attained by using DP fair decisions. However, imposing this additional
fairness constraint may decrease the decision-maker’s utility and the population’s
overall qualification level.

Liu et al. [32] also studied a similar problem on the evolution of qualification
profiles of different demographic groups. In their setting, decisions applied to each
group can incentivize each individual to rationally invest in his/her qualifications, as
long as the expected reward received from the decision-maker’s prediction outweighs
the investment cost.

Formally, the impact of decisions on the underlying population is captured by
individual’s best response. Let random variable ck be the cost incurred by an indi-
vidual from Gk in order to obtain Y = 1 (be qualified). Let cumulative distribution
function (CDF) of ck be denoted as Fk(·). For any individual, regardless of the group
membership Z and actual qualification Y , he/she receives a reward w > 0 only if
he/she is predicted as positive (qualified) Ŷ = 1. Therefore, an individual fromGk at t
acquires qualification Y = 1 if and only if the resulting utility of investing outweighs
the utility of not investing, i.e.,

wPt (Ŷ = 1|Y = 1, Z = k) − ck︸ ︷︷ ︸
utility if investing

−wPt (Ŷ = 1|Y = 0, Z = k)︸ ︷︷ ︸
utility if not investing

= w(τt (1, k) − τt (0, k)) − ck > 0 . (18.14)

Note that the qualification status Y of each individual depends completely on
whether he/she invests: given decision rule τt , individuals become qualified as long
as Eq. (18.14) is satisfied. The overall qualification profile of Gk is the probability
of individuals being qualified, i.e., P(Y = 1|Z = k), or equivalently, the probability
of investment cost being sufficiently small (Eq. (18.14)). Therefore, the update of
qualification profile of Gk at t + 1 can be captured by the CDF of cost variable ck
according to the following:

πt+1(1|k) = P(ck < w(τt (1, k) − τt (0, k))) = Fk(w(τt (1, k) − τt (0, k))).
(18.15)

Consider the decision rule that maximizes the decision-maker’s utility as given
in Eq. (18.6) at each time, i.e., τt (y, k) = argmax

τ

Ut (τ ). Then the ideal (though

infeasible) decision is the same as in Eq. (18.8) and is given by the following,3

∀k ∈ {a, b},

τt (y, k) = argmax
τ

Ut (τ ) =
{
0, if y = 0

1, if y = 1.
(18.16)

3In [32] the assumption that such a perfect decision rule with 0 error is feasible is formally stated
as “realizability”.
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Given initial qualification profiles π0(1|a) and π0(1|b), πt (1|k) can be captured by a
dynamic system πt+1(1|k) = �(πt (1|k)) for some �(·). We first present the results
in [32] under the assumption that CDF of cost variables for two groups are the same,
i.e., Fa(·) = Fb(·) = F(·).

If the perfect decision rule shown in Eq. (18.16) is feasible, then this dynamic sys-
tem has a unique non-zero equilibriumπ∗ and the corresponding qualification profile
π∗(1|k) = limt→∞ �t (π0(1|k)) = F(w) is also the optimal for Gk .4 However, since
this ideal decision is not generally feasible in practice, the evolution of equilibria for
more realistic cases is further examined in [32]. Let prediction Ŷ be calculated from
features X via a mapping h(·) : X → {0, 1}. Reference [32] focused on two special
cases: (1) uniformly distributed X ; (2) spherical multivariate Gaussian distributed
X . For both cases, every group Gk in isolation can be perfectly predicted by some
mapping hk(·) but when both groups are combined, such perfect mapping does not
exist. Reference [32] shows that for both cases, under certain conditions, decision-
maker by applying hk(·) to both groups at each time can result in a stable equilibrium
at which π∗(1|k) = F(w) > π∗(1|{a, b} \ k), i.e., the qualification profile of Gk is
optimal, decision is always in favor of Gk and social equality is violated. Although
there exists a unique decision rule ĥ(·) for both cases, following which at each time
can result in an equilibrium satisfying π∗(1|a) = π∗(1|b) (social equality), such
equilibrium is unfortunately shown to be unstable.

Both cases show that as long as the initial decision rule is not ĥ(·), equilibria
of the dynamic system can be in favor of one group and biased against the other,
social equality cannot be attained. Above results hold under the case when CDF
of cost variables for two groups are the same, i.e., Fa(·) = Fb(·). If we remove
this assumption and let Gb be disadvantaged in the sense that its investment cost is
sufficiently higher than Ga , then [32] shows that there is no stable equilibrium that
is in favor of Gb and no equilibrium can result in social equality. This conclusion,
although is negative, suggests an effective intervention that can potentially improve
the qualification profile of disadvantaged group at the equilibrium: by subsidizing
the cost of investment for disadvantaged group.

Another effective intervention proposed in [32] is by decoupling the decision rules
by group, i.e., each group is predicted by its own group-specific decision rule instead
of sharing the same decision rule for all groups. In this case, different from (18.16),
at each time t decision-maker chooses two decision rules for two groups,

∀k ∈ {a, b} : τt (y, k) = argmax
τ

∑

y∈{0,1}
u(y)τ (y, k)πt (y|k)

and qualification profile of Gk at t + 1 is updated in the same way as (18.15). Under
this new dynamic system, [32] shows that ∀k ∈ {a, b}, if there exists a perfect deci-
sion rule for Gk such that τt (1, k) = 1 and τt (0, k) = 0, then the resulting unique
equilibrium π∗ is stable and satisfies π∗(1|k) = F(w), i.e., both groups have the
optimal qualification profiles. If there is no perfect decision rule for both groups, i.e.,

4�t is a t-fold composition of �.
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maxτ

∑
k∈{a,b} αk(τ (1, k) − τ(0, k)) < 1, thenwe can still guarantee that at lease one

group’s qualification profile can be strictly improved at an equilibrium as compared
to the case when both groups use the same decision rule.

18.4.2.2 Fairness Intervention on Labor Market

Hu and Chen [22] studied the impact of fairness intervention on labor market. In
their setting, each individual from either group is a worker. All workers pass through
a sequence of two markets: a temporary labor market (TLM) and a permanent labor
market (PLM). Inside the labor market, workers who get hired by an employer will
produce an outcome that is either “good” or “bad”. ∀k ∈ {a, b}, how well can group
Gk perform in general at time t is measured by the group’s reputation, defined as
the proportion of all workers in Gk (including those who are not employed) who
can produce “good” outcomes in the labor market over the time interval [t − t0, t],
noted as π k

t . Within this context, social equality introduced in Eq. (18.5) earlier is
re-defined: it is attained if the group reputation is equalized, i.e.,

lim
t→∞ |πa

t − πb
t | = 0 .

Reference [22] shows that social equality can be attained by imposing short-term
fairness intervention in the TLM. Below, we take a closer look at this dual labor
market model.

In order to compete for a certain job in the future, worker i from Gk at time t may
choose to make education investment ηi ≥ 0 based on expected wage wt of the job
and its personal cost in the investment cπ k

t
(μi , ηi ). The cost depends on two factors:

• Worker’s ability μi : it is an intrinsic attribute of workers with CDF Fμ(·), which
is identical to both groups.

• Reputation of the group (π k
t ) that worker i belongs to; workers from a group with

better reputation face better cost conditions.

Let variable ρ ∈ {Q,U } denote a worker’s qualification status and the probability
of a worker being qualified for the job is γ (ηi ) ∈ [0, 1] where γ (·) is a monotonic
increasing function.Whether or not aworker canbehired in theTLMis determinedby
the worker’s investment and his/her group membership via a mapping τT LM(ηi , k) ∈
{0, 1}. If τT LM(ηi , k) = 1, then worker i that is hired in the TLM is eligible to enter
the PLM.5 Specifically, worker i keeps the same job in the TLM until a Poisson
process selects him/her to enter the PLM. Upon entering the PLM, at each time
he/she cycles through jobs.

In order to be hired in the PLM, workers build their own personal reputation
�s by consistently exerting efforts E and producing outcomes O in labor markets.
Specifically, workers can exert either high (H ) or low (L) effort with cost eρ(μi ) or

5τT LM = 1 only ensures a worker’s eligibility to be hired in the PLM (a necessary condition);
whether the worker is indeed hired in the PLM is determined by the hiring strategy in the PLM.
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0, and produce either good (G) or bad (B) outcome. Denote pH as the probability a
worker producing good outcome with high effort and pρ as the probability a worker
producing good outcome with low effort and qualification status ρ. Worker i’s per-
sonal reputation �s

i ∈ [0, 1] is the proportion that he/she produces good outcomes
during the recent length-s history in the labor market, which determines whether or
not he/she can be hired at each time in the PLM via a mapping τPLM(�s

i ) ∈ {0, 1}.
Group Gk’s reputation π k

t ′ at time t ′, which determines the worker’s cost in edu-
cation before entering the TLM, and will also be updated based on the outcomes
produced by all workers fromGk during time lag [t ′ − t0, t ′]. Moreover, the expected
wage of the job wt that determines workers’ investments before entering the TLM
is also updated in a Poisson manner based on gt ′ , the proportion of workers that are
hired in the labor market producing good outcomes in their jobs at t ′ < t . The above
form a feedback loop between the labor market and workers.

Reference [22] studied the long-term impact of imposing fairness constraints in
determining τT LM . Specifically, it compares hiring strategies in the TLM under three
constraints:

• Demographic Parity (DP): among workers hired in the TLM, a αk fraction of them
are from Gk .

• Simple: both groups are subject to the same hiring strategy, i.e., τT LM(·, a) =
τT LM(·, b).

• Statistical Discrimination (SD): this is a hiring strategy based on the firm’s belief of

worker qualifications, e.g., P(ρ = Q|Z = k, η) = pQ (η)ρ
p
k

pQ (η)ρ
p
k +pU (η)(1−ρ

p
k )
, where ρ

p
k

denotes the prior of Gk’s capabilities, and pQ(η), pU (η) denote the probabilities
of a qualified and unqualified worker investing η, respectively.

Reference [22] analyzed the optimal hiring strategies of firms in the TLM and
PLM, as well as the workers’ optimal effort/investment strategy; it also examined
the group reputation (πa

t , πb
t ) over time when DP fairness intervention is imposed

in the TLM. They show that there exists a unique stable equilibrium and T such that
πa
t = πb

t ,∀t > T , i.e., short-term fairness intervention in the TLM can result in two
groups gradually approaching the same reputation level and achieving social equality.
Without fairness intervention, workers from the groupwith better reputation aremore
likely to invest in education (which is cheaper), enter the PLM and produce good
outcomes, which further improves their group reputation. With the DP constraint,
the hiring thresholds take into account the differences in costs of investment, and
the fractions of workers from two groups that enter PLM are maintained at αa, αb.
As a result, the proportions of workers producing good outcomes do not diverge and
social equality can be reached.

In contrast, under either the Simple or SD hiring strategy in the TLM, the
two groups will not be proportionally represented in the labor market according to
αa, αb as they have different costs in investment. Their group reputations will diverge
eventually and cannot reach social equality.
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18.4.2.3 Effects of Decisions on Group Representation

Decision algorithms developed frommultiple demographic groups can inherit repre-
sentation disparity that may exist in the data: the algorithm may be less favorable to
groups contributing less to the training process; this in turn can degrade population
retention in these groups over time, and exacerbate representation disparity in the
long run. Hashimoto et al. [19] are among the first to show that the (unconstrained)
empirical risk minimization (ERM) formulation, which is widely used in training
machine learning models, can amplify group representation disparity over time.

Consider two demographic groups Ga , Gb. An individual from either group has
feature X ∈ X and label Y ∈ Y. Let fa(x, y) and fb(x, y) be the joint distributions
of (X,Y ) for individuals inGa andGb, respectively. At each time t , a decision-maker
receives dataDt from a set of individuals. Specifically, ∀k ∈ {a, b}, let Nk(t) be the
expected number of individuals in Dt that are from Gk and αk(t) = Nk (t)

Na(t)+Nb(t)
is

how much Gk is represented in the data. Then the overall feature distribution of the
entire population at t is given by ft (x, y) = αa(t) fa(x, y) + αb(t) fb(x, y). Denote
α(t) = [αa(t);αb(t)].

Let hθ : X → Y be a decision rule for predicting label from features, which is
parameterized by some parameter θ ∈ R

d . Let l(hθ (X),Y ) be the prediction loss
incurred by predicting (X,Y ) using hθ (·) where l(·, ·) is the loss function measuring
the discrepancy between predictions and true labels. The goal of the decision-maker
at time t is to find a θ(t) for both groups such that the overall prediction loss is
minimized:

θ(t) = θ(α(t)) = argmin
θ

L(θ) = E(X,Y )∼ ft (x,y)[l(hθ (X),Y )] . (18.17)

Individuals after receiving their predictionsmay choose to either leave the decision
system or stay. For thosewho experience low accuracy, they have a higher probability
of leaving the system. As a result, the impact of decisions on the overall group
representation can be captured by a discrete-time user retention model:

Nk(t + 1) = �(Nk(t)) = Nk(t) · ν(Lk(θ(α(t)))) + βk (18.18)

αk(t + 1) = Nk(t + 1)

Na(t + 1) + Nb(t + 1)
,

where Lk(θ(α(t))) = E(X,Y )∼ fk (x,y)[l(hθ(t)(X),Y )] is the expected loss experienced
by Gk from decision θ(t), retention rate ν(·) ∈ [0, 1] represents the probability of
an individual who was in system at t remaining in the system at t + 1, and βk is the
number of new users from Gk .

Under the systems given in Eqs. (18.17), (18.18), [19] first finds the condition
under which a fixed point of the system is unstable; the representation disparity
under such unstable systems will be amplified over time.

To prevent one group from diminishing, or, to ensure αk(t) > αmin,∀t , for some
αmin, instead of minimizing the overall prediction loss, [19] suggests bounding the
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worst-case group loss Lmax(θ(α(t))) = max{La(θ(α(t))), Lb(θ(α(t)))}, ∀t . This
can be challenging as the true sensitive attribute Z of each data point is unknown to
the decision-maker. To address this, a distributionally robust optimization (DRO) is
formulated in [19]. Instead of controlling Lmax(θ(α(t))) directly, it controls an upper
bound on it. Specifically, it considers the worst-case loss among all perturbed distri-
butions f̃r (x, y) that are within a chi-squared ball B( f (x, y), r) around real distri-
bution f (x, y). Let B( f (x, y), r) = { f̃r (x, y)|Dχ2( f || f̃r ) ≤ r}, where Dχ2( f || f̃r )
is χ2-divergence between distributions f (x, y) and f̃r (x, y), then ∀θ and ft (x, y),
loss experienced by Gk can be upper bounded by

Ldro(θ; rk) = sup
f̃r (x,y)∈B( ft (x,y),rk )

E
(X,Y )∼ f̃r (x,y)

[l(hθ (X), Y )] ≥ E(X,Y )∼ fk (x,y)[l(hθ (X), Y )]

with robustness radius rk = (1/αk(t) − 1)2. Consequently, Lmax(θ(α(t))) can be
controlled by choosing

θ(α(t)) = argmin
θ

Ldro(θ; rmax) (18.19)

with rmax = (1/min{αa(t), αb(t)} − 1)2.
Suppose ∀k ∈ {a, b}, the initial states satisfy αk(1) > αmin. Using the above

method, [19] shows that αk(t) > αmin,∀t , can be guaranteed for the entire horizon
under the following condition:

Ldro(θ(α(t)); rmax) ≤ ν−1

(
1 − (1 − νmax)βk

αmin(βa + βb)

)
,

where νmax = max{ν(La(θ(t))), ν(Lb(θ(t)))}. While the above condition is hard to
verify in practice, experiments in [19] show that the decisions selected according to
the DRO formulation (18.19) result in stronger stability of group representation than
that selected by ERM formulation (18.17).

Reference [19] shows that the group representation disparity canworsen over time
when no fairness is imposed when making a decision. In contrast, Zhang et al. [44]
show that it can worsen even when fairness criteria are imposed. They consider a
similar sequential frameworkwhere at each time t two (potentially different) decision
rules hθa(t)(·), hθb(t)(·) are applied to Ga , Gb and parameters θa(t), θb(t) are selected
to optimize an objective, subject to certain fairness criterion C:

argmin
(θa ,θb)

OOOt (θa, θb;αa(t), αb(t)) = αa(t)Oa,t (θa) + αb(t)Ob,t (θb) (18.20)

s.t. �C,t (θa, θb) = 0.

Note that the overall objective at time t consists of sub-objectives from two groups
weighted by their group proportions at t , and empirical risk minimization (18.17)
studied in [19] is a special case of (18.20), with θa = θb and Ok,t (θk) = Lk(θ) being
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Gk’s empirical loss ∀t . Similar to [19], group representation is affected by decisions
according to a user retention model and are updated over time,

Nk(t + 1) = Nk(t) · πk,t (θk(t)) + βk (18.21)

αk(t + 1) = Nk(t + 1)

Na(t + 1) + Nb(t + 1)
.

As compared to (18.18), the retention rate πk,t (θk(t)) of Gk can be any function
that depends on the decision, which means the analysis and conclusions obtained in
[44] are not limited to applications where user retention is driven by model accuracy
(e.g., speech recognition, medical diagnosis); instead they are more generally appli-
cable (e.g., in lending/hiring, user retention is more likely to be driven by positive
classification rate rather than the expected loss.)

The goal of [44] is to characterize long-term property of group representation
disparity αa(t)

αb(t)
, and understand what is the impact of imposing various fairness

constraints in this process. It turns out that even with fairness intervention, group
representation disparity can still change monotonically and one group may dimin-
ish over time from the system. Specifically, given a sequence of one-shot prob-
lems {OOOt (θa, θb;αa(t), αb(t))}Tt=1, if ∀t , OOOt is defined over the same sub-objectives
Oa(θa), Ob(θb)with different group proportions (αa(t), αb(t)), and the dynamics sat-
isfy πk,t (θk) = hk(Ok(θk)) for some decreasing function hk(·), i.e., user departure is
driven by the value of sub-objective function, then the group representation dispar-
ity αa(t)

αb(t)
changes monotonically over time and the discrepancy between πa,t (θa(t))

and πb,t (θb(t)) increases over time. Intuitively, whenever one group’s proportion
(e.g., αa(t)) starts to increase, the decision-maker in minimizing the overall objec-
tive would select a decision pair such that Oa(θa(t)) decreases. Consequently, Ga’s
retention as determined by ha(Oa(θa(t))) increases, i.e., Ga’s proportion increases
further and representation disparity worsens.

This condition that leads to exacerbating representation disparity can be easily
satisfied under commonly used objectives (e.g., minimizing overall expected loss),
common fairness constraints (e.g., EqOpt, DP, etc.), and various dynamics (e.g.,
user participation driven by model accuracy or intra-group disparity); an interested
reader is referred to [44] for more details. It highlights the fact that common fairness
interventions fail to preserve representation parity. This is ultimately because what
are being equalized by those fairness criteria often do not match what drives user
retention; thus applying seemingly fair decisions may worsen the situation. A main
takeaway is that fairness must be defined with a good understanding of the underly-
ing user retention model, which can be challenging in practice as we typically have
only incomplete/imperfect information. However, if user dynamics model is avail-
able, [44] presents the following method for finding a proper fairness criterion that
mitigates representation disparity.

Consider a general dynamics model Nk(t + 1) = �
(
Nk(t), {πm

k (θk(t))}Mm=1, βk
)
,

∀k ∈ {a, b}, where user departures and arrivals are driven by M different factors
{πm

k (θk(t))}Mm=1 (e.g., accuracy, false positive rate, positive rate, etc.). Let � be the
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set of all possible decisions, if there exists a pair of decisions (θa, θb) ∈ � × � under
which dynamics have stable fixed points, then a set C of decisions (θa, θb) that can
sustain group representation can be found via an optimization problem:

C = argmin
(θa ,θb)

∣∣∣
Ña

Ñb
− βa

βb

∣∣∣

s.t. Ñk = �
(
Ñk, {πm

k (θk)}Mm=1, βk
) ∈ R+, θk ∈ �,∀k ∈ {a, b} .

The idea is to first select decision pairs whose corresponding dynamics can lead to
stable fixed points (Ña, Ñb); we can then select among them those that are best in
sustaining group representation.

18.4.2.4 Combined Effects on Group Representation and Features

In practice, decisions can simultaneously impact both group representation and the
evolutionof features, (potentially)making abad situationworse.Consider the lending
example where a lender decides whether or not to approve a loan application based
on the applicant’s credit score. It has been shown in [31] that decisions under either
EqOpt or DP can potentially lead to over issuance of loans to the less qualified
(disadvantaged) group. As a result, the disadvantaged group’s score distribution will
skew toward higher default risk. Over time, more people from this group may stop
applying for loans. The increased disproportionality between the two groups will
then lead the lender to actually issue more loans (relatively) to the less qualified
group to satisfy EqOpt or DP fairness, leading its score distribution to skew more
toward higher default risk over time.

Reference [44] studies the combination of these two effects on the underlying pop-
ulation, i.e., the effect on group representation and the effect on how features evolve.
Specifically, they consider the case where feature distributions fk,t (x, y) are allowed
to change over time, and try to understand what happens to group representation
disparity αa(t)

αb(t)
when fk,t (x, y) are also affected by decisions.

Let fk,t (x, y) = g0k,t f
0
k,t (x) + g1k,t f

1
k,t (x) be Gk’s feature distribution at t , where

g j
k,t = P(Y = j |Z = k) and f j

k,t (x) = P(X = x |Y = j, Z = k) at t . Let G j
k be the

subgroup of Gk with label Y = j . Based on the facts that individuals from the same
demographic group with different labels may react differently to the same decision
rule, [44] considered two scenarios of how feature distributions are reshaped by
decisions: (1) ∀k ∈ {a, b}, f j

k,t (x) = f j
k (x) remain fixed but g j

k,t changes over time

according to G j
k ’s own perceived loss and (2) ∀k ∈ {a, b}, g j

k,t = g j
k remain fixed but

for subgroup Gi
k that is less favored by decision over time (experience an increased

loss), its members make extra effort such that f ik,t (x) skews toward the direction
of lowering their losses. In both cases, [44] shows that representation disparity can
worsen over time under common fairness intervention and such exacerbation accel-
erates as compared to the case when feature distributions are fixed.
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18.4.2.5 Fairness in Reinforcement Learning Problems

Studies in [23, 39] capture the interaction between decisions and the underlying pop-
ulation via a reinforcement learning framework, where the environment is described
by a Markov decision process (MDP), defined by a tuple (S,A,P, R, γ ). S is the
set of states representing certain properties of individuals in the system andA the set
of actions representing available decisions. At time t , the decision-maker by taking
action at ∈ A in state st ∈ S receives a reward rt = R(st , at ) ∈ [0, 1]. The probabil-
ity of the decision-maker being in state st+1 at time t + 1 is given by the transition
probability matrix P(st+1|at , st ); this is what captures the impact of decisions on the
underlying population. Reference [23] generalizes the bandits problem studied in
[24, 25] to the above reinforcement learning framework, by taking into account the
effects of decisions on the individuals’ future states and future rewards. It slightly
modifies the meritocratic fairness defined in [25] based on long-term rewards: a
decision is preferentially selected over another only if the long-term reward of the
former is higher than the latter. Under such a fairness constraint, an algorithm is pro-
posed that can achieve near-optimality within T0 time steps. The impact of fairness
is reflected in T0: it takes more time steps to learn a near-optimal decision rule when
the fairness requirement is stricter.

Reference [39] studied a reinforcement learning problem under group fairness
(DP) constraint, where the state st = (xt , zt ) consists of both the feature xt and the
sensitive attribute zt ∈ {a, b} of the individual who is subject to the decision-maker’s
decision at t . When action at is taken in state st , in addition to reward R(st , at )
received by the decision-maker, the individual also receives a reward ρ(st , at ). The
DP constraint in [39] requires that the expected (discounted) cumulative reward of
individuals from the two groups to be approximately equal. Algorithms (model-free
and model-based) are developed in [39] for learning a decision rule that is both
DP-fair and near-optimal.
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