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Abstract

Domain adaptation (DA) tackles the issue of distribution shift
by learning a model from a source domain that general-
izes to a target domain. However, most existing DA meth-
ods are designed for scenarios where the source and target
domain data lie within the same feature space, which limits
their applicability in real-world situations. Recently, hetero-
geneous DA (HeDA) methods have been introduced to ad-
dress the challenges posed by heterogeneous feature space
between source and target domains. Despite their successes,
current HeDA techniques fall short when there is a mismatch
in both feature and label spaces. To address this, this pa-
per explores a new DA scenario called open-set HeDA (OS-
HeDA). In OSHeDA, the model must not only handle hetero-
geneity in feature space but also identify samples belonging
to novel classes. To tackle this challenge, we first develop a
novel theoretical framework that constructs learning bounds
for prediction error on target domain. Guided by this frame-
work, we propose a new DA method called Representation
Learning for OSHeDA (RL-OSHeDA). This method is de-
signed to simultaneously transfer knowledge between hetero-
geneous data sources and identify novel classes. Experiments
across text, image, and clinical data demonstrate the effec-
tiveness of our algorithm. Model implementation is available
at https://github.com/pth1993/OSHeDA.

1 Introduction
Machine learning (ML) techniques have achieved unprece-
dented success over the past decades in numerous areas (Le-
Cun, Bengio, and Hinton 2015). However, ML systems are
often built on the assumption that training and testing data
are independent and identically distributed, which is com-
monly violated in real-world applications where the envi-
ronment changes during model deployment. Existing works
have shown that the performance of ML models often dete-
riorates due to distribution shifts between training and test-
ing data (Ben-David et al. 2010; Quiñonero-Candela et al.
2022). To learn a model robust under distribution shifts,
domain adaptation (DA) (Ben-David et al. 2010; Mansour,
Mohri, and Rostamizadeh 2009) has been proposed to trans-
fer knowledge from a source domain that possesses abun-
dant labeled data to a different but relevant target domain.
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Figure 1: A motivating example about OSHeDA in the con-
text of screening diseases using electrocardiogram (ECG)
data. While digital ECGs comprise the majority of labeled
data for training ML models for disease screening, physi-
cal or paper ECGs remain prevalent worldwide. Thus, the
transfer of knowledge from digital ECG datasets is essen-
tial to support the training of ML models that analyze paper
ECGs. Moreover, ML systems must effectively manage rare
abnormalities (indicated with gray boxes), which may not be
available in training data, to prevent misdiagnosis.

Existing DA methods, however, typically assume a homo-
geneous scenario where the source and target domains have
the same feature and label spaces. Consequently, they may
fail when the source and target domain data lie in different
spaces. For example, heterogeneous feature space is com-
mon in biomedical domains in which medical terms under-
goes continuous evolution, leading to the retirement of out-
dated terms (e.g., ICD-9 coding system) and the introduc-
tion of novel ones (e.g., ICD-10 coding system) (Grief et al.
2016). In such cases, acquiring training data that seamlessly
aligns with target domain’s feature space can be impracti-
cal or excessively costly. Heterogeneous domain adaptation
(HeDA) methods have emerged to handle the heterogeneity
observed in distinct feature spaces, which often vary signif-
icantly between domains (Li et al. 2020; Zhao et al. 2022).

Despite the significant successes achieved by these HeDA
methods, they face a major limitation: current HeDA tech-
niques can only address heterogeneity in feature space and
are inadequate when there is a mismatch in both feature and
label spaces. This limitation restricts the practical applica-
tion of HeDA methods in many real-world scenarios because
neglecting label mismatch, such as new classes emerging in

ar
X

iv
:2

41
2.

13
03

6v
1 

 [
cs

.L
G

] 
 1

7 
D

ec
 2

02
4



the target domain, can lead to negative transfer effects from
the source to the target domains (Liu et al. 2019).

To overcome this limitation, this study explores a new DA
scenario called open-set heterogeneous domain adaptation
(OSHeDA). In OSHeDA, ML methods must not only man-
age heterogeneity in feature space between source and target
domains but also identify samples belonging to novel classes
in the target domain. Figure 1 illustrates a real example from
clinical applications for this novel learning scenario. In this
instance, the adaptation process aims to transfer knowledge
from digital electrocardiogram (ECG) to paper ECG formats
(heterogeneous). Moreover, ML models for ECG-based di-
agnosis must also detect rare abnormalities that were not in-
cluded in the training data (open-set).

To address the challenge of feature and label mismatch
in OSHeDA, we first develop a novel theoretical analysis
that constructs learning bounds for the prediction error of
ML models on the target domain. Guided by this theoret-
ical analysis, we then design a novel representation learn-
ing method named Representation Learning for Open-Set
Heterogeneous Domain Adaptation (RL-OSHeDA). This
method is proposed to transfer knowledge between hetero-
geneous data sources and identify novel class simultane-
ously. Unlike existing HeDA methods, RL-OSHeDA trans-
fer knowledge from source to target domains by align-
ing representations between source and target domains for
known classes while also enforcing the representations of
novel class in target domains to move apart from the known
classes of the source and target domains. To effectively iden-
tify samples from novel class within unlabeled data, RL-
OSHeDA optimizes a non-negative risk estimator for open-
set and employs pseudo labeling to enrich the labeled data.

In summary, the contributions of our work are as follows:
• We conduct a theoretical analysis to establish learning

bounds in the OSHeDA scenario. This analysis empha-
sizes the importance of minimizing the distance between
source and target domains for known classes, while max-
imizing the separation from unknown classes. Moreover,
we investigate the impact of pseudo-label and the non-
negative risk estimator for open-set in OSHeDA.

• Motivated by the theoretical results, we propose a novel
algorithm (RL-OSHeDA) based on representation learn-
ing to transfer knowledge from source to target domains.

• We conduct experiments on real data from clinical, com-
puter vision, and natural language processing domains to
validate the effectiveness of our method for OSHeDA.

2 Related Works
In this section, we summarize existing research from related
areas including heterogeneous domain adaptation, open-set
domain adaptation, and open-set semi-supervised learning.
Heterogeneous Domain Adaptation (HeDA). HeDA aims
to transfer knowledge across domains with distinct fea-
ture spaces and data distributions. Depending on whether
unlabeled target data are used in the adaptation process,
HeDA approaches are categorized into three types: super-
vised, semi-supervised, and unsupervised methods. Super-
vised HeDA methods utilize ample labeled data from both

source and target domains for adaptation (Hoffman et al.
2013; Li et al. 2013; Hoffman et al. 2014). In contrast, semi-
supervised HeDA methods require only a small number of
labeled target domain data and utilize unlabeled instances
from the target domain to facilitate transfer (Yao et al. 2020;
Li et al. 2020; Fang et al. 2022; Zhao et al. 2022; Yao et al.
2019). Finally, unsupervised HeDA methods operate with-
out any labeled target data, relying solely on unlabeled in-
stances and labeled source data to align cross-domain fea-
ture representations (Shen and Guo 2018; Li et al. 2018; Zou
et al. 2018). However, successful transfer in unsupervised
settings depends on specific assumptions about domain rela-
tionships (Liu, Zhang, and Lu 2020).
Open-Set Domain Adaptation (OSDA). OSDA represents
a realistic and challenging scenario in DA where the target
domain includes instances whose classes are not observed
in the source domain, alongside a shift in feature distribu-
tion between the two domains. In contrast to the OSHeDA,
OSDA assumes a homogeneous feature space between the
source and target domains. Existing approaches for OSDA
can be categorized into two main groups: adversarial learn-
ing and self-supervised learning. Adversarial learning meth-
ods employ adversarial networks to detect unknown sam-
ples and align the distributions of known samples between
the source and target domains (Saito et al. 2018; Luo et al.
2020). On the other hand, self-supervised learning meth-
ods utilize techniques like data augmentation to distinguish
between known and unknown instances in the target do-
main (Bucci, Loghmani, and Tommasi 2020; Li et al. 2021).
Open-Set Semi-supervised Learning (OS-SSL). OS-SSL
is a SSL scenario that addresses novel classes within un-
labeled data during training. Unlike OSDA, OS-SSL re-
quires only a small amount of labeled data. However, it
assumes that both labeled and unlabeled data of known
classes are drawn from the same distribution, and this set-
ting does not account for novel classes during inference.
Methods designed for OS-SSL can be broadly categorized
into two types based on how they detect novel classes:
criterion-based approaches and detector-based approaches.
Criterion-based approaches use heuristic rules to identify
novel classes (Chen et al. 2020; Huang, Yang, and Gong
2022; Du et al. 2023; He et al. 2022). In contrast, detector-
based approaches employ parameterized detectors to filter
outliers (Yu et al. 2020; Huang et al. 2021; Wang et al. 2023;
Saito, Kim, and Saenko 2021).

3 Problem Formulation
Notations. Let X d and Yd denote the feature and la-
bel spaces of a domain d associated with a distribution
Pd(Xd, Yd) : X d × Yd → [0, 1] and labeling function
hd : X d → ∆

(
Yd
)

where Xd and Yd are random variables
that take values in X d and Yd, and ∆

(
Yd
)

is a probability
simplex over Yd. Consider a model h : X d → ∆

(
Yd
)
, then

the expected error of h under domain d for some loss func-
tion L : ∆

(
Yd
)
× Yd → R+ (e.g., 0-1, cross-entropy loss)

can be defined as E (Pd, h) = EPd
[L (h (Xd) , Yd)] .

Open-Set Heterogeneous Domain Adaptation (OSHeDA)
Setup. In DA, we consider d ∈ {s, t} where s and t denote



the source and target domains, respectively. Different from
conventional DA setup where feature and label spaces re-
main the same between source and target domains, in OS-
HeDA, we have X s ̸= X t (heterogeneous) and Ys ⊂ Yt

(open-set). Because Ys ⊂ Yt, we use Y to denote the ran-
dom variable of label in both source and target domains, and
we have Ps (Y ∈ Yt \ Ys) = 0. Moreover, classes in the
sets Yt \Ys are referred to as unknown in our setting. Given
sets of samples Ds = {xs

i , y
s
i }

ns
i=1

i.i.d∼ Ps (Xs, Y ) (source

dataset), Dtl = {xt
i, y

t
i}

ntl
i=1

i.i.d∼ Pt (Xt, Y |Y ∈ Ys) (la-

beled target dataset), and Dtu = {xt
i}

ntu
i=1

i.i.d∼ Pt (Xt, Y )
(unlabeled target dataset), where ns, ntl , ntu are size of
datasets and ntl ≪ ns, ntu , the goal of OSHeDA is to learn
a model h : X t → ∆(Yt) from Ds, Dtl , Dtu such that the
expected error on the target domain E (Pt, h) is small.
Representation learning. Representation learning is a com-
mon approach for transferring knowledge from a source to
a target domain in DA (Zhao et al. 2019; Ganin et al. 2016;
Albuquerque et al. 2019; Pham, Zhang, and Zhang 2023),
and we will leverage this method in OSHeDA. Specifically,
it maps the input spaces X s and X t of the source and target
domains to a shared representation space Z using two rep-
resentation mappings: fs : X s → Z and ft : X t → Z . A
shared classifier h : Z → ∆(Yt) can then be employed to
make predictions from this representation space. Notably, h
can be utilized for both domains because Ys ⊂ Yt.

4 Theoretical Analysis
In our analysis, we consider Jensen–Shannon (JS) diver-
gence (DJS) as the statistical distance between two do-
mains. While different distances (Ben-David et al. 2010)
were used in domain adaptation literature, we adopt JS di-
vergence because it is aligned with the training objective of
adversarial learning (Goodfellow et al. 2014), a technique
used in many representation learning-based domain adap-
tation works (Zhao et al. 2019; Ganin et al. 2016; Pham,
Zhang, and Zhang 2023). Next, we present the main theo-
rems, with detailed proofs provided in Appendix A.

4.1 Learning bounds for OSHeDA (infinite case)
To simplify notations used in our following analysis, we de-
note Pt,k(·) = Pt(·|Y ∈ Ys) and Pt,u(·) = Pt(·|Y /∈ Ys)
as the distributions of target domain conditioned on known
and unknown classes, respectively. We also introduce two
distributions Pu

s and Pu
t induced from Ps and Pt by the two

mappings fu
s and fu

t such that fu
s (X

s, Y ) = (Xs, unk)
and fu

t (X
t, Y ) = (Xt, unk) where unk denotes unknown

class. In addition, we adopt an assumption commonly used
in DA literature (Nguyen et al. 2021; Mansour, Mohri, and
Rostamizadeh 2009; Cortes and Mohri 2014) as follows.
Assumption 1 (Bounded loss) Assume loss function L de-
fined on input space X and output space Y is upper bounded
by a constant C, i.e., ∀x ∈ X , y ∈ Y , h ∈ H, we have
L(h(x), y) ≤ C.
We note that this assumption is indeed reasonable rather than
stringent. For example, while Assumption 1 does not hold
for the cross-entropy loss typically utilized in classification,

we can adjust this loss to ensure that it satisfies Assump-
tion 1 (Pham, Zhang, and Zhang 2024). Based on this as-
sumption, we then provide an upper bound for prediction
error on the target domain in OSHeDA as follows.

Theorem 1 Given a loss function L satisfying Assump-
tion 1, then for any h ∈ H, fs ∈ Fs, ft ∈ Ft, we have:

E (Pt, h ◦ ft) ≤ λE (Ps, h ◦ fs)︸ ︷︷ ︸
source error

+ E(Pu
t , h ◦ ft)− λE (Pu

s , h ◦ fs)︸ ︷︷ ︸
open-set difference

+
√
2λC

(
(DJS (Ps(Z) ∥ Pt,k(Z)))

1
2

+(DJS (Ps(Z, Y ) ∥ Pt,k(Z, Y )))
1
2

)
︸ ︷︷ ︸

domain distance

where λ = Pt(Y ∈ Ys), H, Fs, Ft are hypothesis classes
for h, fs, ft, and Ps(Z) and Pt,k(Z) are the distributions in-
duced from Ps(Xs) and Pt,k(Xt) by fs and ft, respectively.

Remark 1 The upper bound in Theorem 1 shed a light on
achieving good accuracy on target domain. Specifically, to
minimize E (Pt, h ◦ ft), the model need to optimize three
terms: (i) the source error E (Ps, h ◦ fs), (ii) the open-set
difference E (Pu

t , h ◦ ft) − λE (Pu
s , h ◦ fs), and (iii) the

distances of marginal and joint distributions between source
domain and target domain conditioned on known labels
DJS (Ps(Z) ∥ Pt,k(Z)) and DJS (Ps(Z, Y ) ∥ Pt,k(Z, Y )).

We want to emphasize that minimizing the distance of the
joint distribution between the source and target domains,
DJS (Ps(Z, Y ) ∥ Pt,k(Z, Y )), requires knowledge of the
label distribution in the target domain Pt,k(Y ). Therefore,
access to labeled target data during training is essential to
avoid negative transfer. Note that the concept of open-set
difference is not exclusive to OSHeDA. This term also ap-
pears in existing works for OSDA (Fang et al. 2020) and
positive-unlabeled learning (Kiryo et al. 2017) which are
special cases of our setting. Thus, this demonstrates the con-
sistency between our work and the existing literature. Next,
we present a lower bound for OSHeDA.

Proposition 1 Given a loss function L satisfying Assump-
tion 1, then for any h ∈ H, fs ∈ Fs, ft ∈ Ft, we have:

E (Pt, h ◦ ft) ≥ λE (Pt,k, h ◦ ft) + (1− λ) E (Pu
s , h ◦ fs)

−
√
2(1− λ)C (DJS (Ps(Z) ∥ Pt,u(Z)))

1
2

where Pt,u(Z) is distribution induced from Pt,u(Xt) by ft.

Remark 2 Theorem 1 shows the necessity of reducing
E (Ps, h ◦ fs) to achieve high accuracy on target do-
main. However, it may unavoidably increase E (Pu

s , h ◦ fs).
This observation, combined with Proposition 1, suggests
that to avoid the large lower bound for the target er-
ror E (Pt, h ◦ ft), we should increase the distance of the
marginal distribution between the source domain and the
unknown data in target domain, DJS (Ps(Z) ∥ Pt,u(Z)).
In other words, we should segregate the representations of
known classes from those of unknown class.



4.2 Learning bound for OSHeDA (finite case)
The learning bounds discussed in Section 4.1 are only appli-
cable for the setting when we have access to unlimited data
from source and target domains. In such cases, minimizing
JS divergence of data distribution between these domains
is equivalent to achieving invariant representations through
adversarial learning (Goodfellow et al. 2014). However, we
only work with finite data in practice. Thus, we present the
following result, which provides a guarantee for using ad-
versarial learning to optimize JS divergence from finite data.

Proposition 2 (Adapted from Biau et al. (2020)) The er-
ror in minimizing JS divergence of data distributions be-
tween source and target domains in representation space,
using finite data, is up to O

((
1/
√
ns + 1/

√
nt

))
.

where ns and nt are the size of source and target datasets.

Remark 3 Proposition 2 states that the performance of
minimizing JS divergence from finite data is proportional to
the dataset size. Note that in OSHeDA, we only have access
to limited label data from target domain which then results
in significant error in estimating JS divergence only from
labeled source and target data. In essence, this result under-
scores the need for the development of an effective approach
to utilize unlabeled target data for estimating the JS diver-
gence, which involves techniques like pseudo-labeling.

Therefore, we apply pseudo-labeling on unlabeled data to
enrich labeled target data. Let g be pseudo-label model and
denote N(Pt,k, g) = E [DJS (Pt,k(g(Z)) ∥ Pt,k(Y |Z))] as
the noise of g with respect to the target domain conditioned
on known labels. Then, the impact of pseudo-labeled data
can be illustrated in a new bound for OSHeDA as follows.

Theorem 2 Given a loss function L satisfying Assump-
tion 1, for any 0 < δ < 1, with probability at least 1− δ, the
following holds for all h ∈ H, fs ∈ Fs, ft ∈ Ft:

E (Pt, h ◦ ft) ≤ λÊ (Ps, h ◦ fs) + Ê (Pu
t , h ◦ ft)

− λÊ (Pu
s , h ◦ fs) +

√
2λC

(
(DJS (Ps(Z) ∥ Pt,k(Z)))

1
2

+(DJS (Ps(Z, Y ) ∥ Pt,k(Z, g(Z))))
1
2 + (N(Pt,k, g))

1
2

)
+O

λC

√
ds log ns + ds log |Yt|+ log 1

δ

ns

+C

√
dt log nt + dt log |Yt|+ log 1

δ

nt


where Ê (Ps, h ◦ fs), Ê (Pu

t , h ◦ ft), Ê (Pu
s , h ◦ fs) are em-

pirical errors calculated on samples from distributions Ps,
Pu
t , Pu

s , nt = ntl + ntu , and ds, dt are Natarajan dimen-
sion (Natarajan 1989) of hypothesis classes H◦Fs, H◦Ft.

Theorem 2 shows that the error in the target domain depends
on the quality of the pseudo-label model g, with higher-
quality g being more effective at reducing noise. Addition-
ally, the bound emphasizes the importance of aligning the
joint distributions between the source and target domains

in OSHeDA. This makes OSHeDA more challenging com-
pared to homogeneous DA (HoDA), where source and tar-
get data lie on the same space. In contrast, HoDA meth-
ods can attain good performance under certain conditions
by solely aligning the marginal distributions of representa-
tions between source and target domains. We will illustrate
this contrast through the bound for HoDA in Section 4.3.

4.3 Learning bound for HoDA
Before constructing the learning bound for HoDA, we intro-
duce an assumption about the representation Z as follows.

Assumption 2 (Sufficient representation) Let Is(·, ·) be
the mutual information between two random variables in
the source domain. We assume Is(Z, Y ) = Is(Xs, Y ). In
particular, Is(Z, Y ) = DKL (Ps(Z, Y ) ∥ Ps(Z)⊗ Ps(Y ))
and Is(Xs, Y ) = DKL (Ps(Xs, Y ) ∥ Ps(Xs)⊗ Ps(Y ))
where DKL is KL divergence between two distributions.

Note that Assumption 2 is reasonable because we have ac-
cess to labeled data of source domain and the dimension of
Y is often smaller than that of Z . Based on this, we establish
the learning bound in HoDA under the covariate shift below.

Proposition 3 Suppose Assumptions 1 and 2 hold and the
distribution shift between source and target domains is co-
variate shift (i.e., Ps(X) ̸= Pt(X), Ps(Y |X) = Pt(Y |X)),
then for any h ∈ H and f ∈ F , we have:

E (Pt, h ◦ f) ≤ E (Ps, h ◦ f) +
√
2C (DJS (Ps(Z) ∥ Pt(Z)))

1
2

In HoDA, due to the homogeneity of the input space, we can
utilize a single representation mapping f for both the source
and target domains. Note that the bound in Proposition 3 de-
pends solely on the distance of the marginal distributions be-
tween the source and target domains, DJS (Ps(Z) ∥ Pt(Z)),
which can be effectively minimized even without access to
labeled data in the target domain. Clearly, covariate shift as-
sumption is only reasonable in HoDA, where the source and
target data share the same feature and label spaces.

5 Methodology
Motivated by theoretical results presented in Section 4, we
introduce RL-OSHeDA, a representation learning method
specifically designed for OSHeDA. Our method aims to si-
multaneously optimize both the upper bound in Theorem 2
and the lower bound in Proposition 1. RL-OSHeDA features
two distinct representation mappings, fs and ft, which map
heterogeneous source and target feature spaces to a shared
representation space, along with a classifier h that makes
predictions based on these representations. Figure 2 presents
the overall architecture of RL-OSHeDA, while pseudo code
describing training process can be found in Appendix B.2.

5.1 Objective function
To improve predictive performance in OSHeDA, our method
targets the following: (i) minimizing prediction errors on
both source and labeled target data, (ii) minimizing the
distances of marginal and label-conditioned representation
distributions for known classes between source and target



Figure 2: Overall architecture of RL-OSHeDA is illustrated with a motivating example from ECG-based diagnosis application.
We leverage 2-stage learning process to update model parameters. In stage 1, model parameters are updated by optimizing Lcls.
In stage 2, model parameters are updated by optimizing Lcls, Linv , Lseg , and Losd with the help from pseudo-label model g.

data, (iii) maximizing the distances of marginal representa-
tion distributions between known and unknown classes, and
(iv) minimizing the open-set difference. Specifically, RL-
OSHeDA optimizes the following objective function:

L = Lcls + Linv − Lseg + Losd (1)

where Lcls is the classification error computed from source
and labeled target datasets Ds and Dtl , defined as follows:

Lcls =
λ

ns

ns∑
i=1

CE (h (fs (x
s
i )) , y

s
i ) +

1

ntl

ntl∑
i=1

CE
(
h
(
ft
(
xt
i

))
, yti
)

(2)Here CE is the cross-entropy loss.
Linv denotes the distances of marginal and label-

conditioned representation distributions for known classes
between source and target datasets. Note that, we minimize
the distance of the label-conditioned representation distri-
bution P (Z|Y ), rather than the joint distribution P (Z, Y ),
as noted by Pham, Zhang, and Zhang (2023). As shown in
Proposition 2, Linv can be defined based on JS divergence
and minimized through adversarial learning. However, the
number of discriminators required for this approach scales
linearly with the number of classes, leading to instability
in training when the dataset has a large number of classes.
To address this issue, we implement Linv using maximum
mean discrepancy (MMD) defined as follows:

Linv = ∥µs − µt,k∥22 +
|Ys|∑
m=1

∥∥µm
s − µm

t,k

∥∥2
2

(3)

where µs (resp. µt,k) is centroid of representations from
source data (resp. target data belonging to known classes),
and µm

s (resp. µm
t,k) is centroid of representations from

source data (resp. target data) belonging to known class m.
Note that µt,k and µm

t,k are computed using both instances
with ground-truth labels from labeled target data and those
with high-quality pseudo-labels (see Section 5.2) from unla-
beled target data to provide a more accurate estimation.

Lseg is the distances between marginal representation dis-
tributions of known and unknown classes. Similarly, we im-

plement Lseg with MMD as follows:

Lseg = ∥µk − µu∥22 (4)

where µk (resp. µu) are centroids of representations from
both source and target datasets belonging to ground-truth
and pseudo known (resp. unknown) classes.

Losd represents the open-set difference, as detailed in
Theorem 2. The optimal value for the open-set difference
is 0. However, due to the flexibility of deep neural networks,
this term can become excessively negative during training
and adversely affect model performance. To address this is-
sue, we implement Losd as a non-negative risk estimator:

Losd = max

(
0,

1

nt

nt∑
i=1

CE
(
h
(
ft
(
xt
i

))
, unk

)
− λ

ns

ns∑
i=1

CE (h (fs (x
s
i )) , unk)

)
(5)where nt = ntl + ntu is the size of the target dataset.

5.2 Pseudo-labeling using 2-stage learning
The accuracy of Linv and Lseg highly depends on the quality
of pseudo-labels. Traditionally, the pseudo-label model g is
derived by modifying the classifier h (e.g., using hard labels
calculated from h’s outputs as pseudo-labels), which creates
a coupling between g and h. Specifically, g is defined as a◦h,
where a is an operator applied to the output of h (e.g., a :=
argmax). When the distributions of the source and target
domains are well-aligned, this coupling is harmless, as the
optimal solution for g also aligns with that for h. However, at
the beginning of the training process, when the distributions
of the source and target domains are not aligned, g and h
have completely different objective functions, resulting in a
trade-off between them. To address this issue, we propose a
2-stage learning approach as follows:
• Stage 1 (epoch < T ): Update fs, ft, h using Lcls.
• Stage 2 (epoch ≥ T ): Update fs, ft, h using L.

where T is a threshold indicating when to switch from stage
1 to stage 2. In stage 1, optimizing Lcls partially aligns the
source and target domains, thereby reducing the trade-off
between g and h during the optimization of L in stage 2.
Additionally, rather than simply using the hard labels with



Table 1: Prediction performances (HOS, OS∗, UNK) of RL-OSHeDA and baselines for OSHeDA scenario on 7 datasets. We
report average results over 10 random seeds for each dataset.

CIFAR10 & ILSVRC2012 ImageCLEF-DA Multilingual Reuters Collection NUSWIDE & ImageNet
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

DS3L 61.49±0.74 59.04±1.00 64.40±1.06 58.62±2.04 52.87±2.70 66.74±2.77 59.35±0.94 52.92±1.27 67.57±1.24 67.61±1.65 66.17±2.22 69.20±2.30
KPG 57.27±0.50 54.73±0.00 60.30±1.11 40.68±0.94 34.60±0.00 50.79±2.91 11.27±0.07 8.59±0.00 17.04±0.96 55.18±1.17 52.60±0.00 58.10±2.45
OPDA 53.30±0.77 48.22±1.00 60.26±1.11 53.17±1.83 45.28±2.13 65.76±2.76 55.85±0.96 48.47±1.23 65.94±1.23 71.06±1.44 66.60±1.98 76.38±2.09
PL 42.75±0.52 37.12±0.49 52.31±1.10 39.20±1.62 31.93±1.66 54.34±2.91 42.85±0.81 34.56±1.00 57.86±1.29 42.43±0.26 34.05±0.00 61.15±2.10
SCT 59.61±0.75 57.35±1.00 62.33±1.08 58.76±2.05 53.09±2.71 66.71±2.76 61.17±0.94 54.96±1.30 69.00±1.21 70.42±1.49 68.00±2.20 73.10±1.99
SSAN 60.38±0.73 59.01±1.00 62.01±1.08 58.61±2.05 53.18±2.74 66.14±2.74 58.25±0.93 51.99±1.25 66.26±1.24 67.98±1.49 66.25±2.04 69.85±2.21
STN 61.59±0.72 58.80±0.98 64.87±1.05 56.25±2.06 49.80±2.69 65.84±2.76 59.21±0.96 52.91±1.31 67.24±1.23 67.75±1.23 64.80±1.42 71.08±2.16
SL 60.74±0.74 58.29±1.00 63.67±1.08 58.59±2.05 52.84±2.70 66.71±2.76 58.53±0.96 52.14±1.32 66.74±1.21 69.41±1.64 66.63±2.26 72.57±2.23
RL-OSHeDA 72.33±0.70 67.88±0.98 77.81±0.97 63.98±2.04 56.63±2.72 74.80±2.51 65.39±0.91 54.47±1.21 81.97±0.96 80.01±1.30 74.65±2.01 86.35±0.81

Office & Caltech256 Wikipedia PTB-XL Average over datasets
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

DS3L 72.06±2.48 67.41±3.68 78.15±2.89 56.00±2.01 50.72±2.36 66.24±2.80 30.30±1.19 34.95±0.58 26.74±1.82 57.92±1.58 54.87±1.97 62.72±2.12
KPG 34.46±0.99 29.18±0.00 45.34±3.58 24.82±0.42 16.40±0.00 52.52±3.18 N/A N/A N/A 37.28±0.68 32.68±0.00 47.35±2.36
OPDA 65.23±2.58 57.70±3.43 76.23±3.03 52.66±1.92 45.94±1.81 65.42±3.12 31.47±1.22 36.35±0.63 27.74±1.86 54.67±1.53 49.79±1.74 62.53±2.17
PL 48.92±1.36 40.38±1.13 68.41±3.40 41.87±1.65 35.14±1.48 58.40±3.10 26.18±1.37 36.43±0.55 20.43±1.66 40.60±1.08 35.66±0.90 53.27±2.22
SCT 75.72±2.14 71.05±3.20 81.79±2.54 58.41±2.01 52.86±2.39 68.42±2.74 26.23±1.65 46.48±1.71 18.27±1.60 59.89±1.58 57.10±1.93 64.49±1.99
SSAN 72.95±2.36 67.99±3.37 79.67±2.88 58.37±1.76 52.76±1.95 68.36±2.80 25.16±1.47 40.40±0.65 18.27±1.54 57.39±1.54 55.94±1.86 61.51±2.07
STN 72.26±2.28 66.46±3.30 79.84±2.75 57.75±1.91 51.40±2.13 69.00±2.97 27.08±0.96 22.63±0.26 33.72±1.65 57.41±1.45 52.40±1.73 64.51±2.08
SL 72.14±2.54 67.72±3.75 77.89±2.96 57.10±1.97 51.60±2.19 67.04±2.76 25.74±1.55 44.50±0.76 18.11±1.52 57.46±1.64 56.24±2.00 61.82±2.08
RL-OSHeDA 78.18±2.05 73.04±2.91 85.25±2.50 63.10±1.89 57.26±2.45 73.04±2.37 47.48±1.25 44.30±1.39 51.16±1.86 67.21±1.45 61.18±1.95 75.77±1.71

the largest logits from h as the output of g, we propose gen-
erating pseudo-labels as follows:
• First, select pseudo-labels as g(xt) = a′(h(ft(x

t)))
where a′ is argmax operator applied to the logits of the
known classes only.

• Then, select 1− λ fraction of instances with the smallest
maximum logits and assign pseudo-labels unk to them.

The motivation behind this design of the pseudo-label model
g is that, at the beginning of stage 2, there is no supervision
signal for training the parameters of h related to unknown
class. Therefore, relying solely on logits to determine the
unknown class is unreliable. Note that this strategy is only
used to generate pseudo-labels during the training of stage 2.
Once training is complete and h’s parameters for unknown
class are well-trained by optimizing Losd, we can simply use
argmax across all classes to generate predictions.

6 Experiments
Next, we empirically evaluate the performance of our meth-
ods across clinical, computer vision, and natural language
processing applications. We focus on the OsHeDA scenario,
characterized by heterogeneity in the feature space between
the source and target domains, with the label space of the tar-
get domain encompassing both known and unknown classes.

6.1 Experimental setup
Datasets. We conduct our experiments on 7 datasets in-
cluding CIFAR10 (Krizhevsky 2009) & ILSVRC2012 (Rus-
sakovsky et al. 2015); Wikipedia (Rasiwasia et al. 2010);
Multilingual Reuters Collection (Amini, Usunier, and
Goutte 2009); NUSWIDE (Chua et al. 2009) & Ima-
geNet (Deng et al. 2009); Office (Saenko et al. 2010) & Cal-
tech256 (Griffin et al. 2007); ImageCLEF-DA (Griffin et al.
2007); PTB-XL (Wagner et al. 2020). These datasets results
in 56 DA tasks. Detailed descriptions and statistics of these
datasets are provided in Appendix C.1.
Baselines. We compare our method with several representa-
tive methods from HeDA (SSAN (Li et al. 2020), STN (Yao
et al. 2019), SCT (Zhao et al. 2022), KPG (Gu et al.

2022)), OSDA (OPDA (Saito et al. 2018)), and OS-SSL
(DS3L (Guo et al. 2020)) literature. For the HeDA methods,
they are trained on both source and target data. In contrast,
OSDA and OS-SSL methods are trained only on target data
as they cannot handle heterogeneous feature spaces. During
inference, HeDA and OS-SSL methods classify instances as
unk using the same method as our pseudo-label model g
(see Section 5.2). Additionally, we explore supervised learn-
ing (SL) and pseudo-labeling (PL) methods trained on target
data. Among all baselines, only KPG is designed to handle
OSHeDA by combining Gromov-Wasserstein distance and
partial optimal transport (Xu et al. 2020). Since λ is a re-
quired input for most methods in our experiments, we utilize
techniques from positive-unlabeled learning (Zeiberg, Jain,
and Radivojac 2020) to estimate λ. Detailed architectures of
our model and the baselines are in Appendix B.1.
Evaluation method. We utilize HOS, the harmonic mean
of OS∗ and UNK (Bucci, Loghmani, and Tommasi 2020).
OS∗ is the class-wise averaged accuracy of known classes,
while UNK measures the accuracy for the unknown class.
HOS is particularly suitable for OSHeDA because it em-
phasizes the ability to both correctly classify known classes
and detect out-of-distribution instances simultaneously. In
particular, this metric increases when the performance in
both known and unknown classifications is high.

6.2 Experimental results
OSHeDA benchmark. The prediction performance (HOS)
of RL-OSHeDA and the baselines is summarized in Ta-
ble 1. RL-OSHeDA consistently outperforms all baselines
across all datasets, demonstrating its effectiveness in simul-
taneously addressing heterogeneity in the feature space and
open-set in the label space during training. Among the base-
lines, KPG is specifically designed for OSHeDA by using
optimal transport. Then, SVM trained on transported source
and labeled target data is used to make prediction. However,
this method underperforms in our evaluation due to its dif-
ficulty in correctly transporting from source to target data.
Moreover, this method is not applicable for complex data
structures, such as those found in PTB-XL dataset. Other



Figure 3: Critical Difference diagram for all methods calcu-
lated from 56 DA tasks. RL-OSHeDA is the highest ranked
method on HOS metric, and its performance is significantly
better than baselines (as indicated by the lack of connections
between RL-OSHeDA and baselines in the diagram).

Figure 4: Performances w.r.t. different number of labeled tar-
get instances per class on CIFAR10 & ILSVRC2012 dataset.

baselines achieve better prediction performances, but their
HOS remains suboptimal due to their inability to handle
novel classes or heterogeneous source data during training.

To further validate the superiority of RL-OSHeDA across
all DA tasks, we conduct significance testing, including the
Friedman test followed by the Nemenyi test (Demšar 2006).
The results (see Figure 3) show that our method significantly
outperforms the baselines, with a P-value smaller than 0.05.
Among all the baselines, SCT, SSAN, STN, SL, and DS3L
exhibit better prediction performances than KPG, OPDA,
and PL. Note that all methods, except OPDA and KPG,
utilize our approach to detect the unknown class based on
logits of known classes. This result suggests that while this
approach can partially address the open-set issue, it cannot
fully resolve it. For OPDA, although it is designed to handle
open-set issue, its inability to leverage heterogeneous source
data limits its performance to adapting with only a small la-
beled target dataset, resulting in suboptimal performance.
Ablation study. We conduct an ablation study to better un-
derstand the contribution of each component in the objec-
tive function of our method. As shown in Table 2, removing
any component deteriorates model performance. This find-
ing highlights the importance of achieving a good pseudo-
label model using 2-stage learning approach as well as align-
ing the data distribution of known classes between source
and target domains while simultaneously detecting and seg-
regating unknown class from known ones for OSHeDA.
Impact of labeled target data. We vary the number of in-
stances per class in the labeled target data to investigate their
impact on the DA process. Specifically, we conduct experi-

(a) RL-OSHeDA (b) STN

Figure 5: Visualization of representation spaces learned by
RL-OSHeDA and STN for NUSWIDE & ImageNet dataset.
Different colors represent different classes, with the un-
known class denoted in grey.

Table 2: Ablation study for RL-OSHeDA on Multilingual
Reuters Collection dataset. Align refers to using Linv; Seg-
regate refers to using Lseg; OSD refers to using Losd; 2-
stage refers to using 2-stage learning approach.

Align Segregate OSD 2-stage HOS OS∗ UNK
✓ ✓ ✓ ✓ 65.39 54.47 81.97
✓ ✓ ✓ ✗ 59.40 49.47 74.42
✓ ✗ ✓ ✓ 61.92 52.63 75.37
✗ ✓ ✓ ✓ 58.23 51.13 68.01
✓ ✓ ✗ ✓ 59.96 53.10 68.97
✗ ✗ ✗ ✗ 58.33 51.86 66.68

ments on CIFAR10 & ILSVRC2012 dataset with 1, 3, and
5 instances per class in the labeled target data and visualize
the result in Figure 4. Generally, we observe that increasing
the number of labeled target instances facilitates better align-
ment and enhances the performance of all methods. This re-
sult demonstrates the importance of labeled target data for
DA methods in OSHeDA.
Visualization of representation space. We perform a qual-
itative analysis to examine the learned representations of
RL-OSHeDA and STN for NUSWIDE & ImageNet dataset.
Specifically, we use t-SNE (Van der Maaten and Hinton
2008) to project these representations into a 2-dimensional
space. As shown in Figure 5, our method effectively aligns
representations of the known classes between source and tar-
get domains while simultaneously segregating the represen-
tations of the unknown class (grey color). This results in im-
proved HOS scores compared to STN.

7 Conclusion
This paper studied a novel domain adaptation scenario called
open-set heterogeneous domain adaptation (OSHeDA). We
first conducted a theoretical analysis to establish learning
bounds in OSHeDA. Based on these theorems, we proposed
a representation learning method that aligns the data distri-
bution of known classes between source and target domains
while simultaneously detecting and segregating unknown
class from known ones. The resulting models trained with
the proposed method generalize well to target domains. Ex-
periments on real datasets across diverse domains, including
healthcare, natural language processing, and computer vi-
sion, demonstrate the effectiveness of our proposed method.
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A Proofs
A.1 Additional Lemmas
Lemma 1 Given two domains s and t associated with two distributions Ps(X,Y ) and Pt(X,Y ), respectively, then for any
classifier h : X → ∆(Y), the expected error of h in domain t can be upper bounded:

E (Pt, h) ≤ E (Ps, h) +
√
2C ×DJS (Pt(X,Y ) ∥ Ps(X,Y ))

1/2

where DJS (· ∥ ·) is JS-divergence between two distributions.

Proof of Lemma 1 Let DKL (· ∥ ·) be KL-divergence, ps, pt are probability density functions associated with Ps, Pt, and
U = (X,Y ) and L(U) = L (h(X), Y ). We first prove

∫
E |pt(u)− ps(u)| du = 1

2

∫
|pt(u)− ps(u)| du where E is the event

that pt(u) ≥ ps(u) (∗) as follows:∫
E
|pt(u)− ps(u)| du =

∫
E
(pt(u)− ps(u)) du

=

∫
E∪E

(pt(u)− ps(u)) du−
∫
E
(pt(u)− ps(u)) du

(1)
=

∫
E
(ps(u)− pt(u)) du

=

∫
E
|pt(u)− ps(u)| du

=
1

2

∫
|pt(u)− ps(u)| du

where E is the complement of E . We have
(1)
= because

∫
E∪E (pt(u)− ps(u)) du =

∫
U (pt(u)− ps(u)) du = 0. Then, we

have:

E (Pt, h) = EPt
[L(U)]

=

∫
U
L(u)pt(u)du

=

∫
U
L(u)ps(u)du+

∫
U
L(u) (pt(u)− ps(u)) du

= EPs
[L(U)] +

∫
U
L(u) (pt(u)− ps(u)) du

= E(Ps, h) +

∫
E
L(u) (pt(u)− ps(u)) du+

∫
E
L(u) (pt(u)− ps(u)) du

(2)

≤ E (Ps, h) +

∫
E
L(u) (pt(u)− ps(u)) du

(3)

≤ E (Ps, h) + C

∫
E
(pt(u)− ps(u)) du

= E(Ps, h) + C

∫
E
|pt(u)− ps(u)| du

(4)
= E(Ps, h) +

C

2

∫
|pt(u)− ps(u)| du

(5)

≤ E (Ps, h) +
C

2

√
2min (DKL (Ps(U) ∥ Pt(U)) ,DKL (Pt(U) ∥ Ps(U)))

≤ E (Ps, h) +
C√
2

√
DKL (Pt(U) ∥ Ps(U)) (6)

We have
(2)

≤ because
∫
E L(u) (pt(u)− ps(u)) du ≤ 0;

(3)

≤ because L(u) is non-negative function and is bounded by C;
(4)
= by

using (∗);
(5)

≤ by using Pinsker’s inequality between total variation norm and KL-divergence.



Let Ps,t(U) = 1
2 (Pt(U) + Ps(U)). Apply Eq.(6) for two distributions Pt and Ps,t, we have:

E (Pt, h) ≤ E (Ps,t, h) +
C√
2

√
DKL (Pt(U) ∥ Ps,t(U)) (7)

Apply Eq.(6) again for two distributions Ps,t and Ps, we have:

E (Ps,t, h) ≤ E (Ps, h) +
C√
2

√
DKL (Ps(U) ∥ Ps,t(U)) (8)

Adding Eq. (7) to Eq. (8) and subtracting E (Ps,t, h), we have:

E (Pt, h) ≤ E (Ps, h) +
C√
2

(√
DKL (Pt(U) ∥ Ps,t(U)) +

√
DKL (Ps(U) ∥ Ps,t(U))

)
(6)

≤ E (Ps, h) +
C√
2

√
2 (DKL (Pt(U) ∥ Ps,t(U)) +DKL (Ps(U) ∥ Ps,t(U)))

= E (Ps, h) +
C√
2

√
4DJS (Ps(U) ∥ Pt(U))

= E (Ps, h) +
√
2C
√

DJS (Ps(U) ∥ Pt(U))

We have
(6)

≤ by using Cauchy–Schwarz inequality.
Lemma 2 Given two domains s and t associated with two distributions Ps(X,Y ) and Pt(X,Y ), respectively, then JS-
divergence DJS (Ps(X,Y ) ∥ Pt(X,Y )) can be decomposed as follows:

DJS (Ps(X,Y ) ∥ Pt(X,Y )) ≤ DJS (Ps(Y ) ∥ Pt(Y )) + EPs
[DJS (Ps(X|Y ) ∥ Pt(X|Y ))]

+ EPt [DJS (Ps(X|Y ) ∥ Pt(X|Y ))]

Proof of Lemma 2 First, we show the decomposition formulation for KL-divergence as follow.

DKL (Ps(X,Y ) ∥ Pt(X,Y ))

= EPs
[log ps(X,Y )− log pt(X,Y )]

= EPs
[log ps(Y ) + log ps(X|Y )]− Eps

[log pt(Y ) + log pt(X|Y )]

= EPs [log ps(Y )− log pt(Y )] + EPs [log ps(X|Y )− log pt(X|Y )]

= EPs [log ps(Y )− log pt(Y )] + Ey∼Ps(Y )

[
Ex∼Ps(X|Y ) [log ps(X|Y )− log pt(X|Y )]

]
= DKL (Ps(Y ) ∥ Pt(Y )) + EPs

[DKL (Ps(X|Y ) ∥ Pt(X|Y ))] (9)
For JS-divergence, we have:

DJS (Ps(X,Y ) ∥ Pt(X,Y ))

=
1

2
(DKL (Ps(X,Y ) ∥ Ps,t(X,Y ))) +

1

2
(DKL (Pt(X,Y ) ∥ Ps,t(X,Y )))

(1)
=

1

2
(DKL (Ps(Y ) ∥ Ps,t(Y ))) +

1

2
(EPs

[DKL (Ps(X|Y ) ∥ Ps,t(X|Y ))])

+
1

2
(DKL (Pt(Y ) ∥ Ps,t(Y ))) +

1

2
(EPt

[DKL (Pt(X|Y ) ∥ Ps,t(X|Y ))])

= DJS (Ps(Y ) ∥ Pt(Y )) +
1

2
(EPs

[DKL (Ps(X|Y ) ∥ Ps,t(X|Y ))]) +
1

2
(EPt

[DKL (Pt(X|Y ) ∥ Ps,t(X|Y ))])

≤ DJS (Ps(Y ) ∥ Pt(Y )) +
1

2
(EPs

[DKL (Ps(X|Y ) ∥ Ps,t(X|Y ))]) +
1

2
(EPs

[DKL (Pt(X|Y ) ∥ Ps,t(X|Y ))])

+
1

2
(EPt

[DKL (Pt(X|Y ) ∥ Ps,t(X|Y ))]) +
1

2
(EPt

[DKL (Ps(X|Y ) ∥ Ps,t(X|Y ))])

= DJS (Ps(Y ) ∥ Pt(Y )) + EPs [DJS (Ps(X|Y ) ∥ Pt(X|Y ))] + EPt [DJS (Ps(X|Y ) ∥ Pt(X|Y ))]

We have
(1)
= by applying Eq. (9) for DKL (Ps(X,Y ) ∥ Ps,t(X,Y )) and DKL (Pt(X,Y ) ∥ Ps,t(X,Y )).

Lemma 3 Given two domains s and t associated with two distributions Ps(X,Y ) and Pt(X,Y ), respectively, let f : X → Z
be the representation mapping from input space X to representation space Z . If the shift between domains s and t is covariate
shift (i.e., Ps(Y |X) = Pt(Y |X)), and Assumption 2 holds for the representation Z, then the shift between these two domains
in representation space is also covariate shift (i.e., Ps(Y |Z) = Pt(Y |Z)).



Proof of Lemma 3 We have:

log ps(y|x) = log

(∫
ps(y, z|x)dz

)
= log

(∫
ps(y|z)p(z|x)dz

)
= log

(
EP (Z|x) [ps(y|Z)]

)
(1)

≥ EP (Z|x) [log ps(y|Z)] (10)

We have
(1)

≥ by using Jensen’s inequality. Taking expectation w.r.t. Pt(X,Y ) over both sides, we have:

EPt(X,Y )

[
log ps(Y |X)− EP (Z|X) [log ps(Y |Z)]

]
=

∫ ∫ (
log ps(y|x)− EP (Z|x) [log ps(Y |Z)]

)
pt(x, y)dxdy

=

∫ ∫ (
log ps(y|x)− EP (Z|x) [log ps(Y |Z)]

)
ps(x, y)

pt(x, y)

ps(x, y)
dxdy

= EPs(X,Y )

[(
log ps(Y |X)− EP (Z|X) [log ps(Y |Z)]

) pt(X,Y )

ps(X,Y )

]
(1)

≤
(
max
x,y

pt(x, y)

ps(x, y)

)
EPs(X,Y )

[
log ps(Y |X)− EP (Z|X) [log ps(Y |Z)]

]
=

(
max
x,y

pt(x, y)

ps(x, y)

)(
EPs(X,Y ) [log ps(Y |X)]− EPs(Z,Y ) [log ps(Y |Z)]

)
=

(
max
x,y

pt(x, y)

ps(x, y)

)
(Hs(Y,X)−Hs(Y, Z))

=

(
max
x,y

pt(x, y)

ps(x, y)

)
((Hs(Y )−Hs(Y,Z))− (Hs(Y )−Hs(Y,X)))

=

(
max
x,y

pt(x, y)

ps(x, y)

)
(Is(Y,Z)− Is(Y,X))

(2)
= 0 (11)

We have
(1)

≤ because log ps(y|x) − EP (Z|x) [log ps(y|z)] ≥ 0 according to Eq. (10);
(2)
= because Is(Y,Z) = Is(Y,X)

according to Assumption 2. Based on Eq. (11), we have:

EPt(X,Y ) [log ps(Y |X)] = EPt(X,Y )

[
EP (Z|X) [log ps(Y |Z)]

]
= EPt(Y,Z) [log ps(Y |Z)] (12)

We also have:

EPt(Y,Z) [logPt(Y |Z)] = −Ht(Y |Z)

= It(Y, Z)−Ht(Y )

(1)

≤ It(Y,X)−Ht(Y )

= −Ht(Y |X)

= EPt(X,Y ) [logPt(Y |X)] (13)

We have
(1)

≤ by using data processing inequality. Finally, we have:



EPt(Z) [DKL (Pt(Y |Z) ∥ Ps(Y |Z))]

(1)
= EPt(Z) [DKL (Pt(Y |Z) ∥ Ps(Y |Z))]− EPt(X) [DKL (Pt(Y |X) ∥ Ps(Y |X))]

= EPt(Y,Z) [log pt(Y |Z)− log ps(Y |Z)]− EPt(X,Y ) [log pt(Y |X)− log ps(Y |X)]

=
(
EPt(Y,Z) [log pt(Y |Z)]− EPt(X,Y ) [log pt(Y |X)]

)
+
(
EPt(X,Y ) [log ps(Y |X)]− EPt(Y,Z) [log ps(Y |Z)]

)
(2)
= 0 (14)

We have
(1)
= because the shift between two domains w.r.t. input space X is covariate shift;

(2)
= by using Eq. (12) and Eq.

(13) and the fact that KL-divergence is non-negative. Note that Eq. (14) implies that the shift between these two domains w.r.t.
representation space Z is also covariate shift (i.e., Ps(Y |Z) = Pt(Y |Z)).
Lemma 4 Given domain d associated with a distribution Pd(X,Y ), then for any δ > 0, with probability at least 1 − δ over
sample S of size n drawn i.i.d from domain d, for all h ∈ H : X → ∆(Y), the expected error of h in domain d can be upper
bounded:

E (Pd, h) ≤ Ê (Pd, h) + 2RS (L ◦ H) + 3C

√
log(2/δ)

2n

where L◦H = {(x, y) → L (h (x) , y) : h ∈ H} and RS (L ◦ H) is an empirical Rademacher complexity of the function class
L ◦ H computed from the sample S.

Proof of Lemma 4 We start from the Rademacher bound (Koltchinskii and Panchenko 2000) which is stated as follows.

Rademacher Bounds. Let F be a family of functions mapping from Z to [0, 1]. Then, for any 0 < δ < 1, with probability at
least 1− δ over sample S = {z1, · · · , zn}, the following holds for all f ∈ F :

E
[
fZ
]
≤ 1

n

n∑
i=1

f(zi) + 2RS(F) + 3

√
log(2/δ)

2n

where RS (F) is an empirical Rademacher complexity of function class F computed from the sample S.
We then apply this result to our setting with Z = (X,Y ), the loss function L bounded by C, and the function class L ◦H =

{(x, y) → L (h (x) , y) : h ∈ H}. In particular, we scale the loss function L to [0, 1] by dividing by C and denote the new class
of scaled loss functions as L ◦ H/C. Then, for any δ > 0, with probability at least 1− δ, we have:

E (Pd, h)

C
≤ Ê (Pd, h)

C
+ 2RS (L ◦ H/C) + 3

√
log(2/δ)

2n

(1)
=

Ê (Pd, h)

C
+

2

C
RS (L ◦ H) + 3

√
log(2/δ)

2n
(15)

We have
(1)
= by using the property of empirical Redamacher complexity that RS(αF) = αRS(F). We derive Lemma 4 by

multiplying Eq. (15) by C.
Lemma 5 Given a loss function L satisfied Assumption 1 and a sample S = {(x1, y1), · · · , (xn, yn)} of size n, then an
empirical Rademacher complexity RS (L ◦ H) computed from the sample S is upper bounded as follows.

RS (L ◦ H) ≤ C

√
2d log n+ 4d log |Y|

n

where d is Natarajan dimension of hypothesis class H.

Proof of Lemma 5 We have:

RS (L ◦ H)
(1)

≤ C

√
2 log |L ◦ H|

n
(2)

≤ C

√
2d log n+ 4d log |Y|

n

We have
(1)

≤ by applying Massart’s finite lemma (Lemma 5 in Liang (2016)) for function class L ◦ H and note that

suph∈H
1
n

∑n
i=1 L(h(xi), yi)

2 ≤ C2 because of Assumption 2;
(2)

≤ by using the fact that |L ◦ H| ≤ |H| and then applying
Natarajan lemma (Lemma 29.4 in Shalev-Shwartz and Ben-David (2014)) for hypothesis class H with Natarajan dimension d.



A.2 Proof of main theorems
Proof of Theorem 1 We have:

E (Pt, h ◦ ft) = EPt(Y,Z) [L(h(Z), Y )]

=

∫ ∫
L(h(z), y)pt(y, z)dydz

=

∫ ∫
L(h(z), y) (pt(y, z|y ∈ Ys)pt(y ∈ Ys) + pt(y, z|y /∈ Ys)pt(y /∈ Ys)) dydz

= λEPt,k(Y,Z) [L(h(Z), Y )] + (1− λ)EPt,u(Y,Z) [L(h(Z), Y )]

= λE (Pt,k, h ◦ ft) + (1− λ) E (Pt,u, h ◦ ft) (16)
Applying Lemma 1 for the two distributions Pt,k(Z, Y ) and Ps(Z, Y ), we have:

E (Pt,k, h ◦ ft) ≤ E (Ps, h ◦ fs) +
√
2C (DJS (Ps(Y,Z), Pt,k(Y, Z)))

1/2 (17)
Let Pu

t,k is the distribution induced from Pt,k by the mapping fu
t . Then, we have:

E (Pu
t , h ◦ ft) = EPu

t (Y,Z) [L(h(Z), Y )]

=

∫ ∫
L(h(z), y)put (y, z)dydz

(1)
=

∫ ∫
L(h(z), y)

(
put,k(y, z)pt(y ∈ Ys) + pt,u(y, z)pt(y /∈ Ys)

)
dydz

= λEPu
t,k(Y,Z) [L(h(Z), Y )] + (1− λ)EPt,u(Y,Z) [L(h(Z), Y )]

= λE
(
Pu
t,k, h ◦ ft

)
+ (1− λ) E (Pt,u, h ◦ ft)

(2)

≥ λ
(
E (Pu

s , h ◦ fs)−
√
2C
(
DJS

(
Pu
t,k(Y,Z) ∥ Pu

s (Y,Z)
))1/2)

+ (1− λ) E (Pt,u, h ◦ ft)
(3)

≥ λ
(
E (Pu

s , h ◦ fs)−
√
2C
(
DJS

(
Pu
t,k(Z) ∥ Pu

s (Z)
)
+ EPu

t,k(Z)

[
Pu
t,k(Y |Z) ∥ Pu

s (Y |Z)
]

+ EPu
s (Z)

[
Pu
t,k(Y |Z) ∥ Pu

s (Y |Z)
])1/2)

+ (1− λ) E (Pt,u, h ◦ ft)
(4)
= λE (Pu

s , h ◦ fs)−
√
2λC

(
DJS

(
Pu
t,k(Z) ∥ Pu

s (Z)
))1/2

+ (1− λ) E (Pt,u, h ◦ ft) (18)

We have
(1)
= by using the fact that Pt(Y, Z) = λPt,k(Y, Z)+(1−λ)Pt,u(Y,Z) and fu

t is the mapping such that fu
t (Xt, Y ) =

(Xt, unk);
(2)

≥ by using Lemma 1;
(3)

≥ by using Lemma 2;
(4)
= because Pu

t,k(Y |Z) ∥ Pu
s (Y |Z) (support of Y = {unk}). Finally,

by combining Eq. (16), Eq. (17), and Eq. (18), we have:

E (Pt, h ◦ ft) ≤ λE (Ps, h ◦ fs)︸ ︷︷ ︸
source error

+E(Pu
t , h ◦ ft)− λE (Pu

s , h ◦ fs)︸ ︷︷ ︸
open-set difference

+
√
2λC

(
(DJS (Ps(Z) ∥ Pt,k(Z)))

1
2 + (DJS (Ps(Z, Y ) ∥ Pt,k(Z, Y )))

1
2

)
︸ ︷︷ ︸

domain distance

Proof of Proposition 1 We have:

E (Pt, h ◦ ft) = EPt(Y,Z) [L(h(Z), Y )]

=

∫ ∫
L(h(z), y)pt(y, z)dydz

=

∫ ∫
L(h(z), y) (pt(y, z|y ∈ Ys)pt(y ∈ Ys) + pt(y, z|y /∈ Ys)pt(y /∈ Ys)) dydz

= λEPt,k(Y,Z) [L(h(Z), Y )] + (1− λ)EPt,u(Y,Z) [L(h(Z), Y )]

= λE (Pt,k, h ◦ ft) + (1− λ) E (Pt,u, h ◦ ft) (19)



Next, applying Lemma 1 for the two distributions Pt,u(Y, Z) and Pu
s (Y,Z), we have:

E (Pu
s , h ◦ fs) ≤ E (Pt,u, h ◦ ft) +

√
2C (DJS (Pu

s (Y,Z) ∥ Pt,u(Y,Z)))
1/2

(1)

≤ E (Pt,u, h ◦ ft) +
√
2C (DJS (Pu

s (Z) ∥ Pt,u(Z))

+ EPu
s (Z) [DJS (Pu

s (Y |Z) ∥ Pt,u(Y |Z))] + EPt,u(Z) [DJS (Pu
s (Y |Z) ∥ Pt,u(Y |Z))]

)1/2
(2)
= E(Pt,u, h ◦ ft) +

√
2C (DJS (Ps(Z) ∥ Pt,u(Z)))

1/2 (20)

We have
(1)

≤ by applying Lemma 2;
(2)
= because Pu

s (Y |Z) = Pt,u(Y |Z) (support of Y = {unk}) and Pu
s (Z) = Ps(Z).

Combining Eq. (19) and Eq. (20), we have:

E (Pt, h ◦ ft) ≥ λE (Pt,u, h ◦ ft) + (1− λ) E (Pu
s , h ◦ fs)−

√
2(1− λ)C (DJS (Ps(Z) ∥ Pt,u(Z)))

1/2

Proof of Proposition 2 Before giving the proof, we first introduce following definition about adversarial learning for invariant
representation.

Definition 1 Given dataset Ds = {xs
i}

ns
i=1 and Dt = {xt

i}
nt
i=1 associated with the distributions Ps(Xs) and

Pt(Xt), respectively, the goal of adversarial learning approach for invariant representation is to achieve L̂adv =

infα,β supγ

(
1
ns

∑ns

i=1 log (Dγ(Fα(x
s
i ))) + 1

nt

∑nt

i=1 log (1−Dγ(Fβ(x
t
i)))
)

where Fα, Fβ are the mappings from the feature

spaces X s,X t to the representation space Z parameterized by α ∈ A and β ∈ B, and Dγ are the discriminator parameterized
by γ ∈ Γ.

Then Proposition 2 are formally state as follows.

Proposition 2 (Formal). Let α∗, β∗, γ∗be the parameters learned by optimizing Ladv and α̂, β̂, γ̂ be the parameters learned
by optimizing L̂adv . We have:

E
[
DJS

(
Pα̂(Z) ∥ Pβ̂(Z)

)]
≤ DJS (Pα∗(Z) ∥ Pβ∗(Z))

+O
((

1
√
ns

+
1

√
nt

)
× C(A,B,Γ)

)

where C(A,B,Γ) is a constant specified by the parameter spaces A,B,Γ, and Ladv =
infα,β supγ

∫
X s log (Dγ(Fα(x

s))) ps(x
s)dxs +

∫
X t log (1−Dγ(Fβ(x

t))) pt(x
t)dxt is the objective function of adver-

sarial learning for invariant representation with infinite data.

The proof for Proposition 2 is based on the proof provided for GAN model by Biau et al. (2020). Let L(α, β, γ) =



∫
Z (log (Dγ(z)) pα(z) + log (1−Dγ(z)) pβ(z)) dz, we have:

2DJS

(
Pα̂(Z) ∥ Pβ̂(Z)

)
= L(α̂, β̂, γ̂) + log(4)

≤ sup
γ

L(α̂, β̂, γ) + log(4)

≤ sup
γ

(
L̂(α̂, β̂, γ) +

∣∣∣L̂(α̂, β̂, γ)− L(α̂, β̂, γ)
∣∣∣)+ log(4)

≤ sup
γ

L̂(α̂, β̂, γ) + sup
γ

∣∣∣L̂(α̂, β̂, γ)− L(α̂, β̂, γ)
∣∣∣+ log(4)

≤ inf
α,β

sup
γ

L̂(α, β, γ) + sup
α,β,γ

∣∣∣L̂(α, β, γ)− L(α, β, γ)
∣∣∣+ log(4)

≤ inf
α,β

sup
γ

L(α, β, γ) +

∣∣∣∣infα,β
sup
γ

L̂(α, β, γ)− inf
α,β

sup
γ

L(α, β, γ)

∣∣∣∣
+ sup

α,β,γ

∣∣∣L̂(α, β, γ)− L(α, β, γ)
∣∣∣+ log(4)

(1)

≤ inf
α,β

sup
γ

L(α, β, γ) + sup
α,β

∣∣∣∣sup
γ

L̂(α, β, γ)− sup
γ

L(α, β, γ)

∣∣∣∣
+ sup

α,β,γ

∣∣∣L̂(α, β, γ)− L(α, β, γ)
∣∣∣+ log(4)

(2)

≤ inf
α,β

sup
γ

L(α, β, γ) + 2 sup
α,β,γ

∣∣∣L̂(α, β, γ)− L(α, β, γ)
∣∣∣+ log(4)

= 2DJS (Pα∗(Z) ∥ Pβ∗(Z)) + 2 sup
α,β,γ

∣∣∣L̂(α, β, γ)− L(α, β, γ)
∣∣∣

We have
(1)

≤ by using inequality | inf A− inf B| ≤ sup |A−B|,
(2)

≤ by using inequality | supA− supB| ≤ sup |A−B|. Take
the expectation and rearrange the both sides, we have:

E
[
DJS

(
Pα̂(Z) ∥ Pβ̂(Z)

)]
−DJS (Pα∗(Z) ∥ Pβ∗(Z))

≤ E

[
sup
α,β,γ

∣∣∣L̂(α, β, γ)− L(α, β, γ)
∣∣∣]

= E

[
sup
α,β,γ

∣∣∣∣∣ 1ns

ns∑
i=1

log (Dγ((z
s
i ))) +

1

nt

nt∑
i=1

log
(
1−Dγ(z

t
i)
)

−
∫
Z
(log (Dγ(z)) pα(z) + log (1−Dγ(z)) pβ(z)) dz

∣∣∣∣]

≤ E

 sup
α,β,γ

∣∣∣∣∣∣∣∣∣∣
1

ns

ns∑
i=1

log (Dγ((z
s
i )))−

∫
Z
(log (Dγ(z)) pα(z)) dz︸ ︷︷ ︸

As(α,β,γ)

∣∣∣∣∣∣∣∣∣∣



+ E

 sup
α,β,γ

∣∣∣∣∣∣∣∣∣∣
1

nt

nt∑
i=1

log
(
1−Dγ(z

t
i)
)
−
∫
Z
(log (1−Dγ(z)) pβ(z)) dz︸ ︷︷ ︸

At(α,β,γ)

∣∣∣∣∣∣∣∣∣∣



Note that (As (α, β, γ))α∈A,β∈B,γ∈Γ and (At (α, β, γ))α∈A,β∈B,γ∈Γ are the subgaussian processes in the metric spaces(
A× B × Γ, C1 ∥·∥ /

√
ns

)
and

(
A× B × Γ, C1 ∥·∥ /

√
nt

)
where C1 is a constant and ∥·∥ is the Euclidean norm on A×B×Γ.



Then using Dudley’s entropy integral, we have:

E
[
DJS

(
Pα̂(Z) ∥ Pβ̂(Z)

)]
−DJS (Pα∗(Z) ∥ Pβ∗(Z))

≤ E

[
sup
α,β,γ

As (α, β, γ) ||

]
+ E

[
sup
α,β,γ

At (α, β, γ) ||

]

≤ 12

∫ ∞

0

(√
logN(A× B × Γ, C ∥·∥ /

√
ns, ϵ) +

√
logN(A× B × Γ, C ∥·∥ /

√
nt, ϵ)

)
dϵ

= 12C1

(
1

√
ns

+
1

√
nt

)∫ ∞

0

√
logN(A× B × Γ, ∥·∥ , ϵ)dϵ

(3)
= 12C1

(
1

√
ns

+
1

√
nt

)∫ diam(A×B×Γ)

0

√
logN(A× B × Γ, ∥·∥ , ϵ)dϵ

(4)

≤ 12C1

(
1

√
ns

+
1

√
nt

)∫ diam(A×B×Γ)

0

√√√√√log

(2C2

√
dim(A× B × Γ)

ϵ

)dim(A×B×Γ)
dϵ

= O
((

1
√
ns

+
1

√
nt

)
× C(A,B,Γ)

)

where diam(·) and dim(·) are the diameter and the dimension of the metric space, and C(A,B,Γ) is the function of diam(A×

B×Γ) and dim(A×B×Γ). We have
(3)
= because N(A×B×Γ, ∥·∥ , ϵ) = 1 for ϵ > diam(A×B×Γ),

(4)

≤ by using inequality

N(T , ∥ · ∥, ϵ) ≤
(

2C2

√
d

ϵ

)d
where T lied in Euclidean space Rd is the set of vectors whose length is at most C2.

Proof of Theorem 2 We have:

DJS (Ps(Z, Y ) ∥ Pt,k(Z, Y ))
(1)

≤ DJS (Ps(Z, Y ) ∥ Pt,k(Z, g(Z))) +DJS (Pt,k(Z, g(Z)) ∥ Pt,k(Z, Y ))

(2)

≤ DJS (Ps(Z, Y ) ∥ Pt,k(Z, g(Z))) +DJS (Pt,k(Z) ∥ Pt,k(Z))

+ EPt,k(Z) [DJS (Pt,k(g(Z)|Z) ∥ Pt,k(Y |Z))]

= DJS (Ps(Z, Y ) ∥ Pt,k(Z, g(Z))) + N (Pt,k, g) (21)

We have
(1)

≤ by using triangle inequality for JS-divergence;
(2)

≤ by applying Lemma 2. According to Theorem 1, we have:
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We have
(1)

≤ by applying Eq. (21) and using inequality
√
a+ b ≤

√
a+

√
b. Finally, by applying Lemma 4 for E (Ps, h ◦ fs),

E (Pu
t , h ◦ ft), and E (Pu

s , h ◦ fs) in Eq. (22), then with probability at least 1− δ over the choice of source and target datasets
Ds and Dt, we have:
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where Du
s and Du

t are datasets induced from Ds and Dt using mappings fu
s and fu

t , respectively. We have
(1)

≤ by applying
Lemma 5 for RDs

(L ◦ H ◦ Fs), RDu
t
(L ◦ H ◦ Ft), and RDu

s
(L ◦ H ◦ Fs).

Proof of Proposition 3 We have:

E (Pt, h ◦ f)
(1)
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√
2C (DJS (Ps(Y,Z) ∥ Pt(Y,Z)))

1/2
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We have
(1)

≤ by applying Lemma 1 for two distributions Ps(Z, Y ) and Pt(Z, Y ), and note that E (Pd, h ◦ f) =

EPd(X,Y ) [L(h(f(X)), Y )] = EPd(Z,Y ) [L(h(Z), Y )] = E (Pd, h) for d ∈ {s, t};
(2)

≤ by applying Lemma 2 for

DJS (Ps(Y, Z) ∥ Pt(Y,Z));
(3)
= by applying Lemma 3.

B Model Details

In this section, we provide a comprehensive overview of the architectures utilized in our experiment, along with the pseudocode
for training our proposed method.

B.1 Backbone Architecture Details

To ensure fair comparisons between methods, we use the same backbone architectures across all approaches. Most methods
involve representation mapping and classifier networks, except for SSAN and SCT, which include an additional discriminator
network, and KPG, which employs optimal transport to transform data within the input space. For representation mapping,
we implement multi-layer feed-forward neural networks on the CIFAR10 & ILSVRC2012, Wikipedia, Multilingual Reuters
Collection, NUSWIDE & ImageNet, Office & Caltech256, and ImageCLEF-DA datasets, while using ResNet/WideResNet to
encode paper and digital ECG data in the PTB-XL dataset. A linear classifier is applied across all datasets. The specifics of
these networks are detailed in Tables 3-6 below.



Table 3: Details of backbone networks used in CIFAR10 & ILSVRC2012, Wikipedia, Multilingual Reuters Collection,
NUSWIDE & ImageNet, Office & Caltech256, and ImageCLEF-DA datasets. d source, d target, and n output represent
the dimensions of the source feature space, target feature space, and output space, respectively. For RL-OSHeDA and OPDA,
n output is set to |Yt| while for other methods, n output is set to |Ys|.

Networks Layers

Representation Mapping fs

Linear(input dim=d source, output dim=(d source + 256)/2)
LeakyReLU(negative slope=0.2)
Linear(input dim=(d source + 256)/2, output dim=256)
LeakyReLU(negative slope=0.2)
Normalize(p=2)

Representation Mapping ft

Linear(input dim=d target, output dim=(d target + 256)/2)
LeakyReLU(negative slope=0.2)
Linear(input dim=(d target + 256)/2, output dim=256)
LeakyReLU(negative slope=0.2)
Normalize(p=2)

Classifier h Linear(input dim=256, output dim=n output)
LeakyReLU(negative slope=0.2)



Table 4: Details of backbone networks used in PTB-XL dataset. The representation mapping networks are constructed from
multiple ResNetBlock1d (for digital ECG) and ResNetBlock2d (for paper ECG) sub-modules. n output represent the dimen-
sions of output space. For RL-OSHeDA and OPDA, n output is set to |Yt| while for other methods, n output is set to |Ys|.

Networks Layers

ResNetBlock1d(i ch, o ch)

Conv1d(input channel=i ch, output channel=o ch, kernel=3, stride=o ch / i ch, padding=1)
BatchNorm1d
ReLU
Conv1d(input channel=o ch, output channel=o ch, kernel=3, padding=1)
BatchNorm1d
ReLU

ResNetBlock2d(i ch, o ch)

Conv2d(input channel=i ch, output channel=o ch, kernel=3, stride=o ch / i ch, padding=1)
BatchNorm2d
ReLU
Conv2d(input channel=o ch, output channel=o ch, kernel=3, padding=1)
BatchNorm2d
ReLU

ResNet1d

Conv1d(input channel=1, output channel=64, kernel=7, stride=2, padding=3)
BatchNorm1d
ReLU
MaxPool1d
ResNetBlock1d(i ch=64, o ch=64) × 2
ResNetBlock1d(i ch=64, o ch=128)
ResNetBlock1d(i ch=128, o ch=128)
ResNetBlock1d(i ch=128, o ch=256)
ResNetBlock1d(i ch=256, o ch=256)
ResNetBlock1d(i ch=256, o ch=512)
ResNetBlock1d(i ch=512, o ch=512)
BatchNorm1d
ReLU
AdaptiveAvgPool1d(output size=7)
Linear(input dim=3584, output dim=256)

Representation Mapping fs
Concatenation of 12 ResNet1d modules
Linear(input dim=256 × 12, output dim=256)

Representation Mapping ft

Conv2d(input channel=3, output channel=64, kernel=7, stride=2, padding=3)
BatchNorm2d
ReLU
MaxPool2d
ResNetBlock2d(i ch=64, o ch=64) × 2
ResNetBlock2d(i ch=64, o ch=128)
ResNetBlock2d(i ch=128, o ch=128)
ResNetBlock2d(i ch=128, o ch=256)
ResNetBlock2d(i ch=256, o ch=256)
ResNetBlock2d(i ch=256, o ch=512)
ResNetBlock2d(i ch=512, o ch=512)
AdaptiveAvgPool2d(output size=1)
Linear(input dim=512, output dim=256)

Classifier h Linear(input dim=256, output dim=n output)
LeakyReLU(negative slope=0.2)

Table 5: Details of discriminator network used in SSAN and SCT methods.

Networks Layers

Discriminator D Linear(input dim=256, output dim=1)
Sigmoid



Table 6: Details of the WideResNet backbone. This network is employed in DS3L for the PTB-XL dataset, in place of the
standard ResNet backbone.

Networks Layers

ResNetUnit(i ch, o ch)

BatchNorm2d
LeakyReLU(negative slope=0.1)
Conv2d(input channel=i ch, output channel=o ch, kernel=3, stride=o ch / i ch, padding=1)
BatchNorm2d
LeakyReLU(negative slope=0.1)
Conv2d(input channel=o ch, output channel=o ch, kernel=3, stride=1, padding=1)

ResNetBlock(i ch, o ch) ResNetUnit(i ch=i ch, o ch=o ch)
ResNetUnit(i ch=o ch, o ch=o ch) × 3

Representation Mapping ft

Conv2d(input channel=3, output channel=16, kernel=3, padding=1)
ResNetBlock(i ch=16, o ch=32)
ResNetBlock(i ch=32, o ch=64)
ResNetBlock(i ch=64, o ch=128)
BatchNorm2d
LeakyReLU(negative slope=0.1)
AveragePool2d(output size=1)
Linear(input dim=128, output dim=256)

B.2 Training Details
We utilize a two-stage learning approach for our proposed method, RL-OSHeDA. Specifically, in stage 1, we update the model
parameters by optimizing Lcls as defined in Eq. (2). In stage 2, we update the model parameters by optimizing L as specified
in Eq. (1), with the assistance of pseudo-labels. The details of this training process are outlined in Algorithm 1 below.

Algorithm 1: Two-stage learning process for RL-OSHeDA

1: Inputs: Source datasets Ds = {xs
i , y

s
i }

ns

i=1, labeled target datasets Dtl = {xt
i, y

t
i}

ntl
i=1, unlabeled target datasets Dtu =

{xt
i}

ntu

i=1, known class prior λ, threshold T , number of epochs Tmax

2: Outputs: Trained network parameters θfs , θft , θh
3: Initialize network parameters θfs , θft , θh
4: for epoch = 1 to Tmax do
5: Sample source minibatch Bs

6: Sample labeled target minibatch Btl
7: Sample unlabeled target minibatch Btu
8: if epoch < T then
9: /* Stage 1 */

10: Calculate Lcls in Eq. (2) using Bs, Btl , Btu , λ
11: Update parameters:

θfs = θfs − γ∇θfs
Lcls

θft = θft − γ∇θft
Lcls

θh = θh − γ∇θhLcls

12: else
13: /* Stage 2 */
14: Generate pseudo-labels for Btu
15: Calculate Lcls in Eq. (2) using Bs, Btl , Btu , λ
16: Calculate Linv in Eq. (3) using Bs, Btl , Btu , pseudo-labels
17: Calculate Lseg in Eq. (4) using Bs, Btl , Btu , pseudo-labels
18: Calculate Losd in Eq. (5) using Bs, Btl , Btu , λ
19: Update parameters:

θfs = θfs − γ∇θfs
(Lcls + Linv − Lseg + Losd)

θft = θft − γ∇θft
(Lcls + Linv − Lseg + Losd)

θh = θh − γ∇θh (Lcls + Linv − Lseg + Losd)
20: end if
21: end for
22: return Trained parameters θfs , θft , θh



C Experimental Details

C.1 Datasets

We conduct experiments using seven datasets covering the clinical, computer vision, and natural language processing domains.
Detailed descriptions of these datasets are provided below, with corresponding data statistics presented in Tables 7-13.

CIFAR-10 (Krizhevsky 2009) & ILSVRC2012 (Russakovsky et al. 2015). These two datasets are used for the image-to-
image adaptation task. Big Transfer-M with ResNet-50 and ResNet-101 (Kolesnikov et al. 2019) are utilized to extract features
from the images. In the target domain (ILSVRC2012), 4 out of 8 shared classes are designated as unknown classes. For the
source (CIFAR-10) and unlabeled target data, 50 instances are randomly selected for each class, and we randomly choose 1, 3,
or 5 instances per class as labeled target data. This process results in 6 DA tasks.

Wikipedia (Rasiwasia et al. 2010). This dataset, consisting of text-image pairs, is used for image-to-text and text-to-image
adaptation tasks. Big Transfer-M with ResNet-101 and Big Bird (Zaheer et al. 2020) are used to extract features for image and
text, respectively. 5 out of 10 classes are designated as unknown classes. All data in the source domain are used as labeled
source data. For the target domain, we randomly select 5 instances per class as labeled target data and randomly select 50
instances per class from the remaining data as unlabeled target data. This process results in 2 DA tasks.

Multilingual Reuters Collection (Amini, Usunier, and Goutte 2009). This dataset, consisting of articles in 5 languages,
is used for text-to-text adaptation tasks. Bag-of-Words with TF-IDF, followed by Principal Component Analysis, is used to
generate features for each article. English, French, Italian, and German are used as the source domains, while Spanish is used
as the target domain. 3 out of 6 classes are designated as unknown classes. For the source and unlabeled target datasets, 100
and 500 instances are randomly selected for each class, respectively, and we randomly choose 20 instances per class as labeled
target data. This process results in 4 DA tasks.

NUS-WIDE (Chua et al. 2009) and ImageNet (Deng et al. 2009). These datasets are used for the text-to-image adaptation
task. We utilize the tag information from NUS-WIDE as the source domain (text) and the image data from ImageNet as the
target domain (image). 4 out of 8 shared classes between the two datasets are designated as unknown classes. Features for
NUS-WIDE tags are extracted using a pre-trained 5-layer neural network, while DeCAF6 (Donahue et al. 2014) features are
used for images in ImageNet. For NUS-WIDE, 100 instances per class are selected, whereas for ImageNet, 3 instances per class
are sampled as labeled target data, with all remaining images used as unlabeled target data.

Office (Saenko et al. 2010) and Caltech-256 (Griffin et al. 2007). These datasets, which include 4 domains Amazon, We-
bcam, DSLR from Office, and Caltech from Caltech-256, are used for the image-to-image adaptation task. Amazon, Webcam,
and Caltech are used as source domains while Amazon, Webcam, DSLR, and Caltech are used as target domains. SURF (Saenko
et al. 2010) and DeCAF6 are utilized as 2 different feature sets for images in these datasets. 5 out of 10 classes are designated
as unknown classes, and 3 instances per class are sampled as labeled target data. This process results in 18 DA tasks.

ImageCLEF-DA (Griffin et al. 2007). This data, which include 4 domains Caltech, ImageNet, Bing, and PascalVOC, are
used for the image-to-image adaptation task. ResNet50 and VGG-19 (Simonyan and Zisserman 2014) are utilized as 2 different
feature sets for images in this dataset. 6 out of 12 classes are designated as unknown classes, and 3 instances per class are
sampled as labeled target data. This process results in 24 DA tasks.

PTB-XL (Wagner et al. 2020). This dataset is used for the digital-to-paper electrocardiogram (ECG) adaptation task. Fre-
quent classes including NORM, Old MI, STTC, and CD are designated as known classes, while the remaining classes are
considered unknown. For each known class, we sample 2,000 instances per class to construct source (1,000 instances) and
target (1,000 instances) datasets. All instances from the unknown class are used for the target dataset. This process results in 1
DA task.

Table 7: Data statistics for each domain adaptation task in CIFAR10 & ILSVRC2012 dataset.

CIFAR10 & ILSVRC2012
Source Dataset Labeled Target Dataset Unlabeled Target Dataset

# of classes # of instances feature dim # of classes # of instances feature dim # of classes # of instances feature dim
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (1) 4 2000 2048 4 4 2048 5 4000 2048
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (3) 4 2000 2048 4 12 2048 5 4000 2048
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (5) 4 2000 2048 4 20 2048 5 4000 2048
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (1) 4 2000 2048 4 4 2048 5 4000 2048
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (3) 4 2000 2048 4 12 2048 5 4000 2048
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (5) 4 2000 2048 4 20 2048 5 4000 2048



Table 8: Data statistics for each domain adaptation task in Wikipedia dataset.

Wikipedia
Source Dataset Labeled Target Dataset Unlabeled Target Dataset

# of classes # of instances feature dim # of classes # of instances feature dim # of classes # of instances feature dim
Image ⇒ Text 5 1472 768 5 25 2048 6 500 2048
Text ⇒ Image 5 1472 2048 5 25 768 6 500 768

Table 9: Data statistics for each domain adaptation task in Multilingual Reuters Collection dataset.

Multilingual Reuters Collection
Source Dataset Labeled Target Dataset Unlabeled Target Dataset

# of classes # of instances feature dim # of classes # of instances feature dim # of classes # of instances feature dim
English ⇒ Spanish 3 300 1131 3 60 807 4 2910 807
French ⇒ Spanish 3 300 1230 3 60 807 4 2910 807
German ⇒ Spanish 3 300 1417 3 60 807 4 2910 807
Italian ⇒ Spanish 3 300 1041 3 60 807 4 2910 807

Table 10: Data statistics for each domain adaptation task in NUSWIDE & ImageNet dataset.

NUSWIDE & ImageNet
Source Dataset Labeled Target Dataset Unlabeled Target Dataset

# of classes # of instances feature dim # of classes # of instances feature dim # of classes # of instances feature dim
Text ⇒ Image 4 400 64 4 12 4096 5 800 4096

Table 11: Data statistics for each domain adaptation task in Office & Caltech256 dataset.

Office & Caltech256
Source Dataset Labeled Target Dataset Unlabeled Target Dataset

# of classes # of instances feature dim # of classes # of instances feature dim # of classes # of instances feature dim
Amazon (DeCAF6) ⇒ Caltech (SURF) 5 100 4096 5 15 800 6 1093 800
Amazon (DeCAF6) ⇒ DSLR (SURF) 5 100 4096 5 15 800 6 127 800
Amazon (DeCAF6) ⇒ Webcam (SURF) 5 100 4096 5 15 800 6 265 800
Amazon (SURF) ⇒ Caltech (DeCAF6) 5 100 800 5 15 4096 6 1093 4096
Amazon (SURF) ⇒ DSLR (DeCAF6) 5 100 800 5 15 4096 6 127 4096
Amazon (SURF) ⇒ Webcam (DeCAF6) 5 100 800 5 15 4096 6 265 4096
Caltech (DeCAF6) ⇒ Amazon (SURF) 5 100 4096 5 15 800 6 928 800
Caltech (DeCAF6) ⇒ DSLR (SURF) 5 100 4096 5 15 800 6 127 800
Caltech (DeCAF6) ⇒ Webcam (SURF) 5 100 4096 5 15 800 6 265 800
Caltech (SURF) ⇒ Amazon (DeCAF6) 5 100 800 5 15 4096 6 928 4096
Caltech (SURF) ⇒ DSLR (DeCAF6) 5 100 800 5 15 4096 6 127 4096
Caltech (SURF) ⇒ Webcam (DeCAF6) 5 100 800 5 15 4096 6 265 4096
Webcam (DeCAF6) ⇒ Amazon (SURF) 5 100 4096 5 15 800 6 928 800
Webcam (DeCAF6) ⇒ Caltech (SURF) 5 100 4096 5 15 800 6 1093 800
Webcam (DeCAF6) ⇒ DSLR (SURF) 5 100 4096 5 15 800 6 127 800
Webcam (SURF) ⇒ Amazon (DeCAF6) 5 100 800 5 15 4096 6 928 4096
Webcam (SURF) ⇒ Caltech (DeCAF6) 5 100 800 5 15 4096 6 1093 4096
Webcam (SURF) ⇒ DSLR (DeCAF6) 5 100 800 5 15 4096 6 127 4096



Table 12: Data statistics for each domain adaptation task in ImageCLEF-DA dataset.

ImageCLEF-DA
Source Dataset Labeled Target Dataset Unlabeled Target Dataset

# of classes # of instances feature dim # of classes # of instances feature dim # of classes # of instances feature dim
Bing (Reset-50) ⇒ Caltech (VGG-19) 6 120 2048 6 18 4096 7 564 4096
Bing (Reset-50) ⇒ ImageNet (VGG-19) 6 120 2048 6 18 4096 7 564 4096
Bing (Reset-50) ⇒ PascalVOC (VGG-19) 6 120 2048 6 18 4096 7 564 4096
Bing (VGG-19) ⇒ Caltech (Reset-50) 6 120 4096 6 18 2048 7 564 2048
Bing (VGG-19) ⇒ ImageNet (Reset-50) 6 120 4096 6 18 2048 7 564 2048
Bing (VGG-19) ⇒ PascalVOC (Reset-50) 6 120 4096 6 18 2048 7 564 2048
Caltech (Reset-50) ⇒ Bing (VGG-19) 6 120 2048 6 18 4096 7 564 4096
Caltech (Reset-50) ⇒ ImageNet (VGG-19) 6 120 2048 6 18 4096 7 564 4096
Caltech (Reset-50) ⇒ PascalVOC (VGG-19) 6 120 2048 6 18 4096 7 564 4096
Caltech (VGG-19) ⇒ Bing (Reset-50) 6 120 4096 6 18 2048 7 564 2048
Caltech (VGG-19) ⇒ ImageNet (Reset-50) 6 120 4096 6 18 2048 7 564 2048
Caltech (VGG-19) ⇒ PascalVOC (Reset-50) 6 120 4096 6 18 2048 7 564 2048
ImageNet (Reset-50) ⇒ Bing (VGG-19) 6 120 2048 6 18 4096 7 564 4096
ImageNet (Reset-50) ⇒ Caltech (VGG-19) 6 120 2048 6 18 4096 7 564 4096
ImageNet (Reset-50) ⇒ PascalVOC (VGG-19) 6 120 2048 6 18 4096 7 564 4096
ImageNet (VGG-19) ⇒ Bing (Reset-50) 6 120 4096 6 18 2048 7 564 2048
ImageNet (VGG-19) ⇒ Caltech (Reset-50) 6 120 4096 6 18 2048 7 564 2048
ImageNet (VGG-19) ⇒ PascalVOC (Reset-50) 6 120 4096 6 18 2048 7 564 2048
PascalVOC (Reset-50) ⇒ Bing (VGG-19) 6 120 2048 6 18 4096 7 564 4096
PascalVOC (Reset-50) ⇒ Caltech (VGG-19) 6 120 2048 6 18 4096 7 564 4096
PascalVOC (Reset-50) ⇒ ImageNet (VGG-19) 6 120 2048 6 18 4096 7 564 4096
PascalVOC (VGG-19) ⇒ Bing (Reset-50) 6 120 4096 6 18 2048 7 564 2048
PascalVOC (VGG-19) ⇒ Caltech (Reset-50) 6 120 4096 6 18 2048 7 564 2048
PascalVOC (VGG-19) ⇒ ImageNet (Reset-50) 6 120 4096 6 18 2048 7 564 2048

Table 13: Data statistics for each domain adaptation task in PTB-XL dataset.

PTB-XL
Source Dataset Labeled Target Dataset Unlabeled Target Dataset

# of classes # of instances feature dim # of classes # of instances feature dim # of classes # of instances feature dim
Digital ECG ⇒ Paper ECG 4 4000 12×5000 4 80 3×224×224 5 4602 3×224×224

C.2 Baselines
We experiment with diverse baselines from heterogeneous domain adaptation, open-set domain adaptation, open-set semi-
supervised learning, supervised learning, and semi-supervised learning. The details of these baselines are as follows.

Heterogeneous Domain Adaptation. Heterogeneous domain adaptation methods are trained on both source and target data.
During inference, these methods classify instances as unknown using the same method as our pseudo-label model g (see
Section 5.2).

• SSAN (Li et al. 2020): This method maps heterogeneous source features into a shared representation space and then makes
predictions from this space. To adapt from the source to the target domains, it aligns the marginal and label-conditional
representation distributions between the two domains using Maximum Mean Discrepancy (MMD). Additionally, it employs
pseudo-labels generated from geometric similarity and hard predictions made by the classifier.

• STN (Yao et al. 2019): This method is similar to SSAN, but it calculates the MMD distance using soft labels (i.e., softmax
probabilities) rather than hard labels.

• SCT (Zhao et al. 2022): This method is similar to SSAN but differs in that it aligns marginal and label-conditional repre-
sentation distributions between source and target domains using cosine similarity. Additionally, it generates pseudo-labels
based on geometric distances from the source data.

• KPG (Gu et al. 2022): This method utilizes partial optimal transport and the Gromov-Wasserstein distance to map features
from the source domain to the target domain. An SVM, trained on the transported source data and labeled target data, is then
used for making predictions.

Open-Set Domain Adaptation.

• OPDA (Saito et al. 2018): This method is trained exclusively on target data. It employs adversarial training to train a classifier
that distinguishes between labeled and unlabeled target samples, while a generator is trained to push the unlabeled samples
away from the decision boundary. This setup provides the generator with two options: aligning unlabeled samples with
labeled ones or classifying them as unknown. Consequently, this approach enables the extraction of features that effectively
differentiate between known and unknown target samples. Unlike other baselines, OPDA can directly classify instances as
unknown during inference based on the classifier’s output.



Open-Set Semi-Supervised Learning.

• DS3L (Guo et al. 2020): This method is trained exclusively on target data and selectively uses unlabeled data while moni-
toring its impact to mitigate performance risks. Specifically, DS3L weakens the influence of unlabeled data with unknown
classes to enhance distribution matching and maintain strong generalization. Simultaneously, it reinforces the use of labeled
data to prevent performance degradation. These considerations are integrated into a unified bi-level optimization framework.
During inference, DS3L classifies instances as unknown using the same method as our pseudo-label model g.

Supervised Learning.

• Supervised Learning (SL): We train the model directly on the labeled target dataset by minimizing the classification loss.
During inference, SL classifies instances as unknown using the same method as our pseudo-label model g.

Semi-Supervised Learning.

• Pseudo Labeling (PL): Similar to supervised learning, but we use the model to generate pseudo-labels for the unlabeled
target data and then incorporate these pseudo-labeled examples into the training process. During inference, PL classifies
instances as unknown using the same method as our pseudo-label model g.

C.3 Implementation Details

Data, model implementation, and training script are included in the code & data supplementary material. We train each model
on each domain adaptation task with 10 different random seeds and report the average prediction performances. All experiments
are conducted on a machine with 24-Core CPU, 4 RTX A4000 GPUs, and 128G RAM.

C.4 Additional Results

In this section, we provide a comprehensive overview of the results for domain adaptation tasks across seven datasets. Detailed
results are presented in Tables 14-20. Additionally, Table 21 includes the results of statistical tests used to assess the significance
of our method in comparison to the baseline approaches across all domain adaptation tasks.

Table 14: Prediction performances of RL-OSHeDA as well as baselines for all domain adaptation tasks in CIFAR10 &
ILSVRC2012 dataset.

CIFAR10 & ILSVRC2012
DS3L KPG OPDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (1) 52.69±0.74 48.53±0.93 57.77±1.10 56.92±0.48 53.95±0.00 60.33±1.11 45.42±0.75 38.96±0.90 54.83±1.07
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (3) 65.87±0.72 64.34±0.99 67.49±1.03 57.25±0.48 54.98±0.00 59.77±1.12 57.34±0.81 53.38±1.06 62.25±1.10
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (5) 66.98±0.73 66.02±1.01 67.97±1.08 57.32±0.52 55.73±0.00 59.02±1.13 58.35±0.79 54.74±1.10 62.65±1.13
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (1) 52.70±0.78 47.72±1.11 59.02±1.07 52.68±0.51 47.70±0.00 59.53±1.14 44.22±0.76 36.41±0.94 56.61±1.15
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (3) 62.04±0.73 59.69±0.98 64.74±1.06 58.77±0.51 56.53±0.00 61.26±1.09 53.16±0.73 47.59±0.94 60.50±1.08
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (5) 68.67±0.72 67.95±0.99 69.42±1.01 60.70±0.53 59.52±0.00 61.92±1.10 61.28±0.77 58.23±1.08 64.73±1.07

PL SCT SSAN
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (1) 36.84±0.61 29.92±0.67 49.36±1.12 51.80±0.78 47.85±1.03 56.66±1.16 55.23±0.76 53.41±0.97 57.31±1.15
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (3) 47.34±0.57 42.81±0.64 53.82±1.10 62.68±0.75 61.22±0.97 64.28±1.11 62.34±0.71 61.34±0.98 63.39±1.05
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (5) 43.77±0.55 38.15±0.49 53.93±1.10 65.04±0.74 64.19±1.00 65.92±1.07 63.22±0.74 62.71±1.04 63.74±1.09
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (1) 35.49±0.34 27.96±0.27 51.08±1.12 49.74±0.78 45.12±1.07 55.76±1.07 54.36±0.78 51.13±1.11 58.58±1.11
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (3) 44.72±0.51 39.19±0.52 52.61±1.05 60.24±0.71 58.16±0.94 62.55±1.08 60.57±0.70 59.28±0.97 62.06±1.03
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (5) 48.35±0.51 44.71±0.38 53.07±1.10 68.19±0.72 67.61±0.96 68.79±1.02 66.58±0.70 66.19±0.95 66.97±1.03

STN SL OSHeDA
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (1) 55.22±0.75 51.92±1.01 59.13±1.08 52.90±0.74 48.24±0.96 58.70±1.14 60.45±0.79 56.70±1.04 65.18±1.16
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (3) 63.51±0.69 60.68±0.90 66.81±1.10 63.97±0.69 62.39±0.89 65.65±1.07 75.41±0.70 71.26±0.94 80.43±0.95
ImageNet (ResNet-101) ⇒ CIFAR (ResNet-50) (5) 65.62±0.75 63.47±1.00 67.97±1.09 66.18±0.72 65.18±1.02 67.21±1.07 78.24±0.68 73.49±1.00 83.70±0.86
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (1) 55.27±0.74 51.39±1.03 60.18±1.09 51.63±0.81 46.92±1.14 57.71±1.09 62.43±0.77 55.94±1.10 71.40±1.08
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (3) 62.09±0.72 59.28±1.03 65.30±0.99 61.38±0.74 59.29±1.01 63.69±1.09 74.82±0.66 70.87±0.91 79.50±0.96
ImageNet (ResNet-50) ⇒ CIFAR (ResNet-101) (5) 67.84±0.64 66.06±0.89 69.81±0.92 68.38±0.74 67.72±1.01 69.06±1.00 82.65±0.60 79.06±0.89 86.67±0.79



Table 15: Prediction performances of RL-OSHeDA as well as baselines for all domain adaptation tasks in Multilingual Reuters
Collection dataset.

Multilingual Reuters Collection
DS3L KPG OPDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
English ⇒ Spanish 59.35±0.96 52.92±1.31 67.57±1.20 11.48±0.08 8.80±0.00 17.12±0.95 56.42±1.02 49.09±1.32 66.41±1.23
French ⇒ Spanish 59.35±0.95 52.92±1.25 67.57±1.26 11.32±0.08 8.65±0.00 17.02±0.96 56.37±0.94 49.14±1.24 66.14±1.22
German ⇒ Spanish 59.35±0.92 52.92±1.24 67.57±1.27 11.11±0.07 8.43±0.00 17.00±0.97 55.32±0.85 48.16±1.05 65.07±1.21
Italian ⇒ Spanish 59.35±0.94 52.92±1.30 67.57±1.22 11.17±0.07 8.48±0.00 17.02±0.97 55.27±1.02 47.51±1.30 66.15±1.24

PL SCT SSAN
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

English ⇒ Spanish 42.85±0.81 34.56±1.02 57.86±1.29 60.99±0.92 54.70±1.25 68.96±1.24 58.28±0.94 51.99±1.21 66.36±1.24
French ⇒ Spanish 42.85±0.81 34.56±1.01 57.86±1.29 61.03±0.94 54.94±1.32 68.67±1.20 57.59±0.91 51.04±1.24 66.07±1.21
German ⇒ Spanish 42.85±0.78 34.56±0.98 57.86±1.28 61.58±0.96 55.49±1.33 69.21±1.22 58.65±0.97 52.77±1.29 66.04±1.29
Italian ⇒ Spanish 42.85±0.82 34.56±0.98 57.86±1.30 61.07±0.95 54.69±1.31 69.17±1.18 58.47±0.92 52.15±1.25 66.58±1.20

STN SL OSHeDA
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

English ⇒ Spanish 59.56±0.97 53.26±1.33 67.59±1.20 58.53±0.96 52.14±1.32 66.74±1.19 65.85±0.90 55.09±1.25 81.97±1.07
French ⇒ Spanish 59.19±0.98 52.95±1.29 67.13±1.27 58.53±0.95 52.14±1.28 66.74±1.22 65.34±0.97 54.52±1.21 81.64±0.85
German ⇒ Spanish 59.12±0.96 52.70±1.28 67.34±1.28 58.53±0.98 52.14±1.38 66.74±1.19 65.54±0.88 54.63±1.17 82.22±0.94
Italian ⇒ Spanish 58.95±0.95 52.72±1.32 66.89±1.19 58.53±0.96 52.14±1.31 66.74±1.25 64.81±0.91 53.63±1.19 82.07±0.98

Table 16: Prediction performances of RL-OSHeDA as well as baselines for all domain adaptation tasks in NUSWIDE &
ImageNet dataset.

NUSWIDE & ImageNet
DS3L KPG OPDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
Text ⇒ Image 67.61±1.65 66.17±2.22 69.20±2.30 55.18±1.17 52.60±0.00 58.10±2.45 71.06±1.44 66.60±1.98 76.38±2.09

PL SCT SSAN
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

Text ⇒ Image 42.43±0.26 34.05±0.00 61.15±2.10 70.42±1.49 68.00±2.20 73.10±1.99 67.98±1.49 66.25±2.04 69.85±2.21
STN SL OSHeDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
Text ⇒ Image 67.75±1.23 64.80±1.42 71.08±2.16 69.41±1.64 66.62±2.26 72.57±2.23 80.01±1.30 74.65±2.01 86.35±0.81

Table 17: Prediction performances of RL-OSHeDA as well as baselines for all domain adaptation tasks in Wikipedia dataset.

Wikipedia
DS3L KPG OPDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
Image ⇒ Text 35.90±2.42 26.96±2.70 54.68±3.09 25.37±0.40 16.80±0.00 51.92±3.19 39.60±2.46 29.48±2.60 61.16±3.26
Text ⇒ Image 76.10±1.61 74.48±2.02 77.80±2.51 24.27±0.44 16.00±0.00 53.12±3.16 65.72±1.38 62.40±1.03 69.68±2.98

PL SCT SSAN
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

Image ⇒ Text 27.11±2.26 18.28±2.10 54.00±3.18 38.51±2.45 29.28±2.77 56.56±3.00 39.52±2.03 30.16±2.18 57.52±3.10
Text ⇒ Image 56.64±1.04 52.00±0.85 62.80±3.02 78.31±1.58 76.44±2.00 80.28±2.47 77.23±1.48 75.36±1.73 79.20±2.50

STN SL OSHeDA
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

Image ⇒ Text 39.96±2.11 30.24±2.21 59.20±3.16 37.80±2.48 28.68±2.70 55.68±3.07 40.27±2.40 31.60±2.79 56.68±3.22
Text ⇒ Image 75.54±1.70 72.56±2.05 78.80±2.79 76.40±1.47 74.52±1.68 78.40±2.46 85.93±1.39 82.92±2.11 89.40±1.51

Table 18: Prediction performances of RL-OSHeDA as well as baselines for all domain adaptation tasks in PTB-XL dataset.

PTB-XL
DS3L KPG OPDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
Digital ECG ⇒ Paper ECG 30.30±1.19 34.95±0.58 26.74±1.82 N/A N/A N/A 31.47±1.22 36.35±0.63 27.74±1.86

PL SCT SSAN
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

Digital ECG ⇒ Paper ECG 26.18±1.37 36.43±0.55 20.43±1.66 26.23±1.65 46.48±0.71 18.27±1.60 25.16±1.47 40.40±0.65 18.27±1.54
STN SL OSHeDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
Digital ECG ⇒ Paper ECG 20.64±0.96 22.23±0.26 19.27±1.65 25.74±1.55 44.50±0.76 18.11±1.52 47.48±1.25 44.30±1.39 51.16±1.86



Table 19: Prediction performances of RL-OSHeDA as well as baselines for all domain adaptation tasks in ImageCLEF-DA
dataset.

ImageCLEF-DA
DS3L KPG OPDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
Bing (Reset-50) ⇒ Caltech (VGG-19) 70.23±1.83 66.23±2.70 74.77±2.45 30.67±0.63 25.73±0.00 38.26±2.74 64.88±1.58 58.83±1.88 72.58±2.60
Bing (Reset-50) ⇒ ImageNet (VGG-19) 62.00±2.01 56.90±2.66 68.19±2.92 35.41±0.91 28.57±0.00 47.26±2.80 57.22±1.72 49.68±2.15 67.64±2.76
Bing (Reset-50) ⇒ PascalVOC (VGG-19) 57.21±1.86 52.42±2.34 63.01±2.84 31.10±0.49 24.74±0.00 42.55±2.93 54.47±1.75 48.13±2.15 62.84±2.92
Bing (VGG-19) ⇒ Caltech (Reset-50) 72.67±1.71 68.03±2.55 78.12±2.23 25.93±0.95 22.29±0.00 31.16±2.59 63.25±1.89 56.22±2.62 72.45±2.76
Bing (VGG-19) ⇒ ImageNet (Reset-50) 64.53±1.90 59.87±2.68 70.00±2.55 36.97±0.85 30.33±0.00 47.41±2.90 55.67±1.76 47.57±2.14 67.28±2.68
Bing (VGG-19) ⇒ PascalVOC (Reset-50) 57.80±2.06 52.40±2.82 64.77±2.95 33.20±1.11 27.76±0.00 41.95±3.01 53.48±1.86 45.24±2.37 66.06±2.75
Caltech (Reset-50) ⇒ Bing (VGG-19) 42.91±2.29 34.04±2.82 59.09±2.89 36.15±0.75 27.81±0.00 52.35±3.10 38.29±2.23 28.41±2.35 59.58±2.90
Caltech (Reset-50) ⇒ ImageNet (VGG-19) 63.21±1.89 58.17±2.57 69.24±2.72 60.98±1.14 55.06±0.00 68.37±2.81 58.15±1.59 49.52±1.98 70.66±2.60
Caltech (Reset-50) ⇒ PascalVOC (VGG-19) 57.99±1.99 53.49±2.76 63.37±2.90 50.82±1.21 45.66±0.00 57.34±2.92 54.29±1.75 47.28±2.15 63.90±2.85
Caltech (VGG-19) ⇒ Bing (Reset-50) 43.83±2.38 34.97±2.77 59.00±2.88 39.75±0.76 31.25±0.00 54.81±2.96 36.94±2.16 27.29±1.98 57.89±2.96
Caltech (VGG-19) ⇒ ImageNet (Reset-50) 61.00±2.16 55.16±2.86 68.44±2.78 60.80±1.15 54.94±0.00 68.13±2.79 52.45±2.00 43.71±2.08 66.12±2.67
Caltech (VGG-19) ⇒ PascalVOC (Reset-50) 56.73±2.06 51.97±2.83 62.67±2.85 54.46±1.19 49.96±0.00 59.96±2.79 52.02±1.79 45.04±2.17 61.81±3.05
ImageNet (Reset-50) ⇒ Bing (VGG-19) 42.94±2.23 34.30±2.64 57.93±2.97 31.59±0.57 23.22±0.00 49.72±2.94 41.76±2.28 32.22±2.47 59.61±2.80
ImageNet (Reset-50) ⇒ Caltech (VGG-19) 66.64±2.00 62.64±2.87 71.25±2.71 40.26±1.13 34.71±0.00 48.99±2.94 65.01±1.76 58.64±2.36 73.17±2.56
ImageNet (Reset-50) ⇒ PascalVOC (VGG-19) 56.71±1.98 51.21±2.77 63.79±2.82 42.87±1.15 37.32±0.00 50.57±3.04 53.19±1.85 46.02±2.40 63.62±2.76
ImageNet (VGG-19) ⇒ Bing (Reset-50) 45.41±2.26 36.84±2.47 59.76±3.05 30.35±0.74 22.36±0.00 48.82±2.88 38.51±2.25 28.99±2.18 58.17±2.88
ImageNet (VGG-19) ⇒ Caltech (Reset-50) 73.97±1.96 69.74±2.79 78.77±2.50 42.12±1.31 38.33±0.00 46.79±3.18 65.33±1.62 58.91±1.87 73.65±2.75
ImageNet (VGG-19) ⇒ PascalVOC (Reset-50) 59.28±1.96 54.79±2.66 64.66±2.90 45.17±1.15 40.38±0.00 51.41±2.95 52.73±1.58 45.01±1.70 63.90±2.88
PascalVOC (Reset-50) ⇒ Bing (VGG-19) 43.02±2.16 34.05±2.63 59.16±2.89 30.05±0.53 22.05±0.00 47.96±2.88 41.07±2.01 31.28±2.09 60.25±2.89
PascalVOC (Reset-50) ⇒ Caltech (VGG-19) 70.64±1.94 66.84±2.71 74.95±2.64 41.55±1.17 36.89±0.00 47.67±2.91 67.29±1.86 61.26±2.45 74.95±2.50
PascalVOC (Reset-50) ⇒ ImageNet (VGG-19) 58.36±1.98 53.49±2.62 64.31±2.88 49.54±1.06 42.80±0.00 58.96±2.73 57.47±1.73 48.60±2.10 70.76±2.68
PascalVOC (VGG-19) ⇒ Bing (Reset-50) 43.67±2.23 34.93±2.71 58.58±2.94 29.42±0.51 21.29±0.00 47.92±2.97 36.78±1.80 27.52±1.80 55.61±2.88
PascalVOC (VGG-19) ⇒ Caltech (Reset-50) 72.40±1.92 68.02±2.62 77.47±2.50 45.18±1.09 41.64±0.00 49.46±3.01 61.53±1.45 54.89±1.78 70.22±2.49
PascalVOC (VGG-19) ⇒ ImageNet (Reset-50) 63.79±2.09 58.40±2.96 70.41±2.70 51.87±0.93 45.20±0.00 61.12±2.97 54.17±1.60 46.41±1.97 65.65±2.62

PL SCT SSAN
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

Bing (Reset-50) ⇒ Caltech (VGG-19) 48.18±1.62 42.69±1.76 57.98±2.90 71.56±1.80 67.63±2.62 75.99±2.41 73.40±1.82 69.14±2.65 78.26±2.39
Bing (Reset-50) ⇒ ImageNet (VGG-19) 38.03±1.19 30.41±1.11 52.64±2.90 62.26±1.84 57.55±2.47 67.85±2.78 62.68±1.90 57.53±2.57 68.92±2.65
Bing (Reset-50) ⇒ PascalVOC (VGG-19) 38.83±1.77 31.11±1.82 52.27±2.92 57.59±1.88 52.47±2.47 63.90±2.84 59.88±1.93 55.69±2.59 64.79±2.94
Bing (VGG-19) ⇒ Caltech (Reset-50) 48.61±1.56 42.54±1.77 60.43±2.89 72.41±1.77 68.19±2.58 77.26±2.29 70.23±1.66 66.07±2.48 75.02±2.21
Bing (VGG-19) ⇒ ImageNet (Reset-50) 39.29±1.51 32.53±1.53 52.11±2.99 64.56±1.95 60.21±2.79 69.59±2.46 63.48±1.88 58.73±2.73 69.12±2.40
Bing (VGG-19) ⇒ PascalVOC (Reset-50) 36.41±1.64 28.98±1.81 52.56±3.04 55.77±2.13 50.69±2.96 62.56±2.86 57.16±2.08 52.65±2.96 62.89±2.80
Caltech (Reset-50) ⇒ Bing (VGG-19) 28.85±1.71 20.19±1.71 52.39±2.84 43.52±2.25 35.02±2.71 58.60±2.94 43.57±2.15 35.25±2.64 58.14±2.92
Caltech (Reset-50) ⇒ ImageNet (VGG-19) 35.80±1.36 28.53±1.38 50.07±2.92 63.68±2.09 58.62±2.87 69.72±2.80 63.73±2.03 58.75±2.94 69.65±2.62
Caltech (Reset-50) ⇒ PascalVOC (VGG-19) 41.41±1.50 34.49±1.35 53.76±2.99 58.39±2.00 53.63±2.83 64.11±2.78 59.14±2.08 55.00±2.86 64.01±2.94
Caltech (VGG-19) ⇒ Bing (Reset-50) 28.18±2.28 19.46±2.09 53.70±2.83 43.51±2.26 34.82±2.45 58.24±2.86 43.93±2.34 35.49±2.66 57.79±2.81
Caltech (VGG-19) ⇒ ImageNet (Reset-50) 41.85±1.57 34.43±1.72 56.84±2.91 60.68±2.00 55.16±2.54 67.62±2.78 59.69±1.99 54.46±2.87 66.26±2.58
Caltech (VGG-19) ⇒ PascalVOC (Reset-50) 43.02±1.54 36.20±1.69 54.04±2.98 56.00±1.99 50.98±2.61 62.20±2.93 56.24±2.13 52.38±2.90 61.05±3.01
ImageNet (Reset-50) ⇒ Bing (VGG-19) 34.91±2.10 25.45±2.08 56.04±2.97 43.40±2.34 34.67±2.74 58.39±2.90 42.34±2.31 34.10±2.65 56.04±2.88
ImageNet (Reset-50) ⇒ Caltech (VGG-19) 50.76±1.70 45.62±1.88 57.39±3.04 68.57±1.90 64.30±2.62 73.48±2.76 69.17±1.99 65.20±2.86 73.76±2.58
ImageNet (Reset-50) ⇒ PascalVOC (VGG-19) 41.64±1.75 34.00±1.92 54.29±2.94 55.81±2.11 50.62±2.95 62.38±2.74 57.32±2.01 52.58±2.78 63.09±2.85
ImageNet (VGG-19) ⇒ Bing (Reset-50) 29.13±1.21 20.48±0.96 52.32±2.92 45.51±2.30 36.83±2.58 60.14±2.88 45.26±2.29 36.81±2.62 59.38±2.99
ImageNet (VGG-19) ⇒ Caltech (Reset-50) 48.44±1.50 43.63±1.56 54.91±2.98 74.62±1.94 70.45±2.72 79.31±2.53 71.50±1.89 67.69±2.76 75.78±2.61
ImageNet (VGG-19) ⇒ PascalVOC (Reset-50) 33.69±1.66 26.41±1.80 49.60±2.91 58.37±2.11 53.99±2.79 63.57±2.97 58.01±2.00 54.49±2.78 62.06±2.94
PascalVOC (Reset-50) ⇒ Bing (VGG-19) 30.27±1.53 21.65±1.20 51.93±2.93 43.19±2.26 34.11±2.68 59.47±2.77 42.71±2.32 33.96±2.65 57.93±2.83
PascalVOC (Reset-50) ⇒ Caltech (VGG-19) 51.12±1.57 46.25±1.77 57.39±2.89 71.63±2.04 68.24±2.86 75.37±2.81 71.85±1.99 67.97±2.78 76.34±2.57
PascalVOC (Reset-50) ⇒ ImageNet (VGG-19) 40.68±1.62 32.62±1.68 56.28±2.71 58.99±1.91 53.96±2.67 65.17±2.89 58.94±1.92 53.51±2.50 65.90±2.95
PascalVOC (VGG-19) ⇒ Bing (Reset-50) 27.81±2.03 19.12±1.82 53.01±3.02 43.25±2.35 34.68±2.84 57.92±2.95 43.49±2.26 35.16±2.83 57.44±2.81
PascalVOC (VGG-19) ⇒ Caltech (Reset-50) 47.14±1.45 40.53±1.53 58.59±2.73 72.75±1.84 68.53±2.62 77.58±2.53 70.04±2.00 65.85±2.82 74.84±2.69
PascalVOC (VGG-19) ⇒ ImageNet (Reset-50) 36.78±1.60 29.01±1.79 53.67±2.81 64.23±2.17 58.91±2.96 70.68±2.80 62.91±2.11 57.97±2.87 68.88±2.82

STN SL OSHeDA
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

Bing (Reset-50) ⇒ Caltech (VGG-19) 71.09±1.87 67.14±2.64 75.54±2.63 71.47±1.86 67.43±2.69 76.06±2.48 76.55±1.58 72.18±2.28 81.67±2.08
Bing (Reset-50) ⇒ ImageNet (VGG-19) 60.25±1.94 53.43±2.63 69.27±2.61 61.65±1.96 56.74±2.62 67.60±2.83 70.18±1.96 62.60±2.80 80.07±2.37
Bing (Reset-50) ⇒ PascalVOC (VGG-19) 57.23±2.14 51.56±2.91 64.82±2.84 57.79±1.92 53.10±2.49 63.44±2.87 60.84±2.00 53.07±2.56 71.42±2.90
Bing (VGG-19) ⇒ Caltech (Reset-50) 66.76±1.93 61.38±2.77 73.43±2.44 71.99±1.77 67.20±2.59 77.65±2.22 76.36±1.71 69.83±2.59 84.40±1.70
Bing (VGG-19) ⇒ ImageNet (Reset-50) 62.89±2.03 57.80±2.88 68.98±2.81 64.71±1.95 60.10±2.79 70.10±2.52 70.84±1.89 65.64±2.74 77.18±2.19
Bing (VGG-19) ⇒ PascalVOC (Reset-50) 55.04±2.00 49.74±2.81 61.91±2.66 56.71±2.03 51.47±2.86 63.57±2.87 60.95±2.01 52.66±2.79 73.43±2.38
Caltech (Reset-50) ⇒ Bing (VGG-19) 40.32±2.39 31.43±2.64 56.98±2.95 43.12±2.23 34.25±2.76 59.23±2.91 45.55±2.46 35.61±2.66 63.93±2.80
Caltech (Reset-50) ⇒ ImageNet (VGG-19) 61.17±1.98 54.71±2.82 69.48±2.69 63.61±2.00 58.64±2.72 69.51±2.68 71.75±2.03 64.46±2.89 81.18±2.14
Caltech (Reset-50) ⇒ PascalVOC (VGG-19) 55.64±2.11 49.19±2.91 64.36±2.86 57.44±1.95 52.85±2.60 62.94±2.84 62.36±1.97 55.16±2.77 71.84±2.65
Caltech (VGG-19) ⇒ Bing (Reset-50) 41.09±2.49 31.89±2.86 57.85±2.79 43.90±2.42 34.85±2.76 59.41±2.98 48.94±2.38 39.74±2.85 63.94±2.89
Caltech (VGG-19) ⇒ ImageNet (Reset-50) 58.46±1.92 52.73±2.56 65.71±2.75 61.59±2.01 56.07±2.73 68.40±2.72 68.65±2.00 62.78±2.84 76.67±2.07
Caltech (VGG-19) ⇒ PascalVOC (Reset-50) 52.98±1.99 47.28±2.61 60.58±3.07 56.82±1.98 51.98±2.67 62.89±2.93 61.71±2.06 54.25±2.83 72.27±2.95
ImageNet (Reset-50) ⇒ Bing (VGG-19) 41.13±2.08 32.05±2.22 57.86±2.89 43.07±2.20 34.35±2.56 58.14±3.12 46.31±2.22 36.58±2.81 64.39±2.99
ImageNet (Reset-50) ⇒ Caltech (VGG-19) 66.59±2.01 61.96±2.91 72.09±2.73 67.09±2.10 63.08±2.96 71.71±2.79 71.80±2.00 68.39±2.83 76.03±2.75
ImageNet (Reset-50) ⇒ PascalVOC (VGG-19) 56.95±2.06 50.42±2.86 65.85±2.77 56.56±2.00 51.33±2.78 63.26±2.82 60.55±2.00 53.17±2.80 70.78±2.53
ImageNet (VGG-19) ⇒ Bing (Reset-50) 40.85±2.43 31.87±2.70 57.16±2.88 45.53±2.30 36.84±2.65 60.14±2.88 50.23±2.22 39.96±2.53 68.03±2.92
ImageNet (VGG-19) ⇒ Caltech (Reset-50) 69.29±1.74 64.26±2.35 75.31±2.52 74.77±1.89 70.60±2.71 79.49±2.42 79.93±1.86 73.53±2.69 87.62±1.85
ImageNet (VGG-19) ⇒ PascalVOC (Reset-50) 52.75±1.95 47.10±2.41 60.11±2.92 58.68±2.06 53.82±2.77 64.62±2.79 65.44±2.02 57.92±2.65 75.52±2.71
PascalVOC (Reset-50) ⇒ Bing (VGG-19) 40.19±2.20 30.51±2.46 59.58±2.90 43.03±2.29 33.91±2.63 59.68±2.86 46.50±2.38 36.76±2.76 63.61±2.92
PascalVOC (Reset-50) ⇒ Caltech (VGG-19) 72.63±1.88 68.33±2.77 77.56±2.37 69.90±1.99 66.21±2.78 74.04±2.64 78.18±1.85 72.63±2.70 85.02±2.39
PascalVOC (Reset-50) ⇒ ImageNet (VGG-19) 56.07±1.98 49.15±2.77 65.63±2.77 57.55±1.92 52.57±2.53 63.68±2.80 64.81±2.06 56.21±2.65 77.33±2.22
PascalVOC (VGG-19) ⇒ Bing (Reset-50) 41.60±2.33 32.53±2.70 58.44±2.84 44.07±2.34 35.52±2.78 58.30±3.01 48.24±2.37 37.92±2.71 66.71±2.73
PascalVOC (VGG-19) ⇒ Caltech (Reset-50) 66.98±2.02 62.46±2.67 72.35±2.83 71.69±1.89 67.32±2.70 76.75±2.51 77.00±1.86 72.12±2.66 82.78±2.42
PascalVOC (VGG-19) ⇒ ImageNet (Reset-50) 62.10±2.02 56.35±2.63 69.22±2.78 63.46±2.05 57.82±2.76 70.41±2.66 71.86±2.02 65.90±2.92 79.49±2.63



Table 20: Prediction performances of RL-OSHeDA as well as baselines for all domain adaptation tasks in Office & Caltech256
dataset.

Office & Caltech256
DS3L KPG OPDA

HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK
Amazon (DeCAF6) ⇒ Caltech (SURF) 46.08±1.41 37.41±1.60 60.15±2.05 36.51±0.69 30.20±0.00 46.22±2.22 43.26±1.58 33.61±1.87 60.84±2.01
Amazon (DeCAF6) ⇒ DSLR (SURF) 70.73±4.37 61.96±6.58 82.57±4.50 55.39±1.70 46.05±0.00 69.59±5.04 61.74±4.41 50.73±4.98 79.32±4.97
Amazon (DeCAF6) ⇒ Webcam (SURF) 71.64±2.73 67.43±4.05 76.62±3.64 61.25±1.62 56.91±0.00 66.34±3.81 61.79±2.88 53.28±3.61 74.00±4.06
Amazon (SURF) ⇒ Caltech (DeCAF6) 68.29±1.31 65.51±1.83 71.37±1.98 36.27±0.91 34.10±0.00 38.80±2.06 58.80±1.40 52.44±2.00 67.48±1.85
Amazon (SURF) ⇒ DSLR (DeCAF6) 86.97±3.62 83.57±5.92 90.68±3.41 24.18±0.94 16.86±0.00 44.32±5.69 81.76±3.69 75.07±5.53 90.00±3.28
Amazon (SURF) ⇒ Webcam (DeCAF6) 83.31±1.92 81.56±2.76 85.17±2.58 29.59±1.34 24.79±0.00 36.97±3.90 76.18±2.55 70.34±3.91 83.59±2.91
Caltech (DeCAF6) ⇒ Amazon (SURF) 59.62±1.55 54.12±2.14 66.47±2.16 42.35±0.87 36.87±0.00 49.89±2.27 53.67±1.48 46.16±1.95 64.31±2.24
Caltech (DeCAF6) ⇒ DSLR (SURF) 70.73±4.53 61.96±6.67 82.57±4.46 37.67±1.36 28.80±0.00 54.86±5.40 61.74±4.48 50.73±5.07 79.32±5.22
Caltech (DeCAF6) ⇒ Webcam (SURF) 71.64±2.92 67.43±4.31 76.62±3.72 44.51±1.41 39.21±0.00 51.52±4.14 61.79±2.88 53.28±3.61 74.00±4.20
Caltech (SURF) ⇒ Amazon (DeCAF6) 83.06±1.13 82.42±1.58 83.72±1.59 11.18±0.34 8.48±0.00 16.55±1.69 78.11±1.16 74.73±1.72 81.85±1.58
Caltech (SURF) ⇒ DSLR (DeCAF6) 86.97±3.55 83.57±5.96 90.68±3.48 3.93±0.02 2.20±0.00 30.95±5.32 81.76±3.67 75.07±5.49 90.00±3.16
Caltech (SURF) ⇒ Webcam (DeCAF6) 83.31±1.96 81.56±2.87 85.17±2.68 8.19±0.50 5.21±0.00 22.34±3.45 76.18±2.50 70.34±3.83 83.59±2.93
Webcam (DeCAF6) ⇒ Amazon (SURF) 59.62±1.54 54.12±2.11 66.47±2.23 55.55±0.93 50.11±0.00 62.37±2.24 53.67±1.54 46.16±2.03 64.31±2.23
Webcam (DeCAF6) ⇒ Caltech (SURF) 46.08±1.44 37.41±1.61 60.15±2.09 37.74±0.67 31.18±0.00 47.86±2.25 43.26±1.53 33.61±1.80 60.84±2.14
Webcam (DeCAF6) ⇒ DSLR (SURF) 70.73±4.54 61.96±6.79 82.57±4.39 57.27±1.65 47.80±0.00 71.49±4.83 61.74±4.44 50.73±5.08 79.32±5.20
Webcam (SURF) ⇒ Amazon (DeCAF6) 83.06±1.13 82.42±1.60 83.72±1.64 24.29±0.95 21.34±0.00 28.28±2.22 78.11±1.17 74.73±1.76 81.85±1.57
Webcam (SURF) ⇒ Caltech (DeCAF6) 68.29±1.37 65.51±1.86 71.37±2.04 33.67±0.94 31.11±0.00 36.74±2.18 58.80±1.47 52.44±2.08 67.48±1.87
Webcam (SURF) ⇒ DSLR (DeCAF6) 86.97±3.64 83.57±5.95 90.68±3.32 20.74±0.94 14.02±0.00 40.95±5.73 81.76±3.57 75.07±5.45 90.00±3.16

PL SCT SSAN
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

Amazon (DeCAF6) ⇒ Caltech (SURF) 28.23±1.18 19.50±1.18 53.47±2.21 47.81±1.35 38.66±1.55 62.75±2.11 43.85±1.73 35.11±1.91 58.89±2.13
Amazon (DeCAF6) ⇒ DSLR (SURF) 35.22±0.51 23.69±0.16 72.84±5.04 72.68±4.36 64.10±6.65 84.05±4.40 66.44±4.69 57.19±6.61 79.59±4.94
Amazon (DeCAF6) ⇒ Webcam (SURF) 32.23±2.14 22.87±2.21 58.62±4.18 75.46±2.54 71.00±3.65 80.55±3.28 70.98±2.78 65.72±4.19 77.31±3.47
Amazon (SURF) ⇒ Caltech (DeCAF6) 54.21±1.05 46.73±1.21 66.66±1.79 70.29±1.39 67.05±1.94 73.89±1.93 71.94±1.33 68.67±1.78 75.59±2.03
Amazon (SURF) ⇒ DSLR (DeCAF6) 67.80±1.78 58.16±0.00 82.70±4.70 93.35±2.26 91.40±3.62 95.41±2.34 90.18±2.45 87.74±3.70 92.84±2.94
Amazon (SURF) ⇒ Webcam (DeCAF6) 66.08±2.23 60.34±2.59 73.38±3.77 88.13±1.60 85.38±2.29 91.17±2.19 86.68±2.14 83.47±3.14 90.28±2.88
Caltech (DeCAF6) ⇒ Amazon (SURF) 36.43±1.27 27.67±1.35 55.15±2.45 63.17±1.51 57.01±2.17 70.90±2.14 59.90±1.49 55.04±2.02 65.82±2.17
Caltech (DeCAF6) ⇒ DSLR (SURF) 35.22±0.47 23.69±0.00 72.84±4.99 72.83±4.44 64.86±6.74 83.11±4.35 65.39±4.32 56.48±6.14 77.84±5.10
Caltech (DeCAF6) ⇒ Webcam (SURF) 32.23±2.06 22.87±2.15 58.62±4.00 75.66±2.51 71.82±3.76 80.00±3.60 70.76±2.56 65.35±3.72 77.31±3.34
Caltech (SURF) ⇒ Amazon (DeCAF6) 68.53±0.95 63.58±1.11 75.11±1.61 88.53±1.00 87.22±1.45 89.87±1.34 89.04±1.00 87.75±1.51 90.38±1.26
Caltech (SURF) ⇒ DSLR (DeCAF6) 67.80±1.81 58.16±0.32 82.70±4.74 93.50±2.70 91.93±4.64 95.14±2.32 91.36±2.59 88.96±4.08 93.92±2.95
Caltech (SURF) ⇒ Webcam (DeCAF6) 66.08±2.21 60.34±2.51 73.38±3.85 87.79±1.67 84.82±2.51 91.03±2.04 87.13±2.22 83.43±3.32 91.31±2.65
Webcam (DeCAF6) ⇒ Amazon (SURF) 36.43±1.24 27.67±1.32 55.15±2.21 62.57±1.50 56.43±2.06 70.27±2.06 60.23±1.45 55.25±2.03 66.28±2.20
Webcam (DeCAF6) ⇒ Caltech (SURF) 28.23±1.11 19.50±1.08 53.47±2.13 47.38±1.45 38.50±1.70 61.81±2.15 43.79±1.68 34.81±1.89 59.85±2.12
Webcam (DeCAF6) ⇒ DSLR (SURF) 35.22±0.55 23.69±0.22 72.84±5.26 71.98±3.87 63.60±5.95 83.11±3.91 65.60±4.92 56.35±6.71 78.65±5.29
Webcam (SURF) ⇒ Amazon (DeCAF6) 68.53±0.92 63.58±1.04 75.11±1.60 87.85±1.01 86.45±1.50 89.31±1.37 87.85±1.04 86.85±1.53 88.89±1.39
Webcam (SURF) ⇒ Caltech (DeCAF6) 54.21±1.05 46.73±1.23 66.66±1.82 70.55±1.30 66.91±1.90 74.68±1.85 72.99±1.33 69.26±1.82 77.21±1.87
Webcam (SURF) ⇒ DSLR (DeCAF6) 67.80±1.87 58.16±0.57 82.70±4.81 93.41±2.11 91.78±3.48 95.14±2.31 89.06±2.81 86.35±4.49 92.03±3.17

STN SL OSHeDA
HOS OS∗ UNK HOS OS∗ UNK HOS OS∗ UNK

Amazon (DeCAF6) ⇒ Caltech (SURF) 47.74±1.61 39.29±1.97 60.99±2.23 45.87±1.48 37.12±1.82 60.25±2.22 46.69±1.39 37.78±1.65 61.41±2.32
Amazon (DeCAF6) ⇒ DSLR (SURF) 72.52±4.17 63.01±6.13 85.54±3.83 70.36±4.71 62.20±6.92 81.08±4.81 71.88±4.38 63.98±6.39 82.30±4.44
Amazon (DeCAF6) ⇒ Webcam (SURF) 77.24±2.61 72.38±3.91 82.90±3.20 71.76±2.81 67.75±4.18 76.34±3.68 75.72±2.68 68.42±3.90 84.97±2.98
Amazon (SURF) ⇒ Caltech (DeCAF6) 69.07±1.33 65.04±1.92 73.68±1.82 68.20±1.37 66.15±1.93 70.40±1.96 79.28±1.13 72.99±1.74 86.85±0.99
Amazon (SURF) ⇒ DSLR (DeCAF6) 80.02±2.28 74.04±3.82 87.43±2.26 86.88±3.67 84.13±6.05 89.86±3.43 94.59±2.13 95.35±2.31 94.05±3.31
Amazon (SURF) ⇒ Webcam (DeCAF6) 81.48±2.18 77.27±2.87 86.28±3.32 83.33±2.01 80.97±2.76 85.93±2.74 92.45±1.30 90.28±1.94 94.97±1.72
Caltech (DeCAF6) ⇒ Amazon (SURF) 61.69±1.44 55.02±1.93 70.27±2.10 60.31±1.53 54.92±2.12 66.97±2.15 66.11±1.53 57.86±2.16 77.33±1.80
Caltech (DeCAF6) ⇒ DSLR (SURF) 69.10±4.13 59.61±6.27 82.57±4.10 70.36±4.51 62.20±6.67 81.08±4.82 72.05±4.18 65.33±5.65 81.35±5.62
Caltech (DeCAF6) ⇒ Webcam (SURF) 77.24±2.58 72.52±3.98 82.76±3.14 71.76±2.95 67.75±4.23 76.34±3.78 74.86±2.76 67.65±3.92 84.14±3.39
Caltech (SURF) ⇒ Amazon (DeCAF6) 85.54±1.12 83.07±1.61 88.26±1.46 83.90±1.09 83.09±1.57 84.73±1.51 94.36±0.71 91.43±1.13 97.50±0.83
Caltech (SURF) ⇒ DSLR (DeCAF6) 80.56±3.42 75.17±5.36 86.89±3.77 86.88±3.51 84.13±5.87 89.86±3.36 94.32±2.02 96.30±2.63 92.57±2.91
Caltech (SURF) ⇒ Webcam (DeCAF6) 78.34±2.00 74.47±2.27 82.76±3.37 83.33±1.99 80.97±2.79 85.93±2.74 92.00±1.24 88.87±1.77 95.79±1.71
Webcam (DeCAF6) ⇒ Amazon (SURF) 61.26±1.48 54.27±1.91 70.40±2.17 60.31±1.53 54.92±2.18 66.97±2.16 66.00±1.51 57.20±2.12 78.11±1.84
Webcam (DeCAF6) ⇒ Caltech (SURF) 46.97±1.59 38.19±1.94 61.11±2.17 45.87±1.53 37.12±1.87 60.25±2.24 46.72±1.41 37.53±1.73 62.21±2.15
Webcam (DeCAF6) ⇒ DSLR (SURF) 72.18±4.16 63.57±6.06 83.65±4.24 70.36±4.88 62.20±7.04 81.08±4.82 71.91±4.48 63.68±6.80 82.70±4.63
Webcam (SURF) ⇒ Amazon (DeCAF6) 86.87±1.07 84.97±1.55 88.87±1.43 83.90±1.11 83.09±1.58 84.73±1.50 94.44±0.75 91.42±1.27 97.69±0.65
Webcam (SURF) ⇒ Caltech (DeCAF6) 69.43±1.34 65.14±1.84 74.41±1.99 68.20±1.38 66.15±1.87 70.40±1.95 79.49±1.18 73.01±1.81 87.37±1.01
Webcam (SURF) ⇒ DSLR (DeCAF6) 83.46±2.50 79.20±3.97 88.38±2.92 86.88±3.65 84.13±5.95 89.86±3.49 94.36±2.21 95.68±3.54 93.24±2.70



Table 21: Pairwise p-values from the Nemenyi test conducted on 56 domain adaptation tasks. P-values less than 0.05 indicate a
statistically significant difference in prediction performance between the two corresponding methods.

DS3L KPG OPDA PL SCT SSAN STN SL RL-OSHeDA
DS3L 1.000 0.001 0.001 0.001 0.525 0.900 0.900 0.900 0.001
KPG 0.001 1.000 0.283 0.900 0.001 0.001 0.001 0.001 0.001

OPDA 0.001 0.283 1.000 0.050 0.001 0.001 0.001 0.001 0.001
PL 0.001 0.900 0.050 1.000 0.001 0.001 0.001 0.001 0.001

SCT 0.525 0.001 0.001 0.001 1.000 0.589 0.062 0.525 0.009
SSAN 0.900 0.001 0.001 0.001 0.589 1.000 0.900 0.900 0.001

STN 0.900 0.001 0.001 0.001 0.062 0.900 1.000 0.900 0.001
SL 0.900 0.001 0.001 0.001 0.525 0.900 0.900 1.000 0.001

RL-OSHeDA 0.001 0.001 0.001 0.001 0.009 0.001 0.001 0.001 1.000


