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ABSTRACT Personal information and other types of private data are valuable for both data owners and
institutions interested in providing targeted and customized services that require analyzing such data. In
this context, privacy is sometimes seen as a commodity: institutions (data buyers) pay individuals (or data
sellers) in exchange for private data. In this study, we examine the problem of designing such data contracts,
through which a buyer aims to minimize his payment to the sellers for a desired level of data quality, while
the latter aim to obtain adequate compensation for giving up a certain amount of privacy. Specifically, we
use the concept of differential privacy and examine a model of linear and nonlinear queries on private data.
We show that conventional algorithms that introduce differential privacy via zero-mean noise fall short
for the purpose of such transactions as they do not provide sufficient degree of freedom for the contract
designer to negotiate between the competing interests of the buyer and the sellers. Instead, we propose a
biased randomized algorithm to generate differentially private output and show that this algorithm allows
us to customize the privacy-accuracy tradeoff for each individual. We use a contract design approach to
find the optimal contracts when using this biased algorithm to provide privacy, and show that under this
combination the buyer can achieve the same level of accuracy with a lower payment as compared to using
the conventional, unbiased algorithms, while at the same time incurring lower privacy loss for the sellers.

INDEX TERMS Contract Design, Differential Privacy, Information Asymmetry

I. INTRODUCTION

Advances in technology and data centers have enabled stor-
ing large amounts of data containing private information of
individuals or firms. These data have value for institutions
interested in analyzing them for a variety of purposes such
as targeted advertising. Individuals are typically not willing
to share their data due to privacy concerns; even when they
are not concerned with how institutions use their respective
data, they can still be reluctant to share due to the possibility
of data breaches. Within this context, privacy has become
a commodity that institutions often have to pay monetary
or non-monetary compensation for using it. For instance,
Datacoup is a new startup which offers monthly payment
in return for the access to users’ online accounts and credit

card transactions. While Datacoup protects users’ identities
as well as credit card numbers, it provides aggregated and/or
de-identified information about the users to any third party,
including advertisers, data purchasers, and analytics partners
[2].

Studies of privacy as a commodity include arbitrage-
free privacy-preserving pricing mechanisms, see e.g., [3],
designing contracts for data privacy and utility [4], auctions
and direct mechanisms for selling privacy [5], [6], as well
as dynamic privacy pricing [7]. A more detailed literature
review is given in Section II.

In this paper, we consider a single buyer, whose goal is
to minimize his payment to data owners, also referred to
as sellers, provided that the purchased data satisfy a certain
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FIGURE 1: Interaction of buyer and sellers.

level of accuracy. The sellers value their privacy, but are
willing to sell their data provided the cost of their privacy
loss, measured by the concept of differential privacy [8], is
adequately compensated by the payment.

The transaction takes place as follows. The buyer an-
nounces his desired accuracy level of a certain computational
output, e.g., in the form of a query over certain types of
data, to a trusted third party, also referred as the data bro-
ker. The data broker collects relevant data from different
individuals/sellers and generates such an output, which he
then releases to the buyer. The generated output satisfies the
data minimization principle [21] imposed by a law/regulator.
Under this principle, the least amount of information must be
used for generating such an output. As a result of the release
of the computational output, the buyer pays each individual,
through the broker, an amount commensurate with the pri-
vacy loss the individual experiences. Figure 1 illustrates these
interactions. A data contract among these parties stipulates
the payment amount and quantifies accuracy as well as
privacy guarantees associated with the payment. The broker
is assumed to be a neutral, non-profit entity in the current
model, but our analysis and conclusions hold if the broker
charges a fixed processing fee.

A key component of this framework is a differentially
private algorithm that preserves the privacy of the input
data and returns a differentially private output for the query.
Toward this end, we propose a randomized algorithm that, in
contrast to most commonly used algorithms that add a zero-
mean noise to the data, see e.g., [3], adds not only a zero-
mean noise to the private data, but also a bias. As we will
show, the introduction of this bias allows the broker to add
less noise to the data and increase the accuracy of the output
simultaneously. Furthermore, it provides an additional degree
of freedom that the broker can use to judiciously determine
individual privacy losses based on individual privacy valua-
tions. As a result, we show that by choosing the bias term
carefully, a contract can be designed for the buyer to obtain
the desired accuracy level at a lower cost, as compared to
when an unbiased algorithm is used, while at the same time
the sellers experience less privacy loss. In other words, both
buyer and sellers benefit from using this algorithm. It is worth
noting that [5] also introduces a biased differentially private
algorithm for linear queries and one-dimensional data, but it
offers only a single privacy level to the participating sellers.
The present paper generalizes the algorithm introduced in [5]

in the following aspects: i) our algorithm is able to afford
different privacy protection/losses to different sellers, and
ii) our algorithm can be extended to nonlinear queries and
multidimensional data.

Our main contribution is two-fold. Firstly, we present a
new algorithm for generating differentially private estimates
of a family of linear and nonlinear queries, and show that
this algorithm allows the data broker to assign different
privacy losses to different individuals. Secondly, we use a
contract design approach to derive optimal data contracts that
minimize the buyer’s payment while satisfying his accuracy
requirement and the seller’s privacy constraint. This is done
under two scenarios, one with full information, where the
data broker knows the sellers’ privacy valuation, and one
with information asymmetry, where the broker does not know
their privacy valuation. We show that in both scenarios, the
broker can leverage the proposed algorithm to guarantee a
lower privacy loss for the sellers and a lower payment for the
buyer.

The preliminary version of this work appeared in [1] where
the proposed differentially private algorithm and contract
design method were only applicable to linear queries and
one-dimensional data. In addition to a better exposition of
our previous work by including proofs and technical analysis
in Section XI, the present paper extends our previous work in
the following aspects,

• The proposed data contract under information asymme-
try in [1] is only applicable to a scenario with two sellers
whose privacy valuations come from a Bernoulli distri-
bution. In the present paper, we consider a more general
setting and propose a new data contract in Section VI
for a scenario with n sellers whose privacy valuations
are drawn from an unknown probability distribution.

• We introduce a biased differentially private algorithm
for non-linear queries in Section VIII. This algorithm
improves the privacy-accuracy tradeoff as compared to
the unbiased algorithm, and allows data broker to assign
different privacy losses to individuals when the buyer
requests a non-linear query.

• We extend our biased differential private algorithm to
multidimensional data in Section IX, and show that our
methodology and results for one-dimensional data are
equally applicable to the multi-dimensional case.

The remainder of the paper is organized as follows. We
present related work in Section II and preliminaries on
differential privacy and query in Section III. We introduce
our randomized differentially private biased algorithm in
Section IV. In Section V, we analyze the contract design
problem between one buyer and multiple sellers under full
information. We discuss the contract design problem for
purchasing private data under information asymmetry in
Section VI. We provide numerical examples in Section VII
and generalize our algorithm for non-linear queries as well
as multi-dimensional data in Section VIII and Section IX,
respectively. Finally, Section X concludes the paper.
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II. RELATED WORK
The literature in data market mechanisms to some degree
parallels that in general market mechanism design, with some
of them considering privacy preservation as an added element
in the mechanism.

For instance, arbitrage-free mechanism is a pricing mech-
anism where buyers are not able to pay less for their true
target by purchasing and combining substitute targets [9]. In
other words, the arbitrage-free pricing mechanism does not
allow the buyer to cheat the market/seller. The problem of
arbitrage-free mechanisms arises in many different markets
such as the energy market [10], the financial market [11].
Arbitrage-free pricing mechanisms for the data market was
studied in [12], [13], [14], but privacy leakage throughout
the process was not considered. Similar mechanisms were
studied in [3] for linear queries, where a random noise
was added to the actual query to preserve privacy and it is
assumed that all individuals have the same privacy valuation.

Of the literature on data markets, the most relevant to the
present paper are [4], [15], [5], [6]. In [4], contracts are
designed for a data market where data utility and privacy
are considered, with the main conclusion that when the data
collector requires a large amount of data, it is better to
purchase from those who care the least about their privacy.
It, however, does not provide any algorithm or mechanism
to ensure privacy. Gosh and Roth [5] introduce a fixed
price auction mechanism using a biased algorithm which
offers only a single privacy level to the sellers participating
in the mechanism. This work was extended in [6], where
the cost of privacy loss is correlated with the private data.
Cummings et.al [15] also design a truthful mechanism for
the data aggregation problem where a buyer collects unbiased
estimate of each individual’s data and make a payment based
on the variance of the estimate. Then, the buyer calculates the
average of all unbiased estimates to find a better estimate. It
is worth noting that this work is only applicable to a scenario
where the expected values of individuals’ data are the same.

Privacy preserving mechanisms have also been studied in
the context of data aggregation and task bidding in crowd
sensing, see e.g., [16], [17], as well as in the context of
security information exchange, see e.g., [18].

III. PRELIMINARIES
In this section, we review the notion of differential privacy
first proposed in [8], [19] which we will use to quantify
privacy leakage, and then introduce a type of linear query. Ex-
tension to any type of nonlinear query is discussed in Section
VIII. We consider n individuals indexed by {1, 2, · · · , n}.
Let di ∈ X be individual i’s private data where X is a subset
of real numbers. Extensions to higher dimensional data is
discussed in Section IX. An individual incurs a cost if his
privacy is violated.

A. DIFFERENTIAL PRIVACY AND ACCURACY
Consider database D = (d1, d2, · · · , dn) ∈ Xn, the collec-
tion of n individuals’ data. Database D = (d1, d2, · · · , dn)

and D(i) = (d
(i)
1 , d

(i)
2 , · · · , d(i)

n ) are said to be neighbors if
dj = d

(i)
j for all j 6= i and di 6= d

(i)
i . In other words, D

and D(i) are neighbors if and only if individual i’s data is
different in D and D(i).
Definition 1 (ε-Differential Privacy [8], [19]): An algorithm
A : Xn → R is εi-differentially private with respect to
individual i, if for all neighboring databases D ∈ Xn and
D(i) ∈ Xn differing only in element i, and for any S ⊂ R
we have,

Pr{A(D) ∈ S}
Pr{A(D(i)) ∈ S}

≤ exp{εi} .

This suggests that A(.) is in general a randomized algorithm.
Using Definition 1, it is easy to see that if A(.) is εi-
differentially private w.r.t. individual i, i = 1, · · · , n, and
if D = (d1, · · · , dn) and D′ = (d′1, · · · , d′n) differ in more
than one element, then we have

Pr{A(D) ∈ S}
Pr{A(D′) ∈ S}

≤ exp{
∑
i∈I

εi}, ∀S,

where dj = d′j if j /∈ I and dj 6= d′j if j ∈ I .
A common method for making an algorithm εi-

differentially private is adding Laplace noise to its output.
Let N(b) be the symmetric Laplacian noise with zero mean
and parameter b. Then N(b) has a variance of 2b2 and a
distribution given by:

f(x) =
1

2b
exp{−|x|

b
} . (1)

Definition 2 (Accuracy): We say algorithm A(.) is K-
accurate for query Q(D) if

E
[
(A(D)−Q(D))

2
]
≤ K, ∀D ∈ Xn , (2)

i.e., algorithm A is K-accurate if its mean squared error
(MSE) is at most K. Smaller K indicates a more accurate
algorithm.

There are other definitions for accuracy (e.g., see [19]),
but the above choice does not affect the applicability of our
methodology and main conclusions.

B. A TYPE OF LINEAR QUERY
Definition 3 (Linear Query): A linear Query Q : Xn → R
over the database D = (d1, d2, · · · , dn) is a linear function
evaluated as follows:

Q(D) =

n∑
i=1

qi · di , (3)

where qi ∈ R are constants.
Without loss of generality, we will assume that X = [0, 1]
and qi = 1,∀i. Note that if qi 6= 1, then we can assume
that di ∈ [0, qi] and Q(D) is the summation of di’s. The
generality of a summation form of query lies in the fact that it
is sufficient to implement many machine learning algorithms
in a differentially private manner [20]. Extension to non-
linear queries is discussed in Section VIII.
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We next examine the relationship between accuracy K
and privacy loss ε in this type of linear queries. Intuitively,
we expect an algorithm with high accuracy to also have
high privacy loss. Below we find a lower bound on the total
privacy loss

∑n
i=1 εi as a function of K.

Theorem 1 (Lower Bound on Total Privacy Loss): If algo-
rithm A(D) is K-accurate and K < (n2 )2,1 then the total
privacy loss is at least ln (n−

√
K)2

K . Moreover, if K < (m2 )2,
then at least n − m + 1 individuals experience non-zero
privacy loss.

Theorem 1 implies that asK → 0, privacy loss approaches
infinity logarithmically. We will introduce an algorithm in
Section IV under which the total privacy loss is close to the
lower bound when K is close to (n2 )2.

IV. UNBIASED AND BIASED ALGORITHMS
As mentioned, a common way to provide differential privacy
to an algorithm is to add zero-mean noise.
Theorem 2 (An unbiased algorithm [19]): Let Au(D) =
Q(D) + N(b). Then Au(D) is 1

b -differentially private with
respect to each individual. Moreover,Au(D) is 2b2-accurate.
Au(D) = Q(D) + N(b) is an unbiased algorithm, as

E [Au(D)−Q(D)] = 0. We next introduce a biased esti-
mate Anew(D) of Q(D) such that E [Anew(D)] 6= Q(D).
Theorem 3 (A biased algorithm): Let Anew(D) =

∑n
i=1 ai ·

di +
∑n
i=1

1−ai
2 + N(b) where 0 ≤ ai ≤ 1, ∀i. Then

Anew(D) is
[(∑n

i=1
1−ai

2

)2
+ 2b2

]
-accurate. Moreover, the

algorithm is ai
b -differentially private with respect to individ-

ual i.
Proof. We first derive the accuracy of Anew(D).

(Anew(D)−Q(D))
2

=

(
n∑
i=1

((ai − 1) · di +
1− ai

2
)

)2

+2

n∑
i=1

(
(ai − 1) · di +

1− ai
2

)
·N(b) +N(b)2

≤

(
n∑
i=1

1− ai
2

)2

+N(b)2

+2(

n∑
i=1

(ai − 1)di +
1− ai

2
)N(b) ,

where the inequality holds because 0 ≤ di ≤ 1. Continuing,

E
[
(Anew(D)−Q(D))

2
]
≤

(
n∑
i=1

1− ai
2

)2

+ E(N(b)2)

+2

(
n∑
i=1

(ai − 1)di +
1− ai

2

)
E(N(b))

=

(
n∑
i=1

1− ai
2

)2

+ 2b2 .

1Our problem is interesting if K < (n
2
)2. In the next sections, we will

show that If K > (n
2
)2, there exists algorithm A(D) which is K-accurate

and 0-differentially private with respect to each individual. More precisely,
A(D) could be pure noise if K > (n

2
)2.

We next derive its privacy. Let D = (d1, d2, · · · , dn) and
D′ = (d′1, d2, d3, · · · , dn) be two neighboring databases and
let s =

∑n
i=1 ai ·di+

1−ai
2 and s′ = a1d

′
1+ 1−a1

2 +
∑n
i=2 ai ·

di + 1−ai
2 . We then have

Pr {Anew(D) ∈ S} =

∫
x∈S−s

1

2b
e−
|x|
b dx

=

∫
x∈S−s′

1

2b
e−
|x+a1·d1−a1·d

′
1|

b dx

≤ e
a1·|d1−d′1|

b

∫
x∈S−s′

1

2b
e−
|x|
b dx

≤ e
a1
b Pr(As(D

′) ∈ S) ,

where the notation S − s := {x − s|x ∈ S}. There-
fore, Anew(D) is a1

b -differentially private with respect to
individual 1. Similarly, we can show that Anew(D) is ai

b -
differentially private with respect to individual i.

�
AlgorithmAnew(D) is a biased algorithm with the follow-

ing bound on the bias:

E [Anew(D)−Q(D)] =

n∑
i=1

(ai − 1) · di +
1− ai

2

=⇒
n∑
i=1

−1 + ai
2

≤ E [Anew(D)−Q(D)] ≤
n∑
i=1

1− ai
2

=⇒ |E [Anew(D)−Q(D)] | ≤
n∑
i=1

1− ai
2

. (4)

Therefore, increase in ai decreases the algorithm’s bias, im-
proves its accuracy, and increases its privacy loss. Note that
the bias does not depend on parameter b, and that Anew(D)
reduces to Au(D) by setting ai = 1, ∀i.

V. PROBLEM FORMULATION
We consider a scenario with n sellers/individuals indexed by
N = {1, . . . , n} and a single buyer who is interested in
obtaining a query on database D = (d1, d2, · · · , dn), where
data di belongs to seller i. Let vvv = [v1, . . . , vn] be a vector
of individuals’ privacy valuations, where vi is the type or
the privacy valuation of individual i; this is also referred
to as his privacy attitude. Individual i has cost function
c(vi, .) : R+ ∪ {0} → R+ ∪ {0}. He incurs a cost of c(v, εi)
if he experiences privacy loss εi. We assume that c(vi, εi) is
increasing in εi, and c(v′, ε) ≥ c(v, ε) if and only if v′ ≥ v,
i.e., a higher type implies higher privacy cost, and the cost
of revealing data is zero if there is zero privacy loss, i.e.,
c(vi, 0) = 0, ∀i. In this section we assume that the data
broker knows the sellers’ privacy valuations, i.e., vi,∀i ∈ N
is common knowledge.

The buyer wishes to obtain a K-accurate estimate of
Q(D) with minimum payment. The data transaction be-
tween the sellers and the buyer is facilitated by a contract
(pi, εi,K)i∈N , which stipulates that by accepting it seller i
receives payment pi and reports actual data di to the data
broker, while the broker uses an algorithm to find an estimate
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of Q(D) which is K-accurate and εi-differentially private
with respect to individual i. We assume that the individuals’
data have to be used under a certain privacy principle. We
will consider two such principles.
• Principle 1 The total privacy loss experienced by the

individuals has to be minimized. Moreover, individuals
have to experience the same privacy loss.

• Principle 2 The total privacy cost incurred by the sellers
has to be minimized.

Based on the US Privacy Act of 1974 [21], each agency
must follow data minimization principles and collect the
least amount of information for its purposes. These two
principles are meant to satisfy this privacy law. However,
our methodology is more generally applicable. It is worth
mentioning that Principle 1 not only imposes restriction on
total privacy loss but also ensures that the sellers are treated
equally. This is compatible with the General Data Protection
Regulation (GDPR) Lawfulness, Fairness, and Transparency
Principle [22].

A. OPTIMAL CONTRACT UNDER PRINCIPLE 1
Under Principle 1, the data broker has to assign the same
privacy loss to each individual and minimize total privacy
loss for finding a K-accurate estimate of Q(D). In order to
do so, the broker solves the following optimization problem
to find the minimum required privacy loss using algorithm
Anew(D).

min
a,b,ε

ε

s.t. (AC)
(n

2
− n · a

2

)2

+ 2b2 = K

ε =
a

b
, b > 0, 0 ≤ a ≤ 1 (5)

Theorem 4: The solution to optimization (5) is given by,

â =
n2 − 4K

n2
, b̂ =

√
K

2
− 2K2

n2
, (6)

ε̂ =
1

n

√
(2n2 − 8K)/K (7)

Earlier Theorem 1 suggests that a K-accurate estimate of
Q(D) has total privacy loss at least 2 ln(n −

√
K) − lnK.

The minimum total privacy loss
√

2n2

K − 8 under Anew(.)

approaches this lower bound as K → n2

4 . Figure 2 compares
the minimum total privacy loss using algorithms Au(.) and
Anew(.) for a scenario with n = 10 individuals. Clearly
Anew(.) outperforms Au(.) in terms of the privacy-accuracy
tradeoff: by introducing a bias, Anew(.) uses less noise (as
compared to Au(.)) to reach a given privacy loss which
improves accuracy.

Under Principle 1, contract (pi, εi = ε̂) is offered to indi-
vidual i. To ensure individual i accepts contract (pi, εi = ε̂),
the contract has to satisfy the Individual Rationality (IR)
constraint which implies that the payment to each individual
should sufficiently compensate for its privacy cost, i.e.,

(IR) : pi ≥ c(vi, εi) ∀i ∈ N . (8)

0 5 10 15 20 25
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FIGURE 2: Minimum privacy loss under different algo-
rithms.

Since vi is common information, pi = c(vi, ε̂) would mini-
mize the total payment made by the buyer. Therefore, optimal
contract {p̂i, ε̂i}i∈N , which implements principle 1, is given
by,

p̂i = c(vi, ε̂), ε̂i = ε̂, ∀i ∈ N . (9)

B. OPTIMAL CONTRACT UNDER PRINCIPLE 2

Under Principle 2, the total privacy cost incurred by the
individuals must be minimized. In this case, the privacy loss
assigned to each individual using algorithm Anew(D) can be
obtained by the following optimization problem,

min
{ai,b,εi}

n∑
i=1

c(vi, εi)

s.t. (AC)

 n∑
j=1

1− aj
2

2

+ 2b2 = K

0 ≤ ai ≤ 1, εi =
ai
b
, b > 0, i ∈ {1, . . . , n} .

(10)

A closed form solution to optimization problem (10) is not
easy to find in general and depends on the form of the cost
function. Below we solve (10) under a linear cost model.

Theorem 5: Let c(v, ε) = v · ε, K < (n2 )2, v1 ≤ v2 ≤ . . . ≤
vn and si+1 = (n − i) − 4 · K · vi+1

(n−i)·vi+1+
∑

j≤i vj
,∀i ≥[

n− 2
√
K
]
, i ≤ n − 1, where [x] is the largest integer

less than or equal to x. Let m + 1 be the first index where
sm+1 ≤ 0 (if si ≥ 0, ∀i, then set m = n). Then the solution
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to problem (10) is given by:

a∗1 = a∗2 = . . . = a∗m−1 = 1, a∗m = min{sm, 1},
a∗m+1 = a∗m+2 = . . . = a∗n = 0,

b∗ =

√
1

2
(K − (

2K · vm
(n−m+ 1) · vm +

∑m−1
j=1 vj

)2)

ε∗i =
a∗i
b∗
. (11)

Proof. See Appendix. �
Note that if K > (n2 )2, then a1 = a2 = · · · = an = 0 and

b =
√

K−(n/2)2

2 give a feasible solution to (10). This point
is optimal because its objective value is zero. Thus, if K >
(n2 )2, the output of algorithm Anew(D) will be a pure noise.
In addition to a linear cost model, a closed form solution to
optimization problem (10) can be calculated using Algorithm
1 if the cost function has the following form: c(v, ε) = v·(ε)r,
where r > 1 is a constant.
Theorem 6: Let c(v, ε) = v ·(ε)r and r > 1. Then, Algorithm
1 finds the optimal solution to optimization problem (10).

For notational convenience, let hi(vvv) be the privacy loss
of individual i obtained from optimization problem (10), and
h(vvv) = [h1(vvv), . . . , hn(vvv)].

Under Principle 2, the broker offers contract (pi, εi =
hi(vvv)). The contract has to satisfy the (IR) constraint defined
in (8). Under full information, pi = c(vi, hi(vvv)) satisfies the
(IR) constraint and minimizes the total payment. Therefore,
under Principle 2 and algorithm Anew(D), the optimal con-
tract is given by,

p∗i = c(vi, hi(vvv)), ε∗i = hi(vvv),∀i ∈ N . (12)

C. COMPARISON OF THE OPTIMAL CONTRACT UNDER
ALGORITHM Anew(D) AND Au(D)

So far, we have used biased algorithm Anew(D) to find the
optimal contract. In this section, we study the contract design
problem using Au(D) and compare it with the contract
design problem using Anew(D).

As we mentioned in Section IV, Au(D) = Q(D) + N(b)
has only one degree of freedom and is K-accurate if b =√
K/2. Therefore, the optimal contract which minimizes the

total payment using Au(D) is given by,

pi = c(vi,
√

2/K), εi =
√

2/K (13)

We make two observation here. First, the individuals expe-
rience privacy loss εi =

√
2/K under algorithm Au(D),

while their privacy loss is ε̂i = 1
n

√
(2n2 − 8K)/K under

Principle 1 and algorithm Anew(D). Therefore, Anew(D)
under Principle 1 is able to decrease the total privacy
leakage as compared to Au(D). Second, Anew(D) under
Principle 2 decreases the total privacy cost as compared to
Au(D), because Anew(D) is able to assign lower privacy
loss to those who have higher privacy valuation. That is,∑n
i=1 c(vi, hi(vvv)) ≤

∑n
i=1 c(vi,

√
2
K ).

As we mentioned in this section, the (IR) constraint is
always binding under the full information assumption, and

Algorithm 1: Solution to optimization problem (10)

1: input: vvv, r,K;
2: initialization: a∗i = 1,∀i ∈ N , b∗ =

√
K/2;

3: Costmin =
∑n
k=1 vi · (

√
2/K)r;

4: Sort vvv such that v1 ≤ v2 ≤ . . . ≤ vn;

5: for i =
[
n− 2

√
K
]

+ 1, . . . , n do
6: for j = 0, . . . , i do
7: if j > 0 then
8: ak = 1,∀k = 1, . . . , j.
9: end if

10: if i < n then
11: ak = 0,∀k = i+ 1, . . . , n.
12: end if
13: if j < i then
14: A =

∑i
k=j+1

(r−1)
√
vj+1/vk;

15: a = (n−j)2−4K
A·(n−j) ;

16: if 0 ≤ a ≤ 1 then
17: ak = r−1

√
(
vj+1

vk
) · a, k = j + 1, . . . , i

18: else
19: go to line 5;
20: end if
21: end if
22: b =

√
0.5× (K − (

∑n
k=1 1−ak

2 )2);
23: C =

∑n
k=1 vk · (

ak
b )r;

24: if C < Costmin then
25: a∗k = ak,∀k ∈ N ;
26: b∗ = b;
27: Costmin = C;
28: end if
29: end for
30: end for
31: ε∗i =

a∗i
b∗ ,∀i ∈ N ;

32: Output: {ε∗i }i∈N

the payment to each individual is equal to its privacy cost. In
the next section, we study the contract design problem under
information asymmetry where privacy valuation vi is only
known to individual i.

VI. CONTRACT DESIGN UNDER INFORMATION
ASYMMETRY
We will now turn to scenarios where the privacy attitude
of each seller is its own private information and remains
unknown to the buyer, the broker, and the other sellers. The
goal of this section is to design a mechanism to incentivize
the sellers to report their actual privacy valuations as well
as their data to the broker. In order to make the mechanism
design problem tractable, we make the following assumption.
Assumption 1: c(v, ε) = v · l(ε), where l(.) is an increasing
function. Moreover, vi ∈ [0, v] ,∀i ∈ N , where v is a positive
constant.

Next we design two mechanisms that comply with Princi-
ple 1 and Principle 2, respectively, under incomplete infor-
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mation.

A. MECHANISM UNDER PRINCIPLE 1
Under Principle 1, the broker would like to assign pri-
vacy loss ε̂ to individual i (ε̂ has been defined in (6)).
However, vi is not known to the broker, and he cannot
determine the sufficient amount of compensation for the
privacy cost incurred by individual i. In order to overcome the
issue of information asymmetry, the broker ask individuals
to report their privacy attitudes and induces a one-shot
game among the sellers by announcing mechanism M1 =
{t(v̂̂v̂v) = [t1(v̂̂v̂v), . . . , tn(v̂̂v̂v)], g(v̂̂v̂v) = [g1(v̂̂v̂v), . . . , gn(v̂̂v̂v)]}, where
v̂i is the reported privacy attitude by individual i, v̂̂v̂v =
[v̂1, . . . , v̂n] is a vector of reported privacy attitudes, gi(v̂̂v̂v) =
ε̂ is the privacy loss of individuals which complies with
Principle 1, and ti(v̂̂v̂v) is the payment to individual i as a
function of v̂̂v̂v.2 After announcing function g(.) and t(.),
the individuals report their privacy attitudes and receive
the payment based on t(v̂̂v̂v). Lastly, individual i experiences
privacy loss ε̂i.

Let G1 = {N , {ui(v̂̂v̂v|vi)}i∈N , A = [0, v]n} be the game
induced by mechanism M1 where ui(v̂̂v̂v|vi) = +ti(v̂̂v̂v) −
c(vi, ε̂) is the utility of individual i, vi ∈ [0, v] and v̂i ∈ [0, v]
are his true privacy valuation and his action/reported privacy
attitude, respectively, and A = [0, v]n is the action space.

We use Nash Equilibrium (NE) as the solution concept for
game G1. We say the strategy profile vvv∗ is the NE of game
G1 if we have,

ui(v
∗
i , v
∗
−i|vi) ≥ ui(v̂i, v∗−i|vi), ∀v̂i ∈ [0,+∞), ∀i ∈ N

where v∗−i denotes the strategy profile of the sellers excluding
individual i at the NE.

In order to comply with Principle 1, the NE of game G1

must satisfy the two following conditions,

(IC) vvv∗ = vvv,

(IR) ui(vvv|vi) ≥ 0, (14)

where the Incentive Compatibility (IC) condition implies that
the individuals report their privacy valuations truthfully at
the NE, and the Individual Rationality (IR) ensures that the
individuals obtain higher utility as compared to their outside
option (i.e., not selling the data).

The final goal of the broker is to find a mechanism to
implement Principle 1 (i.e., g(vvv)) with a minimum payment
subject to the IR and IC constraints. The next theorem
introduces such a mechanism.
Theorem 7: Under Assumption 1, mechanism M1 satisfies
(IR) and (IC) constraints and minimizes the payment if and
only if,

ti(v̂̂v̂v) = v · l(ε̂) = v · l(ε̂) =
v

n

√
(2n2 − 8K)/K,∀i ∈ N .

2Under Principle 1, the individuals’ privacy loss does not depend on
v̂̂v̂v. However, we will see individuals’ privacy loss should be a function of
reported privacy valuations v̂̂v̂v under Principle 2.

Theorem 7 implies that the payment to each individual
does not depend on reported privacy attitudes. This is because
individuals’ privacy loss under Principle 1 (i.e., g(v̂̂v̂v)) does
not depend on v̂̂v̂v. It is worth mentioning that the payment to
the individual i under information asymmetry at NE of game
G1 (i.e., ti(vvv)) is always larger than the payment under full
information (i.e., p̂i) because under information asymmetry
the broker has to be conservative and offers a higher payment
to guarantee the sellers’ participation.

B. MECHANISM UNDER PRINCIPLE 2
Under Principle 2, the broker designs a mechanism
to incentivize seller i to share his data with the
while he experiences privacy loss hi(vvv). Let M2 =
{τ(v̂̂v̂v) = [τ1(v̂̂v̂v), . . . , τn(v̂̂v̂v)], h(v̂̂v̂v) = [h1(v̂̂v̂v), . . . , hn(v̂̂v̂v)]} be
such a mechanism implementing Principle 2 with a minimum
payment, where τi(v̂̂v̂v) is the payment to individual i and
hi(v̂̂v̂v) is the privacy loss experienced by individual i as a
function of reported privacy valuations v̂̂v̂v (hi(v̂̂v̂v) is calculated
by solving (10)). Similar to M1, M2 induces game G2 =
{N , {wi(v̂̂v̂v|vi)}i∈N , A = [0, v]n} among the sellers, where
wi(v̂̂v̂v|vi) = +τi(v̂̂v̂v) − c(vi, hi(v̂̂v̂v)) is the utility of seller i
inside mechanism M2. The next theorem identifies payment
function τ(.) such that the NE of game G2 satisfies IC and
IR constraints.
Theorem 8: Under Assumption 1, mechanism M2 satisfies
the (IR) and (IC) constraints and implement Principle 2 with
a minimum payment if and only if,

τi(v̂̂v̂v) =

∫ v

v̂i

l(hi(si, v̂−i))dsi + v̂i · l(hi(v̂̂v̂v)) (15)

Note that both privacy profiles g(vvv) and h(vvv) used in mecha-
nisms M1 and M2 are calculated using algorithm Anew(D).
In the next part, we study the mechanism design problem
under algorithm Au(D).

C. MECHANISM USING ALGORITHM AU (D)

Algorithm Au(D) = Q(D) + N(
√
K/2) is K-accurate,

and all the individuals experience privacy loss
√

2
K . Let

eee = [
√

2
K , . . . ,

√
2
K ] be a vector with length n which

denotes the sellers’ privacy loss under Au(D). Let M3 =
{ρ(v̂̂v̂v) = [ρ1(v̂̂v̂v), . . . , ρn(v̂̂v̂v)], eee}, where ρi(v̂̂v̂v) is the payment
to individual i. The goal of mechanim M3 is to incentive
the seller to report their privacy attitude truthfully. Next
theorem shows that payment profile ρ(v̂̂v̂v) would be a constant
function.
Theorem 9: Mechanism M3 satisfies the IR and IC constraint
with a minimum payment if and only if,

ρi(v̂̂v̂v) = v · l(
√

2

K
),∀i ∈ N (16)

Theorem 9 implies that under algorithm Au(D), the pay-
ment to the individual does not depend on the reported
privacy valuation and is a constant. Note that ti(v̂̂v̂v) ≤
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ρi(v̂̂v̂v),∀i ∈ N . Therefore, the total payment under mecha-
nism M1 is less than that under mechanism M3.

In the next section, we perform a numerical experiment to
compare the proposed mechanisms M1,M2,M3.

VII. NUMERICAL EXAMPLE
A. CONTRACT DESIGN UNDER FULL INFORMATION
Consider a case of two sellers and linear cost under. Let v1 =
1, v2 = 2 and K = 1

4 . By Theorem 4, the optimal contract
under Principle 1 and full information is given by,

â =
3

4
, b̂ =

1

4

√
1.5, ε̂ =

√
6

ε̂1 = ε̂2 = ε̂ =
√

6

p̂1 = v1 · ε̂1 =
√

6

p̂2 = v2 · ε̂2 = 2
√

6 (17)

By Theorem 5, under Principle 2, the solution to (10) is
given by,

s1 =
3

2
, s2 =

1

3

a∗1 = 1, a∗2 =
1

3
, b∗ =

1

6

√
2.5

ε∗1 =
6√
2.5

, ε∗2 =
2√
2.5

(18)

Therefore, the optimal contract under Principle 2 is given by,

p∗1 = v1 · ε∗1 =
6√
2.5

p∗2 = v2 · ε∗2 =
4√
2.5

(19)

The optimal contract under algorithm Au(.) is given by,

b =

√
K

2
=

√
2

4

ε1 = ε2 =
1

b
= 2
√

2, p1 = 2
√

2, p2 = 4
√

2 (20)

This example helps highlight the two reasons whyAnew(.)
outperforms Au(.):
• Using Anew(D) and under Principle 1, both sellers

experience the same privacy loss. We can observe that
the broker assigns the same privacy loss to the sellers
under Au(D) as well. However, Anew(D) has more
degree of freedom than Au(D) and is able to decrease
the privacy loss as compared to Au(D).

• Under Anew(.) and Principle 2, the broker is able to
assign different privacy losses to the two individuals. To
minimize total cost, an individual with a higher privacy
valuation is afforded lower privacy loss in the optimal
contract.

• Under Anew(.), the broker uses less noise (as compared
to Au(.)) to provide the same privacy guarantee, which
in turn increases accuracy. In other words, Anew(.)
improves privacy-accuracy tradeoff.

B. CONTRACT DESIGN UNDER INFORMATION
ASYMMETRY

Consider a case of n = 10 sellers with cost function
c(vi, εi) = vi · (εi)

2. Privacy attitude vi is the individual
i’s private information. The only information available to the
broker is v. In other words, he knows vi ≤ v,∀i ∈ N . In this
part, we compare the expected total payment under proposed
mechanisms.

• Scenario 1: We assume that v = 10 , and v1, . . . , vn
are drawn independently and uniformly from interval
[0, 10]. Under these assumptions, we calculate the ex-
pected payment under mechanism M1, M2, and M3.
Note that the distribution of an individual’s privacy
attitude is not available to the broker, and we only use it
to calculate the expected payment.
Figure 3 illustrates the expected total payment as a
function of K. First, we observe that the total payment
is decreasing as a function K. Second, mechanism
M2 achieves the lowest expected payment as compared
to mechanism M1 and M3. This observation implies
that Anew(D) under Principle 1 outperforms Au(D) in
terms of expected total payment.

• Scenario 2: In this scenario, v = 1, and v1, . . . , vn
are i.i.d. random variables and distributed uniformly
over interval [0, 1]. In this example, mechanism M2

achieves the lowest expected total payment. Moreover,
we observe that the payment under algorithm Au(.)
(mechanism M3) is lower than that under mechanism
M2. This observation can be justified as follows. Under
mechanism M3, the broker offers the same contract to
all the individuals and does not differentiate between
them. In particular, ρi(vvv) = v · ( 2

K )
r
2 , ∀i ∈ N , and

the total payment is independent of the individuals’
privacy valuations. In this scenario, since the variance
of privacy valuation vi is much smaller than that in the
previous example, it may not be beneficial for the buyer
to differentiate between the sellers.

VIII. NON-LINEAR QUERIES
Various machine learning applications such as kernel meth-
ods [23] require non-linear queries. In this section, we discuss
how the proposed algorithm Anew(.) can be generalized for
any non-linear queries.

Let fi(.) : Xn → [0, 1] be a non-linear function and ∆j
i =

max{D,D(j)} |fi(D) − fi(D
(j))|, and Ij = {i|∆j

i 6= 0}.
Suppose the buyer’s goal is to obtain Q(D) =

∑q
i=1 fi(D)

where q is a constant positive integer. We generalize Anew(.)
as follows:

Anew(D) =

q∑
i=1

aifi(D) +
1− ai

2
+N(b) . (21)

We then have the following theorem on the accuracy and
privacy of Anew(D):
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FIGURE 3: Expected payment under different mecha-
nisms when v = 10. In this scenario, Anew(.) under
Principle 1 always outperforms Au(.).
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FIGURE 4: Expected payment under different mecha-
nisms when v = 1. In this scenario, Anew(.) under
Principle 1 and Principle 2 leads to a higher payment
as compared to Au(.).

Theorem 10: Algorithm Anew(D) is [2b2 + (
∑q
i=1

1−ai
2 )2]-

accurate. Moreover, it is [
∑
i∈Ij

ai∆
j
i

b ]-differentially private
with respect to individual j.
Proof. See Appendix. �

Consider Principle 1.3 The following optimization prob-
lem finds the minimum total privacy loss under algorithm
Anew(D),

min
a1,··· ,aq,b

q∑
i=1

(

n∑
j=1

∆j
i ) ·

ai
b

s.t., (2b2 + (

q∑
i=1

1− ai
2

)2) = K

b > 0, 1 ≥ ai ≥ 0, i = 1, 2 · · · , q
(22)

It is worth noting that a closed-form solution to optimization
problem (22) can be calculated using Theorem 5. Moreover,
finding optimal parameters for algorithm Anew(D) under
Principle 2 can be written as follows,

min
a1,··· ,aq,b

n∑
j=1

c(vj ,

q∑
i=1

∆j
i ·
ai
b

)

s.t., (2b2 + (

q∑
i=1

1− ai
2

)2) = K

b > 0, 1 ≥ ai ≥ 0, i = 1, 2 · · · , q
(23)

It is worth mentioning that if the cost functions are linear,
the optimization problem can simplified as follows and can

3In this section we do not try to assign the same privacy loss to the
individuals because it is not always possible.

be solved using Theorem 5.

min
a1,··· ,aq,b

q∑
i=1

(

n∑
j=1

vj∆
j
i ) ·

ai
b

(24)

s.t., (2b2 + (

q∑
i=1

1− ai
2

)2) = K

b > 0, 1 ≥ ai ≥ 0, i = 1, 2 · · · , q
(25)

After solving optimization problems (22) and (23) and
finding optimal privacy loss for each individual, we can use
the same contract design approach provided in Sections V
and VI to find the optimal contract. Therefore, proposed
biased algorithm Anew(D) and mechanism design tech-
niques provided for linear queries remain valid for non-linear
queries.
Example 1: Consider the following nonlinear query:

Q(D) = f1(D) + f2(D) =
d1

1 + d2
2

+
1

d2
1 + 1

,

d1 ∈ [0, 1], d2 ∈ [0, 1],

∆1
1 = 1, ∆2

1 =
1

2
, ∆1

2 =
1

2
, ∆2

2 = 0 (26)

By Theorem 10, the privacy loss and accuracy under
Anew(D) = a1 · d1

1+d22
+ a2 · 1

1+d12
+ 1−a1

2 + 1−a2
2 + N(b)

are:

ε1 =
a1 + 1

2 · a2

b
, ε2 =

1
2 · a1

b
,

accuracy = (
1− a1 + 1− a2

2
)2 + 2b2 . (27)
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FIGURE 5: Non-linear query: privacy loss under different
algorithms.

The optimal values for a1, a2, b under Principle 1 are ob-
tained by the following optimization problem:

min
a1,a2,b

3

2
· a1

b
+

1

2
· a2

b

s.t. (
1− a1 + 1− a2

2
)2 + 2b2 = K,

0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 1, b > 0 (28)

By comparison, using Au(D) = Q(D) + N(b), the
accuracy is 2b2 and ε1 = 3

2
1
b and ε2 = 1

2
1
b . In order to

achieve accuracy K using Au(.), b =
√

K
2 and the total

privacy loss is ε1 + ε2 = 2
√

2
K . Figure 5 shows that the

minimum total privacy loss using Anew(.) is (much) lower
than that under Au(.) for this nonlinear query.

IX. MULTI-DIMENSIONAL DATA
We now discuss the extension to multi-dimensional
databases. Let D = (ddd1, ddd2, · · · , dddn) where dddi =
[d1
i , d

2
i , · · · , dmi ]T ∈ [0, 1]m. Similarly, we define neighbor-

ing database D(i) = (ddd
(i)
1 , ddd

(i)
2 , · · · , ddd(i)

n ) such that dddj = ddd
(i)
j

for all j 6= i and dddi 6= ddd
(i)
i . We say a randomized algorithm

AAA(D) is εi-differentially private with respect to individual i
if for any possible output S and for any D and D(i) we have
[19]:

Pr(AAA(D) ∈ S)

Pr(AAA(D(i)) ∈ S)
≤ exp{εi} . (29)

Consider linear query Q(D) =
∑n
i=1 dddi and noise vector

NNN(b) =
[
N1(b), N2(b), · · · , Nm(b)

]T
where Ni(b) and

Nj(b) are two independent Laplacian noise random variables
with parameter b. Similar to Section III, we define random-
ized algorithmsAAAu(D) andAAAnew(D) as follows:

AAAu(D) = Q(D) +NNN(b)

AAAnew(D) =

n∑
i=1

aidddi +
(1− ai)

2
· 111 +NNN(b), (30)

where, 111 is an all-1 vector. We have the following theorem on
the privacy of algorithmAAAu(.) andAAAnew(.).

Theorem 11:AAAu(.) ism · 1b -differentially private with respect
to individual i, whileAAAnew(.) is m · aib -differentially private
with respect to individual i.

Proof. See Appendix. �

Definition 4 (Accuracy): We say algorithm AAA(D) is K-
accurate if 1

mE(||AAA(D) − Q(D)||22) ≤ K for all possible
database D.

Note that this definition reduces to Definition 2 when m =
1. Using this definition, we are able to find the accuracy of
algorithmAAAu(D) andAAAnew(D) as follows.

Theorem 12: Algorithms AAAu(D) is 2b2-accurate; AAAnew(D)
is
[
(
∑n
i=1

1−ai
2 )2 + 2b2

]
-accurate.

Proof. See Appendix. �

Theorem 11 and 12 together imply that the contract design
problem with multi-dimensional database is exactly the same
as the problem for single-dimensional database. Therefore,
the proposed algorithm Anew(.) and results presented earlier
are equally applicable to the multi-dimensional case.

X. CONCLUSION

In this study, we considered a data contract problem concern-
ing the purchasing of private data between a single buyer and
multiple sellers. We proposed a biased differentially private
algorithm which provides more degree of freedom in con-
tract design problem as compared to the traditional unbiased
differentially private algorithm. We showed that the broker
can take advantage of our proposed algorithm under both
full information and information asymmetric cases, and offer
lower privacy loss to individuals and decrease the cost to the
buyer as compared to using a common unbiased algorithm.

Lastly, we showed that the proposed differentially private
algorithm and contract design techniques are applicable to
non-linear queries as well as multi-dimensional databases.

XI. APPENDIX

Proof. [Theorem 1] Let Sδ(x) = [x, x + δ] be an arbitrary
set, and fA(D)(s) be the pdf of algorithm A(D). Moreover,
Let D = (1, 1, · · · , 1) be a database of all ones, and D′ =
(0, 0, · · · , 0) be a database of all zeros. By the definition of
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differential privacy, we have,

Pr(A(D) ∈ Sδ(x))

Pr(A(D′) ∈ Sδ(x))
≤ exp{ε1 + ε2 + · · ·+ εn}

lim
δ→0

Pr(A(D) ∈ Sδ(x))

Pr(A(D′) ∈ Sδ(x))
= lim

δ→0

δ · fA(D)(x)

δ · fA(D′)(x)
=

fA(D)(x)

fA(D′)(x)

fA(D)(x)

fA(D′)(x)
≤ exp{

n∑
i=1

εi}∀ x ∈ R =⇒

E(A(D)2) =

∫
s2fA(D)(s)ds

≤
∫

exp{
n∑
i=1

εi}s2fA(D′)(s)ds

= exp{
n∑
i=1

εi}E(A(D′)2) =⇒

E(A(D)2)

E(A(D′)2)
≤ exp{

n∑
i=1

εi} (31)

By the definition of accuracy, and inequality E(X)2 ≤
E(X2) for random variable X , we have,

Q(D′) = 0→
E((A(D′)−Q(D′))2) = E(A(D′)2) ≤ K(∗)

Q(D) = n→
E((A(D)−Q(D))2) = E((A(D)− n)2) ≤ K

E(n−A(D)) ≤
√
K → E(A(D)) ≥ n−

√
K ≥︸︷︷︸

as K≤(n/2)2

0

E(A(D)2) ≥ E(A(D))2 ≥ (n−
√
K)2(∗∗)

Using (*) and (**), we have,

(n−
√
K)2

K ≤ E(A(D)2)
E(A(D′)2) ≤ exp{

∑n
i=1 εi}

ln (n−
√
K)2

K ≤
∑n
i=1 εi

(32)

Now assume that K ≤ (m2 )2. Let D′′ =
(1, 1, · · · , 1︸ ︷︷ ︸

m ones

, 0, · · · , 0). Then, similar to (31) , we can show

that,

E(A(D′′)2)

E(A(D′)2)
≤ exp{

m∑
i=1

εi}

Moreover, using the definition of differential privacy, we
have,

Q(D′′) = m→
E((A(D′′)−Q(D′′))2) = E((A(D)−m)2) ≤ K =⇒
E(m−A(D′′)) ≤

√
K =⇒

E(A(D′′)) ≥ m−
√
K ≥︸︷︷︸

as K≤(m/2)2

0 =⇒

E(A(D′′)2) ≥ E(A(D′′))2 ≥ (m−
√
K)2(∗ ∗ ∗)

Using (∗∗) and (∗ ∗ ∗), we have,

(m−
√
K)2

K ≤ E(A(D′′)2)
E(A(D′)2) ≤ exp{

∑m
i=1 εi}

ln (m−
√
K)2

K ≤
∑m
i=1 εi

(33)

Because K ≤ (m2 )2, then ln (m−
√
K)2

K > 0. This implies
that,

m∑
i=1

εi > 0 (34)

This means that at most m − 1 individuals can experience
zero privacy loss. As a result, at least n−m+ 1 individuals
experiences non-zero privacy loss. �

Proof. [Theorem 2] Let D = (d1, d2, · · · , dn) and
D′ = (d′1, d2, d3, · · · , dn) be the two neighboring databases.
Moreover, s = Q(D) =

∑n
i=1 di and s′ = Q(D′) =

d′1 +
∑n
i=2 di. Using triangle inequality we have,

Pr(Au(D) ∈ S) =

∫
x∈S−s

1

2b
exp{−|x|

b
}dx

=

∫
x∈S−s′

1

2b
exp{−|x+ d1 − d′1|

b
}dx

≤ exp{ |d1 − d′1|
b

}
∫
x∈S−s′

1

2b
exp{−|x|

b
}dx

≤ exp{1

b
}Pr(A1(D′) ∈ S) , (35)

where, S − t = {x − t|x ∈ S}. The first inequality holds
because |x+d1−d′1| ≤ |x|+|d1−d′1|. The second inequality
holds as |d1 − d′1| ≤ 1.

Moreover, E(Au(D)−Q(D))2) = E(N(b)2) = 2b2. �

Proof. [Theorem 4] Since b =
√

1
2 (K − n2(1−a)2

4 ), opti-
mization problem (5) can be written as follows,

min
a

a√
1
2 (K − n2(1−a)2

4 )

s.t. 0 ≤ a ≤ 1 (36)

The above optimization problem can be solved using the
first order condition. We have,

d a√
1
2 (K−n2(1−a)2

4 )

da
= 0 =⇒ â = 1− 4K

n2

(
n(1− a)

2
)2 + 2b2 = K =⇒ b̂ =

√
K(n2 − 4K)

2n2

ε̂ =
â

b̂
=

1

n

√
2n2 − 4K

K
.

�
Proof. [Theorem 5] As the cost function is linear, at most

one a∗i can be between zero and one. Otherwise, if 0 < a∗i <
1 and 0 < a∗j < 1, i < j , then we can decrease a∗j and
increase a∗i to keep the accuracy equal to K and decrease the
total cost/payment.

Now let’s assume that a∗1 = a∗2 = a∗3 = · · · = a∗m = 1
and a∗m+1 < 1, and a∗m+2 = · · · , a∗n = 0. Notice that m +

1 > n − 2
√
K, otherwise the accuracy constraint cannot be
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satisfied. To find optimal value a∗m+1, we solve the following
optimization problem,

min
am+1,b

vm+1am+1 +
∑m
i=1 vi

b

s.t., (
n−m− am+1

2
)2 + 2b2 = K (37)

We can simplify the above optimization problem as follows,

min
am+1

vm+1am+1 +
∑m
i=1 vi√

1
2 (K − (n−m−am+1

2 )2)
(38)

Using the first order condition, we can find a∗m+1 = (n −
m)− 4 ·K · vm+1

(n−m)vm+1+
∑m

i=1 vi
. Three cases can happen,

• (n−m)− 4 ·K · vm+1

(n−m)vm+1+
∑m

i=1 vi
≤ 0: We should

solve optimization problem (37) form instead ofm+1.
The optimal value am+1 is equal to zero.

• (n−m)− 4 ·K · vm+1

(n−m)vm+1+
∑m

i=1 vi
> 1: the optimal

value of am+1 is equal to one. We should solve (37) for
m+ 2 to find optimal value of am+2.

• 0 < (n − m) − 4 · K · vm+1

(n−m)vm+1+
∑m

i=1 vi
< 1:

optimal value am+1 is equal to (n − m) − 4 · K ·
vm+1

(n−m)vm+1+
∑m

i=1 vi
.

Given above cases, we can find the optimal solution as
follows,

if m + 1 is the first index where sm+1 ≤ 0 (if si is
non-negative ∀i, then set m = n), then the solution to
optimization problem (10) is given by,

a∗1 = a∗2 = · · · = a∗m−1 = 1, a∗m = min{sm, 1},
am+1 = · · · = an = 0

b∗ =

√
1

2
(K − (

2K · vm
(n−m+ 1) · vm +

∑m−1
j=1 vj

)2)

(39)

�
Proof. [Theorem 6] We assume that v1 ≤ v2 ≤ . . . ≤

vn. Let a∗i , i ∈ N and b∗ be the solution to problem (10).
Since c(v, ε) is convex, dc(vi,

a
b∗ )

da |a=a∗i
=

dc(vj ,
a
b∗ )

da |a=a∗j
if

0 < a∗i < 1 and 0 < a∗j < 1. 4 Therefore, we have,

dc(vi,
a
b∗ )

da
|a=a∗i

= vi · r · (a∗i )r−1/(b∗)r

= vj · r · (a∗j )r−1/(b∗)r =
dc(vj ,

a
b∗ )

da
|a=a∗j

vi · (a∗i )r−1 = vj · (a∗j )r−1,

∀ 0 < a∗i < 1, 0 < a∗j < 1. (40)

4Otherwise, if
dc(vi,

a
b∗ )

da
|a=a∗i

<
dc(vj ,

a
b∗ )

da
|a=a∗j

and 0 < a∗i < 1

and 0 < a∗j < 1, then the broker can improve the objective function by
increasing a∗i and decreasing a∗j and keeping the accuracy equal to K.

Since v1 ≤ v2 ≤ . . . ≤ vn, it is easy to see that a∗i , i ∈ N
can be divided into three different categories:

a∗i = 1, ∀i ∈ {1, . . . ,m1}
vi · (a∗i )r−1 = vj · (a∗j )r−1, ∀i, j ∈ {m1 + 1, . . . ,m2}
a∗i = 0, ∀i ∈ {m2 + 1, . . . , n} (41)

Note that m2 ≥ [n−2
√
K] + 1, otherwise accuracy K is not

achievable. The main goal of algorithm 1 is to find m1 and
m2 through exhaustive search. It is worth mentioning that if
m1 and m2 are known, then a∗i , i ∈ {m1 + 1, . . . ,m2} can
be calculated by following optimization problem,

min
am1+1,b

am1+1

b
s.t.,

(
n−m1 −

∑m2

j=m1+1(
vm1+1

vj
)

1
r−1 am1+1

2
)2 + 2b2 = K

b > 0, 0 < am1+1 < 1,

aj = (
vm1+1

vj
)

1
r−1 am1+1∀m1 + 1 ≤ j ≤ m2. (42)

The above optimization problem can be simplified as follows,

min
am1+1

am1+1√
1
2K −

1
2 (
n−m1−

∑m2
j=m1+1(

vm1+1
vj

)
1

r−1 ·am1+1

2 )2

s.t., 0 < a < 1 (43)

The solution to the above optimization problem can be found
by the first order condition and is given by,

A =

m2∑
k=m1+1

(r−1)
√
vm1+1/vk,

a∗m1+1 =
(n−m1)2 − 4K

A · (n−m1)

a∗j = (
vm1+1

vj
)

1
r−1 · a∗m1+1,∀j ∈ {m1 + 1, . . . ,m2}

(44)

Because m1,m2 are not known beforehand, Algorithm 1
solves optimization problem (43) for all possible values of
m1 and m2, and finds the optimal values for m1 and m2 and
a∗m1+1 such that the total privacy cost is minimized. Note that
if a∗m1+1 obtained from (43) is larger than 1 or less than zero,
the m1 and m2 are not chosen correctly, and Algorithm 1
ignores these cases.

�
Next, we introduce the following theorem which will be

used in the proof of Theorems 7, 8, and 9.
Theorem 13 (Envelope Theorem [24]): Let c(vi, εi) = vi ·
l(εi). Then, a mechanism M =< t(v̂̂v̂v), f(v̂̂v̂v) > implements
f(v̂̂v̂v) and satisfies the IC constraint if and only if,

1) −l(f(v̂i, v̂−i)) is non-decreasing in v̂i for all v̂−i.
2) Ui(v̂̂v̂v|vi) = yi(v̂−i) −

∫ v̂i
0
l(f(si, v̂−i))dsi, where

yi(v̂−i) is an arbitrary function and Ui(v̂̂v̂v|vi) = ti(v̂̂v̂v)−
c(vi, fi(v̂̂v̂v)) is the utility function of individual i after
introduction of the truthful mechanism M .
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Proof. [Theorem 7] Since g(v̂̂v̂v) is constant, −l(gi(v̂̂v̂v)) is
non-decreasing in v̂i. In order to satisfy the second condition
in the Envelope Theorem, we have,

ti(v̂̂v̂v)− c(vi, gi(v̂̂v̂v)) = yi(v̂−i)−
∫ v̂i

0

l(gi(si, v̂−i))dsi

= yi(v̂−i)− v̂il(ε̂),
=⇒ ti(v̂̂v̂v) = yi(v̂−i). (45)

By choosing ti(v̂̂v̂v) = yi(v̂−i), mechanism M1 would satisfy
the IC constraint because it satisfies the second condition of
the Envelope Theorem . Since M1 is incentive compatible,
by the IR constraint we have,

ti(vvv)− c(vi, gi(vvv)) = yi(v−i)− vi · l(ε̂) ≥ 0

=⇒ yi(v−i) ≥ vi · l(ε̂) (46)

The smallest yi(v̂−i) which satisfies the above equation is
v · l(ε̂). Therefore, M1 satisfy the IC and IR constraints with
a minimum payment if and only if ti(vvv) = v · l(ε̂). �

Proof. [Theorem 8] The proof is similar to the proof of
Theorem 7. It is easy to see that hi(v̂i, v̂−i) is non-increasing
in v̂i. Therefore, −l(hi(v̂i, v̂−i)) is not-decreasing in v̂i for
all v̂−i. In order to satisfy the second condition of the
Envelope Theorem, we have,

τi(v̂̂v̂v)− c(vi, hi(v̂̂v̂v)) = yi(v̂−i) +

∫ v̂i

0

l(h(si, v̂−i))dsi,

τi(v̂̂v̂v) = yi(v̂−i) + vihi(v̂̂v̂v) +

∫ v̂i

0

l(hi(si, v̂−i))dsi

(47)

The above τi(v̂̂v̂v) function satisfies the conditions in Envelope
Theorem. Therefore, M2 is incentive compatible. Next, we
find yi(v̂−i) using the IR constraint. Since the sellers report
their privacy attitudes truthfully at NE, we have,

τi(vvv)− c(vi, hi(vvv)) ≥ 0,

yi(v−i)−
∫ vi

0

l(hi(si, v−i))dsi ≥ 0,∀vi. (48)

Therefore, if yi(v−i) = maxvi
∫ vi

0
l(hi(si, v−i))dsi,

the payment would be minimized and IR constraint
would be satisfied. Since l(.) is a non-negative function,
maxvi

∫ vi
0
l(hi(si, v−i)) =

∫ v
0
l(hi(si, v−i)). As a result,

M2 satisfies both IR and IC constraints with the minimum
payment if and only if,

τi(v̂̂v̂v) =

∫ v

v̂i

l(hi(si, v̂−i))dsi + v̂i · l(hi(v̂̂v̂v)) (49)

�
Proof. [Theorem 9] The proof is similar to the proof of

Theorem 7. �
Proof. [Theorem 10]

E([Anew(D)−Q(D)]2)

= [

q∑
i=1

(ai − 1)fi(D) +
1− ai

2
]2 + E(N(b)2)

≤ (

q∑
i=1

1− ai
2

)2 + 2b2, (50)

where the inequality holds because 0 ≤ fi(D) ≤ 1.
Let D = (d1, d2, · · · , dn) and D′ = (d′1, d2, d3, · · · , dn)
be the two neighboring databases. Moreover, let s =∑q
i=1

[
ai · fi(D) + 1−ai

2

]
and s′ =

∑n
i=1

[
ai · fi(D′) + 1−ai

2

]
.

We then have,

Pr {Anew(D) ∈ S} =

∫
x∈S−s

1

2b
exp{−|x|

b
}dx

=

∫
x∈S−s′

1

2b
exp{−

|x+
∑q
i=1 ai[·fi(D)− gi(D′)]|

b
}dx

≤ exp{
∑q
i=1 ai|fi(D)− fi(D′)|

b
}
∫
x∈S−s′

exp{− |x|b }
2b

dx

≤ exp{
∑
i∈I1 ai∆

1
i

b
}Pr(Anew(D′) ∈ S) ,

(51)

where S − t = {x − t|x ∈ S}. Therefore, Anew(D) is∑
i∈I1

ai∆
1
i

b -differentially private with respect to individual

1. Similarly, we can show that Anew(D) is
∑

i∈Ij
ai∆

j
i

b -
differentially private with respect to individual j.

�

Proof. [Theorem 11]
Let D = (ddd1, ddd2, · · · , dddn) and D′ = (d̂̂d̂d1, ddd2, ddd3, · · · , dddn)

be the two neighboring databases where ||ddd1 − d̂̂d̂d1||1 ≤ 1.
Moreover, let s =

∑n
i=1 ai · dddi + 1−ai

2 111 and s′ = a1d̂̂d̂d1 +
1−a1

2 111 +
∑n
i=2 ai · dddi + 1−ai

2 111. We then have

Pr {AAAnew(D) ∈ S}

=

∫
xxx∈S−s

m∏
i=1

(
1

2b
exp{−

|xi|
b
}
)
dx1 · · · dxm

=

∫
xxx∈S−s′

m∏
i=1

(
1

2b
exp{−

|xi + a1 · di1 − a1 · d̂
i
1|

b
}
)
dx1 · · · dxm

≤ exp{
a1 ·

∑m
i=1 |d

i
1 − d̂

i
1|

b
}
∫
xxx∈S−s′

m∏
i=1

1

2b
exp{−

|xi|
b
}dx1 · · · dxm

≤ exp{m ·
a1

b
}Pr(AAAnew(D

′
) ∈ S) , (52)

Therefore, AAAnew(D) is m · a1b -differentially private with
respect to individual 1. Similarly, we can show thatAAAnew(D)
is m · aib -differentially private with respect to individual i.
Similarly, we can show thatAAAu(.) is m

b -differentially private
with respect to each agent.

�
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Proof. [Theorem 12]
1

m
E{||AAAnew(D) − Q(D)||22}

=
1

m
E


m∑

j=1

Nj(b) +
n∑

i=1

aid
j
i

+
1 − ai

2

2 =

1

m

m∑
j=1

E

Nj(b)
2

+ (
n∑

i=1

aid
j
i

+
1 − ai

2
)
2

+ Nj(b)
n∑

i=1

aid
j
i

+
1 − ai

2


≤

1

m

m∑
j=1

[2b
2

+ (
n∑

i=1

1 − ai

2
)
2
] = 2b

2
+ (

n∑
i=1

1 − ai

2
)
2

Similarly, we can show thatAAAu(D) is 2b2-accurate. �
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