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Bias in Decisions MaDe By 
Machines

Machine learning models developed using 
real-world data can inherit preexisting bias in 
the dataset. When applying the trained mod-
els to new instances, it may exhibit biases 
(e.g., with respect to sensitive attributes such 
as gender and race), either because the data 
collection process was biased, or because bias 
already exists in the underlying data. This 
bias is reflected in two ways in decision mak-
ing: (1) it may lead to higher error variance 
for certain demographic groups and (2) it 
may lead to errors skewed in a particular 
direction for certain demographic groups, or 
both. For instance, COMPAS algorithm used 
by courts in the United States for recidivism 
prediction is biased against black defendants 
(Dressel & Farid, 2018); job searching plat-
form XING ranks less qualified male appli-
cants higher than female applicants who are 
more qualified (Lahoti, Weikum, & Gum-
madi, 2019); speech recognition products 
such as Amazon’s Alexa and Google Home 
have accent bias against nonnative speakers 
(Harwell, 2018).

Moreover, decisions made about humans 
affect their actions. Bias in the decisions 
induces certain behavior, which is then 
captured in the dataset used to train future 
algorithms. This closed feedback loop becomes 
self-reinforcing and can lead to highly undesir-
able outcomes over time by allowing biases to 
perpetuate (O’Neil, 2016). Consider the speech 
recognition example given above where native 
speakers experience much higher quality than 
nonnative speakers. If this difference in 
experience leads more native speakers to use 
such products while driving away nonnative 
speakers, then over time the datasets used to 

train the speech recognition model may 
become even more skewed toward native 
speakers, with fewer and fewer nonnative 
samples. Without intervention, the resulting 
model will be more accurate for the former and 
less for the latter, which then reinforces their 
respective user experience.

To address the fairness issues highlighted 
above, one commonly used approach is 
imposing fairness constraints. Various 
notions of fairness have been proposed to 
formulate fairness mathematically (Choul-
dechova & Roth, 2018; Corbett-Davies & 
Goel, 2018.) and a majority of them require 
the (approximate) parity of certain statistical 
measure (e.g., positive classification rate, 
false positive rate, etc.) across different 
demographic groups.

Long-TerM iMpacT of fair 
Machine Learning

While the success of imposing fairness 
criteria in decision making has been shown 
in various domains (Hardt, Price, & Srebro, 
2016), most of these studies are done using a 
static framework where only the immediate 
impact of the learning algorithm is assessed 
but not long-term consequences. In this sec-
tion, we use two examples to highlight the 
long-term impact of fairness criteria when 
there is interaction between the decisions 
and the underlying population dynamics.

Long-Term Impact on Group 
Representation

Consider the speech recognition example 
given earlier, where machine learning mod-
els trained on data from multiple demo-
graphic groups inherit representation 
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disparity in the data—the group contributing less to the train-
ing process suffers higher error. We now examine what hap-
pens when we impose a fairness criterion each time the model 
is used.

Suppose the user reaction is captured by a discrete-time 
retention/attrition dynamics (Zhang, Khalili, Tekin, & Liu, 
2019) as follows: (1) users who experience low accuracy (or 
other forms of perceived mistreatment) have a higher prob-
ability of discontinuing their use of the models and (2) in each 
time step, certain new users will start using the algorithms 
(Figure 1). The number of users who choose to remain in the 
system is characterized by a retention rate. The algorithm tries 
to be fair by equalizing certain aspects of the model for 
different groups at each time step.

In Zhang et al. (2019), the long-term properties of deci-
sions and group retention under a set of fairness criteria are 
characterized. It shows that as long as there is a mismatch 
between the fairness criterion and the factors driving user 
retention, the difference in (perceived) treatment will exacer-
bate group representation disparity in the long run. An 
inherent challenge is that this mismatch easily arises in 
various real-world scenarios because we typically have only 
incomplete and imperfect information on these factors.

Consider the example of a dynamic model driven by model 
accuracy with two demographic groups (e.g., different racial 
groups with different accents). A user has a feature (e.g., 
extracted from his/her speech) that is observed by the decision 
maker and an underlying label 0 or 1 (e.g., not qualified/
qualified for a certain reading job) is to be assigned. At each 
time, the decision maker finds a threshold for each group and 
makes classifications using the thresholds: assign “1” if the 
feature is above the threshold; assign “0” otherwise. As 
illustrated in Figure 2, where individuals from two groups are 
ordered by their features, individuals in gray (respectively, red/
blue) are not qualified (respectively, qualified) and thus have 
label “0” (respectively, “1”). Two thresholds (green dashed line) 
are selected such that the same fraction of people is above it for 
both groups. Yellow star denotes the optimal threshold for each 
group without imposing fairness constraint, in minimizing the 
total classification error the group experiences; this error is 

calculated as the fraction of the population that is assigned 
incorrectly. At t = 0, the threshold is selected such that 57% of 
people are assigned label “1” for both groups. Since 9 (respec-
tively, 7) out of 56 people from the blue (respectively, red) 
group are assigned incorrectly, the errors for blue and red 
groups are 16.07% and 12.5% respectively. At t = 1, because of 
the higher retention rate in the red group, the red group has 5 
arrivals and 1 departure while the blue group has 4 arrivals and 
3 departures, resulting in the red group having a higher 
proportion in the overall population. This drives the new 
threshold (assign 68% of people as label “1”) to move toward a 
direction in favor of the red group, that is, the threshold of red 
(respectively, blue) group is closer to (respectively, farther away 
from) its optimal threshold, further lowering its error (drop 
from 12.5% to 7/60 = 11.67%). In contrast, the blue group 
suffers a higher error (increase from 16.07% to 13/57 = 
22.81%). This process continues monotonically as time goes 
on, leading to more (respectively, less) favorable decisions 
made for one (respectively, the other) group, diminishing the 
population of the disfavored group, and eventually causing it to 
disappear entirely from the system.

This example shows that group representation disparity 
may worsen if the aspects of the model we equalize differ from 
what actually affects user retention. Specifically, the imposed 
fairness criterion tries to equalize the fraction of people being 
above the threshold while it is accuracy that drives user 
retention. The guarantee of the former means difference in 
accuracy for the two groups, which eventually leads to the 
exacerbation of group representation disparity.

Long-Term Impact on Individuals

The previous example shows the potentially adverse long-
term impact on group representation when imposing a fair-
ness criterion that does not match user dynamics, while a 
user’s feature remains unaffected by either the error made by 
the algorithm or the user’s decision to stay or leave. We next 
show a second example, first studied in Liu, Dean, Rolf, Sim-
chowitz, and Hardt (2018), where fairness criteria can lead to 
an adverse effect on the individual’s and entire populations’ 
features over time.

In this example, a lender decides whether or not to approve 
a loan application based on the applicant’s credit score 
(feature). To ensure fairness across different groups, the lender 
aims to achieve an identical loan approval rate (approving the 
same percentage of applications) in each group, or to achieve 
an identical true positive rate (approving the same percentage 
of applications among the qualified applicants). At the same 
time, for an applicant who has been issued a loan, his/her 
credit score improves if he/she repays and drops if he/she 
defaults (Figure 3). In Liu et al. (2018), it is shown that both 
equality criteria can potentially result in more loans issued to 
less qualified applicants in the group whose score distribution 
skews toward higher default risk. The lower repayment among 
these individuals causes their future credit scores to drop, 

Figure 1. retention dynamic model.
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Figure 2. Illustration of the monotonic movement in decisions of two demographic groups.
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Figure 3. the average change of feature (credit score) on the applicant once it is assigned label “1” (issued the loan): when 
the loan is issued to individuals with higher (respectively, lower) credit score, because they are more likely to repay the loan 
(respectively, default), their credit scores can be improved (respectively, decreased) in average, that is, resulting in the positive 
(respectively, negative) shift of feature in y-axis.
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which then causes the score distribution of that group to skew 
further toward high risk. In short, an attempt to improve 
immediate loan approval rate can inadvertently lead to worse 
opportunity in the long run for the very individuals the effort 
was designed to help (Figure 4).

Combination of Both Impacts

In practice, these two impacts can simultaneously exist, 
making a bad situation worse. Consider the lending example: 
once the lender starts to over issue loans to the less qualified 
group, the latter’s score distribution will skew toward higher 
default risk. Over time, more people from this group may stop 
applying. The increased disproportionality between the two 
groups will then lead the lender to actually issue more loans 
(relatively) to the less qualified group if it continues to use the 
same type of fairness criterion. This will then lead its score dis-
tribution to skew more toward higher default risk over time. 
This is an example in which the two effects are both present 
and interact, resulting in compounding negative impact.

roLe of DynaMic MoDeLs in iMposing 
fairness

The two examples show that imposing seemingly fair deci-
sion using an instantaneous criterion can lead to unintended 
consequences in the long run, for example, the extinction of one 
group in the system or deteriorating features of a population. 
They point to the fact that fairness has to be addressed with a 
good understanding of how users are affected by the algorithm 
and/or their perception of the algorithm, and how they may 
react to such perceptions. In other words, fairness cannot be 
defined in a one-shot problem setting without considering the 
long-run impact, and that long-run impact cannot be properly 
analyzed without understanding the underlying dynamics.

poTenTiaL MiTigaTions anD concLusions

Given a machine learning model, it is critical to ensure it 
can be accepted/trusted by users (Ribeiro, Singh, & Guestrin, 
2016). In practice, decision makers should carefully inspect 
and measure how those affected perceive and react to the 

decisions made by such machine learning algorithms, any 
downstream effect following those perceptions and reactions, 
and do so over a sustained period of time. It is particularly 
important to capture and measure unintended consequences, 
that is, perceptions and reactions unanticipated by the algo-
rithm designer, so as to inform adaptation and redesign of 
future algorithms.

In addition to the speech recognition example, for applica-
tions where the model at each time is trained on data from the 
current users in the system (either because the feature 
distribution of each group changes over time or because the 
decision maker has no access to historical user data), group 
representation should be carefully balanced to prevent models 
from being biased against a minority group. The fairness 
criterion should be chosen such that the factors driving user 
participation in the dynamic model can be equalized; for 
example, if user participation is driven by model accuracy, 
then decisions should be made such that different groups 
experience similar classification error. In reality, user reaction 
can be affected by a mixture of factors given different applica-
tion contexts; thus, modeling user dynamics from real-world 
measurements and finding a proper fairness criterion based 
on the obtained model is an important research direction.

Similarly, to prevent the deterioration of features, decision 
making should carefully take into account future conse-
quences and put in place measures intended to remedy any 
adverse effect. For instance, in the lending scenario, one 
cannot stop at simply issuing loans but must put in place 
aggressive repayment and other assistance programs for those 
receiving the loan to minimize default. In this sense, machine 
learning tools can be an enabling piece in a larger, more 
comprehensive system of policies and decision making, but 
should not be regarded as a self-sufficient solution on its own.

To conclude, good understanding of human factors should 
play a crucial role in promoting appropriate use of machine 
learning systems to produce fair, long-term outcomes rather 
than merely implementing fairness constraints. What has been 
discussed in this article are but a few examples of unintended 
consequences when human factors are not properly accounted 
for. Toward this end, we believe it is critical that more research 
be conducted to better understand not only existing biases in 

featurethreshold mean featurethreshold mean

Figure 4. the average (red solid circle) feature (credit score) of the disadvantaged (less qualified) group decreases in the next 
time step (left, t = 0; right, t = 1): because the threshold is chosen such that unqualified applicants (gray) are over-issued the 
loan, based on Figure 3, credit score of these people will be decreased (negative shift of feature). since credit score of a large 
portion of population decreases, the overall average credit score decreases.
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training datasets but also how users react to machine learning 
systems, including their tolerance of (perceived) unfairness, 
how it impacts their acceptance and rejection of such systems 
and how machine learning systems can be made more 
understandable so that decision makers can better anticipate 
outcomes.
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