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Abstract

Supervised learning models have been increasingly used for
making decisions about individuals in applications such as
hiring, lending, and college admission. These models may in-
herit pre-existing biases from training datasets and discrimi-
nate against protected attributes (e.g., race or gender). In ad-
dition to unfairness, privacy concerns also arise when the use
of models reveals sensitive personal information. Among var-
ious privacy notions, differential privacy has become popular
in recent years. In this work, we study the possibility of us-
ing a differentially private exponential mechanism as a post-
processing step to improve both fairness and privacy of su-
pervised learning models. Unlike many existing works, we
consider a scenario where a supervised model is used to se-
lect a limited number of applicants as the number of avail-
able positions is limited. This assumption is well-suited for
various scenarios, such as job application and college admis-
sion. We use “equal opportunity” as the fairness notion and
show that the exponential mechanisms can make the decision-
making process perfectly fair. Moreover, the experiments on
real-world datasets show that the exponential mechanism can
improve both privacy and fairness, with a slight decrease in
accuracy compared to the model without post-processing.

Area: ML: Ethics – Bias, Fairness, Transparency & Privacy

1 Introduction
Machine learning (ML) algorithms trained based on real-
world datasets have been used in various decision-making
applications (e.g., job applications and criminal justice). Due
to the pre-existing bias in the datasets, the decision-making
process can be biased against protected attributes (e.g., race
and gender). For example, COMPAS (Correctional Offender
Management Profiling for Alternative Sanctions) recidivism
prediction tool used as part of inmate parole decisions by
courts in the United States has been shown to have a substan-
tially higher false positive rate on African Americans com-
pared to White people [8]. In speech recognition, products
such as Amazon’s Alexa and Google Home can have ac-
cent bias, with Chinese-accented and Spanish-accented En-
glish hardest to understand [14]. Amazon had been using
automated software since 2014 to assess applicants resumes,
which was found to be biased against women [7].
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There are various potential causes for such discrimination.
Bias can be introduced when the data is collected. For in-
stance, if a group (i.e., a majority group) contributes more
to the dataset as compared to another group (i.e., a minority
group), then the model trained based on the dataset could be
biased in favor of the majority group, and this group may ex-
perience a higher accuracy. Even if the data collection pro-
cedure is unbiased, the data itself may be biased, e.g., the
labels in the training dataset may exhibit bias if they are pro-
vided based on an agent’s opinion [16].

The fairness issue has been studied extensively in the lit-
erature. A variety of fairness notions have been proposed to
measure the unfairness, and they can be roughly classified
into two families: individual fairness and group fairness.
Individual fairness is in pursuit of equity in the individual-
level, that it requires any two similar individuals to be treated
similarly [4, 18, 12]. Group fairness aims to achieve a certain
balance in the group-level, that the population is partitioned
into a small number of protected groups and it requires a
certain statistical measure (e.g., positive classification rates,
true positive rates, etc.) to be approximately equalized across
different protected groups [34, 13, 5, 33, 36]. There are
mainly three approaches to improving fairness [35]:

i) Pre-processing: modifying the training datasets to remove
the discrimination before training an ML model [20, 32];

ii) In-processing: imposing certain fairness criterion or mod-
ifying the loss function during the training process [1, 31];

iii) Post-processing: altering the output of an existing algo-
rithm to satisfy the fairness requirements [13, 25].

In this work, we focus on group fairness and use the post-
processing approach to improving the fairness of a super-
vised learning algorithm.

In addition to unfairness issues, privacy concerns may in-
cur when making decisions based on individuals’ sensitive
data. Consider a lending scenario where the loan approval
decision is made based on an applicant’s credit score. The
decision-making outcome can reflect the applicants financial
situation and hence compromise his/her privacy.

Various privacy-preserving techniques have emerged in
recent years to protect individual privacy, such as random-
izing or anonymizing sensitive data [22, 27, 37, 28]. Among
them, differential privacy [9] as a statistical notion of pri-
vacy has been extensively studied and deployed in practice.



It ensures that no one, from an algorithm’s outcome, can in-
fer with substantial higher confidence than random guessing
whether a particular individual’s data was included in the
data analysis. Various mechanisms have been developed to
generate differentially private outputs such as exponential
mechanism [23] and Laplace mechanism [11].

In this paper, we consider a scenario where a decision-
maker (e.g., company) aims to accept m ≥ 1 people from
an applicant pool. This scenario can be referred to as a se-
lection problem. Each applicant has a hidden qualification
state (e.g., capability for tasks) and observable features (e.g.,
GPA, interview performance). Suppose there is a supervised
learning model that has been trained in advance and can be
used for assigning each applicant a qualification score based
on the features and queried by the decision-maker. These
qualification scores can represent the likelihood that appli-
cants are qualified, and the decision-maker selects m appli-
cants solely based on the qualification scores. During this
process, privacy and fairness concerns may arise. As such,
the decision maker’s goal is to select m applicants among
those that are most likely to be qualified, and at the same
time, preserve individual privacy and satisfy a fairness con-
straint. Moreover, we allow the already trained supervised
learning model to be a “black-box”; the decision-maker has
no access to the model parameters and can only use it to
observe an applicant’s score. Within this context, we study
the possibility of using an exponential mechanism as a post-
processing scheme to improve both the privacy and fairness
of the pre-trained supervised learning model. We consider
“equal opportunity” as the notion of fairness1 and examine
the relationship between fairness, privacy, and accuracy.

Related work. The most related works of this paper are
[13, 15, 6, 24, 21]. Kleinberg and Raghavan [21] study the
effects of implicit bias on selection problems, and explore
the role of the Rooney Rule in this process. They show that
the Rooney Rule can improve both the decision maker’s
utility and the disadvantaged group’s representation. How-
ever, neither the fairness notion nor the privacy issues are
considered in this work. Hardt et al. in [13] introduce the
notion of equal opportunity and develop a post-processing
algorithm to improve the fairness of a supervised learning
model. This work solely focuses on the fairness issue and
does not provide any privacy guarantee. Cummings et al.
in [6] study fairness in supervised learning and its relation-
ship to differential privacy. In particular, they show that it
is impossible to train a differentially private classifier that
satisfies exact (perfect) fairness and achieves a higher ac-
curacy than a constant classifier. Therefore, many works in
the literature have focused on developing approximately fair
and differentially private algorithms. For instance, [30] in-
troduces an algorithm to train a differentially private logistic
regression model that is approximately fair. Jagielski et al.
[15] develop post-processing and in-processing algorithms
to train a classifier that satisfies approximate fairness and
protects the privacy of protected attributes (not the training
data). [24] considers the notion of local differential privacy

1We discuss the generalization of our results to demographic
parity in the appendix.

and aims to learn a fair supervised model from the data with
the noisy and differentially private protected attributes. Sim-
ilarly, [29, 19, 2] focus on fair learning using noisy protected
attributes but without a privacy guarantee.

Main contributions. Most of the existing work aims to
learn a model that minimizes the expected loss (e.g., classi-
fication error) over the entire population under certain fair-
ness constraints. In settings such as hiring, lending, and col-
lege admission, it means the decision-maker should accept
all the applicants as long as they are likely to be qualified.
However, this may not be realistic for many real-world appli-
cations, when only a fixed number of positions are available,
and only a limited number of applicants can be selected. In
this paper, we shall consider this scenario where only a fixed
number of people are selected among all applicants. Using
equal opportunity as the fairness notion and differential pri-
vacy as the privacy notion, we identify sufficient conditions
under which the exponential mechanism, in addition to a
differential privacy guarantee, can also achieve perfect fair-
ness. Our results show that the negative result shown in [6]
(i.e., it is impossible to attain a perfectly fair classifier un-
der differential privacy) does not apply to our setting when
the number of acceptance is limited. In summary, our main
contributions are as follows:
• We show that although the exponential mechanism has

been designed and used mainly for preserving individ-
ual privacy, it is also effective in improving fairness. The
sufficient conditions under which the exponential mecha-
nism can achieve perfect fairness are identified.

• We show that the accuracy of a supervised learning model
after using the exponential mechanism is monotonic in
privacy leakage, which implies that the improvement of
fairness and privacy is at the cost of accuracy.

• Unlike [6], in our setting, we show that compared to other
trivial algorithms (e.g., uniform random selection) that are
perfectly fair, the exponential mechanism can achieve a
higher accuracy while maintaining perfect fairness.

The remainder of the paper is organized as follows. We
present our model in Section 2. The relation between fair-
ness, privacy and accuracy is examined in Section 3. The
generalization to a scenario withm available positions is dis-
cussed in Section 4. We present the numerical experiments
in Section 5 and conclude the paper in Section 6.

2 Model
Consider a scenario where n individuals indexed by N =
{1, 2, · · · , n} apply for some jobs/tasks. Each individual i
can be characterized by a tuple (Xi, Ai, Yi), where Yi ∈
{0, 1} is the hidden qualification state representing whether
i is qualified (Yi = 1) for the position or not (Yi = 0), Xi ∈
X is the observable features andAi ∈ {0, 1} is the protected
attribute (e.g., race, gender) indicating the group member-
ship of individual i. Tuples {(Xi, Ai, Yi)|i = 1, . . . , n} are
i.i.d. random variables following some distribution F. We al-
low Xi to be correlated with Ai, and it may include Ai as
well. The decision-maker observes the applicants’ features
and aims to select m people that are most likely to be quali-
fied and satisfy certain privacy and fairness constraints.



Pre-trained model and qualification scores. We assume
there is a supervised learning model r : X → R that has
been trained in advance and can be queried by the decision-
maker. It takes features of each applicant as input, and out-
puts a qualification score indicating the likelihood that the
applicant is qualified. Let R := {ρ1, . . . , ρn′} ⊂ [0, 1] be
a set of all possible values for the qualification score, and
define Ri = r(Xi) as individual i’s qualification score. The
higher Ri implies individual i is more likely to be qualified,
i.e., Yi = 1. Note that Ri depends on Ai through Xi since
Xi and Ai are correlated, and Xi may include Ai. Without
loss of generality, let ρ1 = 0 and ρn′ = 1.

Selection procedure. Let D = (X1, . . . , Xn) be a
database that includes all the applicants’ features, and D be
its realization. D is the only information that the decision-
maker can observe about applicants. The decision-maker
first generates all applicants’ qualification scores using pre-
trained model r(·), and then uses these scores (R1, . . . , Rn)
to select m individuals. We first focus on a case when
m = 1, i.e., only one applicant is selected, even though there
could be more than one qualified applicant in the applicant
pool. The generalization to m > 1 is studied in Section 4.

For notational convenience, we further define tuple
(X,A, Y ) as a random variable that also follows distribu-
tion F, and R = r(X). Denote (x, a, y) as a realization of
(X,A, Y ). Similar to [13], we assume F can be learned dur-
ing the training process and is known to the decision-maker.

2.1 Differential privacy
Let xi ∈ X be the observable features of individual i, and
D = (x1, x2, . . . , xn) be a database which includes all in-
dividuals’ data. Moreover, D = {(x̂1, x̂2, . . . , x̂n)|x̂i ∈ X}
denotes the set of all possible databases.

Definition 1 (Neighboring Databases). Two databases D =
(x1, . . . , xn) and D′ = (x′1, . . . , x

′
n) are neighboring

databases if they differ only in one data point, noted as
D ∼ D′, i.e.,

∃i ∈ N s.t. xi 6= x′i and xj = x′j ∀j 6= i.

Definition 2 (Differential Privacy [9]). A randomized algo-
rithm M is ε-differentially private if for any two neighbor-
ing databases D and D′ and for any possible set of output
W ⊆ Range(M ), it holds that Pr{M (D)∈W}

Pr{M (D′)∈W} ≤ exp{ε}.

Privacy parameter ε ∈ [0,∞) can be used to measure pri-
vacy leakage; the smaller ε corresponds to the stronger pri-
vacy guarantee. For sufficiently small ε, the distribution of
output remains almost the same as a single data point in the
database changes. It suggests that an attacker cannot infer
the input data with high confidence after observing the out-
put; thus, individual privacy is preserved. Next, we introduce
a notable mechanism that can achieve differential privacy.

Definition 3 (Exponential mechanism [23]). Denote O =
{o1, . . . , on̂} as the set of all possible outputs of algorithm
M , and v : O × D → R as a score function, where a
higher value of v(oi, D) implies that output oi is more ap-
pealing under databaseD. Let ∆ = maxi,D∼D′ |v(oi, D)−
v(oi, D

′)| be defined as the sensitivity of score function.

Then, exponential mechanism M : D → O that satis-
fies ε-differential privacy selects oi ∈ O with probability

Pr{M (D) = oi} =
exp{ε· v(oi,D)

2∆ }∑n̂
j=1 exp{ε·

v(oj,D)

2∆ }
.

2.2 Make selections using exponential mechanism
Given a set of qualification scores (R1, . . . , Rn) generated
from a pre-trained model r(·), the decision-maker selects an
individual based on them, and meanwhile tries to preserve
privacy with respect to database D = (X1, . . . , Xn). To this
end, the decision-maker makes a selection using the expo-
nential mechanism with score function v : N ×D → [0, 1],
where D = Xn is the set of all possible databases.

One natural choice of the score function would be
v(i,D) = r(xi), i.e., an applicant with a higher qualification
score is more likely to be selected. Because 0 ≤ r(x) ≤ 1,
for all x ∈ X , the sensitivity of score function v(i,D) is
∆ = maxi,D∼D′ |v(i,D)− v(i,D′)| = 1.

Let Aε : D → N be an ε-differentially private ex-
ponential mechanism used by the decision-maker to select
one individual. Using Aε(·), after observing realizations of
(R1, R2, . . . , Rn), individual i ∈ N is selected with prob-
ability Pr{Aε(D) = i} =

exp{ε· ri2 }∑
j∈N exp{ε·

rj
2 }
, where ri is the

realization of random variable Ri. For each individual i, de-
fine a Bernoulli random variable Ii,ε ∈ {0, 1} indicating
whether i is selected (Ii,ε = 1) under algorithm Aε(·) or
not (Ii,ε = 0). We have,

Pr{Ii,ε = 1}

=
∑

(r1,...,rn)∈Rn
Pr
{
Ii,ε = 1| ∩nj=1 {Rj = rj}

}
·
n∏
j=1

fR(rj)

=
∑

(r1,...,rn)∈Rn

exp{ε · ri2 }∑n
j=1 exp{ε · rj2 }

·
n∏
j=1

fR(rj),

where fR(·) is the probability mass function (PMF) of
random variable R. If we further define random variable
Zi,ε =

exp{ε·Ri2 }∑
j∈N exp{ε·

Rj
2 }

and denote the expectation of Zi,ε

by E {Zi,ε}, then E {Zi,ε} = Pr {Ii,ε = 1} holds.

2.3 Fairness metric
Based on the protected attribute A, n applicants can be par-
titioned into two groups. To measure the unfairness between
two groups resulted from using algorithm Aε(·), we shall
adopt a group fairness notion. For the purpose of exposition,
we focus on one of the most commonly used notions called
equal opportunity [13]. The generalization to demographic
parity fairness [10] is discussed in the appendix.

In binary classification, equal opportunity fairness re-
quires that the true positive rates experienced by different
groups to be equalized, i.e., Pr{Ŷ = 1|A = 0, Y = 1} =

Pr{Ŷ = 1|A = 1, Y = 1}, where Ŷ is the predicted label
by the classifier. In our problem when the number of accep-
tance is m = 1, this definition can be adjusted as follows,
Definition 4 (Fairness metric). Consider an algorithm M :
D → N that selects one individual from n applicants. Given



database D and M (·), for all i ∈ N define a Bernoulli
random variable Ki such that Ki = 1 if M (D) = i and
Ki = 0 otherwise. Then algorithm M (·) is γ-fair if

Pr{Ki = 1|Ai = 0, Yi = 1} − Pr{Ki = 1|Ai = 1, Yi = 1} = γ.

Note that −1 ≤ γ ≤ 1, and negative (resp. positive) γ
implies that algorithm M (·) is biased in favor of the group
with protected attribute A = 1 (resp. A = 0). In particular,
we say M (·) is perfectly fair if γ = 0.2

For algorithm Aε(·) in Section 2.2 that selects an individ-
ual using the exponential mechanism, γ in above definition
can be equivalently written as

E {Zi,ε|Ai = 0, Yi = 1} − E {Zi,ε|Ai = 1, Yi = 1} = γ. (1)

2.4 Accuracy metric
It is easy to develop trivial algorithms that are both 0-
differentially private and 0-fair. For example, A0(·) which
selects one individual randomly and uniformly from N , or
a deterministic algorithm that always selects a particular in-
dividual. However, both algorithms do not use qualification
scores to make decisions. The primary goal of the decision-
maker that selecting the most qualified individuals is thus
undermined. We need to introduce another metric to evalu-
ate the ability of Aε(·) to select qualified individuals.
Definition 5 (Accuracy). An algorithm M : D → N that
selects one individual from n applicants is θ-accurate if

Pr{YM (D) = 1} = θ. (2)

As an example, for algorithm A0(·) that selects one in-
dividual uniformly at random from N , it is θ-accurate with
θ = Pr{YA0(D) = 1} = Pr{Y = 1}. The goal of this
work is to examine whether it is possible to use exponen-
tial mechanism to achieve both differential privacy and the
perfect fairness, while maintaining a sufficient level of ac-
curacy. In the next section, we study the relation between
fairness γ, privacy ε, and accuracy θ under Aε(·).

3 Analysis
3.1 Fairness-Privacy Trade-off
To study the relation between the fairness and privacy, let
γ(ε) = E{Zi,ε|Ai = 0, Yi = 1}−E{Zi,ε|Ai = 1, Yi = 1}.
Note that γ(ε) does not depend on i as individuals are i.i.d.
Let A (·) be the algorithm that selects an individual with
the highest qualification score and breaks ties randomly and
uniformly if more than one individual have the highest qual-
ification score. Define a set of Bernoulli random variables
{Ii}ni=1 indicating whether individual i is selected (Ii = 1)
or not (Ii = 0) under algorithm A (·). Let Nmax = |{i ∈
N|Ri = maxj Rj}| be the number of individuals who have
the highest qualification score, then

Pr{Ii = 1} =

n∑
k=1

1

k
· Pr{Ri = max

j
Rj , Nmax = k}. (3)

2Note that if algorithm M (·) selects an individual solely based
on i.i.d qualification scores (R1, . . . , Rn) and does not differen-
tiate individuals based on their indexes, then Pr{Ki = 1|Ai =
0, Yi = 1} − Pr{Ki = 1|Ai = 1, Yi = 1} = Pr{Kj = 1|Aj =
0, Yj = 1} − Pr{Kj = 1|Aj = 1, Yj = 1},∀i, j.

Define

Zi =

{
0 if Ri 6= maxj Rj

1
Nmax

o.w. . (4)

Then it holds that E{Zi} = Pr{Ii = 1}. The following
lemma characterizes the relation between random variables
Zi and Zi,ε, which is essential to prove the next theorem.
Lemma 1 (Sure convergence). Consider two algorithms
Aε(·) and A (·) and the corresponding random variables
Zi,ε and Zi. The following statements are true,

1. Zi,ε converges surely towards Zi as ε→ +∞.
2. A (·) is γ∞-fair with γ∞ = limε→+∞ γ(ε), i.e.,

lim
ε→+∞

E {Zi,ε|Ai = 0, Yi = 1} − E {Zi,ε|Ai = 1, Yi = 1}

= E

{
lim

ε→+∞
Zi,ε|Ai = 0, Yi = 1

}
− E

{
lim

ε→+∞
Zi,ε|Ai = 1, Yi = 1

}
= E {Zi|Ai = 0, Yi = 1} − E {Zi|Ai = 1, Yi = 1} .

Lemma 1 implies that limε→+∞ γ(ε) = γ∞ exists. It
shows that Aε(·) using exponential mechanism is equiva-
lent to algorithm A (·) as ε → ∞. In the next theorem, we
identify a sufficient condition under which the exponential
mechanism can achieve perfect fairness with non-zero pri-
vacy leakage.
Theorem 1. There exists εo > 0 such that γ(εo) = 0 under
Aεo(.) if both of the following constraints are satisfied:

(1) E{Zi|Ai = a, Yi = 1} < E{Zi|Ai = ¬a, Yi = 1},
(2) E {Ri|Ai = a, Yi = 1} > E {Ri|Ai = ¬a, Yi = 1},
where a ∈ {0, 1} and ¬a = {0, 1} \ a.
Constraint (1) above suggests that the applicants with pro-

tected attribute A = ¬a are more likely to be selected than
those with A = a under algorithm A (·); Constraint (2) im-
plies that on average the applicants with protected attribute
A = a have a higher qualification score than those with
A = ¬a. These constraints may be satisfied when the appli-
cants with A = ¬a, as compared to those with A = a, have
the smaller mean but much larger variance in their qualifica-
tion cores. In Sec. 5, we will show FICO credit score dataset
[26] satisfies those constraints for certain social groups.

It is also worth noting that perfect fairness is not always
attainable under the exponential mechanism. In the next the-
orem, we identify sufficient conditions under which it is im-
possible to achieve the perfect fairness using exponential
mechanism unless the privacy guarantee is trivial (ε = 0).
Theorem 2. Let fa(ρ) := Pr{R = ρ|A = a, Y = 1}. If
f0(ρ) − f1(ρ) > f0(ρ′) − f1(ρ′) and fR(ρ) < fR(ρ′) for
all ρ > ρ′, and f0(ρ)− f1(ρ) ≥ 0 for ρ = ρ2, . . . , ρn′ , then
we have,
1. γ(ε) > 0 for ε > 0, i.e., Aε(·) is always biased in favor
of individuals with protected attribute A = 0.
2. γ(ε) < γ∞, ∀ε ≥ 0, i.e., Aε(·) is always fairer than
A (·).

The first condition implies that among applicants who are
qualified, individuals with A = 0 are more likely to have
higher qualification scores as compared to individuals with
protected attributeA = 1. The second condition implies that
most of the applicants have small qualification scores. Under
these conditions, an exponential mechanism with ε > 0 can



never achieve perfect fairness. Moreover, it shows that the
exponential mechanism can improve fairness compared to
the non-private algorithm A (·) selecting an individual with
the highest score.

Theorems 1 and 2 together show that the exponential
mechanism may or may not achieve perfect fairness. Nev-
ertheless, we can show that always there exists privacy pa-
rameter ε̄ such that Aε̄(·) is fairer than non-private A (·).
Theorem 3. If A (·) is not 0-fair, then there exists ε̂ ∈
(0,+∞) such that |γ(ε)| < |γ∞|,∀ε ∈ (0, ε̂).

This section has studied the possibility of using the ex-
ponential mechanism to improve both fairness and privacy.
Note that even when perfect fairness is attainable, the out-
come may not be desirable to the decision-maker if it is not
accurate enough. In the next section, we shall take accuracy
into account and examine its relation with privacy and fair-
ness.

3.2 Accuracy-Privacy Trade-off
Let θ(ε) = Pr{YAε(D) = 1} be the accuracy of Aε(·).

θ(ε) =

n∑
i=1

Pr{Yi = 1, Ii,ε = 1}

=

n∑
i=1

Pr{Ii,ε = 1|Yi = 1} · Pr{Yi = 1}

= Pr{Y = 1}
n∑
i=1

E{Zi,ε|Yi = 1}.

Therefore, accuracy maximization is equivalent to maximiz-
ing E{Zi,ε|Yi = 1}. Since Zi,ε converges surely to Zi, sim-
ilar to Lemma 1, we can show that limε→+∞ θ(ε) exists and
is equal to the accuracy of non-private algorithm A (·). We
further make the following assumption that has been widely
used in the literature [17, 3].

Assumption 1. Pr{R=ρ|Y=1}
Pr{R=ρ|Y=0} ≥

Pr{R=ρ′|Y=1}
Pr{R=ρ′|Y=0} , ∀ρ > ρ′.

Assumption 1, also known as the monotone likelihood
ratio property of two PMFs Pr{R = ρ|Y = 1} and
Pr{R = ρ|Y = 0}, is relatively mild and can be satisfied
by various probability distributions including Binomial and
Poisson distributions. It implies that a qualified individual is
more likely to have a high qualification score. The next the-
orem characterizes the effect of privacy parameter ε on the
accuracy of Aε(·).
Theorem 4. Under Assumption 1, θ(ε) is increasing in ε.

Suppose that the task is to make a selection such that un-
fairness and privacy leakage are less than or equal to γmax

and εmax, respectively. Then, exponential mechanism Aε∗(·)
has the highest accuracy, where ε∗ is the solution to (5).

ε∗ = arg max
ε≤εmax

θ(ε), s.t. |γ(ε)| ≤ γmax. (5)

Based on Theorem 4, we have the following corollary.
Corollary 1. Under Assumption 1,

ε∗ =

{
εmax, if |γ(εmax)| ≤ γmax

max{ε ≤ εmax|γmax = |γ(ε)|}, o.w.

We conclude this section by comparing our results with
[6]. Consider a constant algorithm that always selects the
first individual. The accuracy of this algorithm is given by
Pr(Y1 = 1), which is equal to the accuracy of algorithm
A0(·), i.e., Pr(Y = 1) = θ(0). Moreover, the constant al-
gorithm is perfectly fair. If there exists εo > 0 such that
Aεo(·) is perfectly fair, then according to Theorem 4, the
accuracy of Aεo(.) would be larger than that of A0(·), im-
plying that the perfect fair Aεo(·) is also more accurate than
the constant algorithm. In contrast, Cummings et al. in [6]
conclude that perfect (exact) fairness is not compatible with
differential privacy. Specifically, they show that any differ-
entially private classifier which is perfectly fair would have
lower accuracy than a constant classifier. The reason that our
conclusion differs from [6] is as follows. [6] studies a clas-
sification problem where there is a hypothesis class H (i.e.,
a set of possible classifiers) and it aims to select a perfect
fair classifier randomly from H with high accuracy using a
differentially private algorithm. In particular, they show that
if h is perfectly fair and more accurate than a constant clas-
sifier under database D, then there exists another database
D′ with D′ ∼ D such that h violates perfect fairness under
D′. Because h is selected with zero probability under D′,
differential privacy is violated, which implies their negative
results. In contrast, we focus on a selection problem with a
fixed number of approvals using fixed supervised learning
model r(·). In this case, privacy and perfect fairness can be
compatible with each other.

4 Choosing more than one applicant
Our results so far are concluded under the assumption that
only one applicant is selected. In this section, we extend our
results to a scenario where m > 1 applicants are selected.

To preserve individual privacy, an exponential mechanism
is adopted to select m individuals from n applicants based
on their qualification scores. Let S = {G|G ⊆ N , |G| = m}
be the set of all possible selections, and we index the el-
ements in S by G1,G2, . . . ,G(nm). Let Bε(·) be the expo-
nential mechanism that selects m individuals from N and
satisfies ε-differential privacy. One choice of score function
v : S × D → [0, 1] is v(Gi,D) = 1

m

∑
j∈Gi Rj , repre-

senting the averaged qualification of selected individuals in
Gi.3 The sensitivity of v(·, ·) is maxG∈S,D∼D′ |v(G, D) −
v(G, D′)| = 1

m . That is, under algorithm Bε(·), Gi is se-
lected according to probability

Pr{Bε(D) = Gi} =
exp{ε ·

∑
j∈Gi

rj

2 }∑
G∈S exp{ε ·

∑
j∈G rj

2 }
. (6)

Further define Si = {G|G ∈ S, i ∈ G} as the set of all
selections that contain individual i. Define random variable

Wi,ε =
∑
G∈Si

exp{ε ·
∑
j∈G Rj

2 }∑
G′∈S exp{ε ·

∑
j∈G′ Rj

2 }
(7)

3The generalization of our results to other types of score func-
tion will be discussed in the appendix.



and Bernoulli random variable Ji,ε indicating whether i is
selected (Ji,ε = 1) under Bε(·) or not (Ji,ε = 0). We
have Pr{Ji,ε = 1} = E{Wi,ε}. Similar to Section 2,
we further introduce algorithm B(·) which selects a set of
m individuals with the highest average qualification score.
If there are more than one set with the highest average
qualification score, B(·) selects one set among them uni-
formly at random. Let Smax = {G′ ∈ S|

∑
j∈G′ Rj =

maxG∈S
∑
i∈G Ri}. Each element in Smax is a set of m in-

dividuals who have the highest qualification scores in total.
Define random variable

Wi =

{
0 if Si ∩ Smax = ∅

1
|Smax| o.w.

and Bernoulli random variable Ji indicating whether i is se-
lected (Ji = 1) under B(D) or not (Ji = 0). We have
Pr{Ji = 1} = E{Wi}. Similar to the fairness metric de-
fined in Definition 4, we say algorithm Bε(·) is γ-fair if the
following holds,

E{Wi,ε|Ai = 0, Yi = 1} − E{Wi,ε|Ai = 1, Yi = 1} = γ .

Re-write γ above as γ(ε), a function of ε. Similar to Lemma
1, we can show that Wi,ε converges surely to Wi as ε →
+∞, and that limε→+∞ γ(ε) exists. Moreover, B(D) is
γ∞-fair with γ∞ = limε→+∞ γ(ε). Next theorem identi-
fies sufficient conditions under which exponential mecha-
nism Bε(.) can be perfectly fair.

Theorem 5. There exists εo > 0 such that γ(εo) = 0 under
Bε(.) if both of the following constraints are satisfied:

(1) E{Wi|Ai = a, Yi = 1} < E{Wi|Ai = ¬a, Yi = 1};
(2) E {Ri|Ai = a, Yi = 1} > E {Ri|Ai = ¬a, Yi = 1}.
To measure the accuracy in this scenario, we adjust Def-

inition 5 accordingly. For each individual i, we define ran-

dom variable Ui =

{
1, if i ∈ Bε(D) & Yi = 1

0, o.w.
as the

utility gained by the decision-maker from individual i, i.e.,
the decision-maker receives benefit +1 if accepting a qual-
ified applicant and 0 otherwise. Then the accuracy of Bε(·)
can be defined as the expected utility received by decision-
maker, i.e.,

θ(ε) = E
{ 1

m

∑
i∈N

Ui

}
=

1

m

∑
i∈N

Pr{Ji,ε = 1, Yi = 1}. (8)

Note that (1/m) in (8) is a normalization factor to make
sure θ(ε) ∈ [0, 1]. Also, it is worth mentioning that θ(ε)
reduces to Definition 5 when m = 1. Under Assumption 1,
we can show that θ(ε) is increasing in ε, and an optimization
problem similar to optimization (5) can be formulated given
εmax and γmax to find appropriate ε∗.

5 Numerical Experiments
Case study 1: Synthetic data

To evaluate the fairness of algorithms Aε(·) and Bε(·), we
consider a scenario where the qualification scores are gener-
ated randomly based on a distribution shown in Figure 1. In
this scenario, n = 10, Pr{A = 0} = 0.1,Pr{Y = 0|A =

Table 1: Accuracy and privacy under perfect fairness. εo is a
privacy parameter at which the exponential mechanism is
perfectly fair. If εo = 0 in this table, then the exponen-
tial mechanism with a non-zero privacy parameter cannot
achieve perfect fairness.

εo θ(εo) θ(∞) Acc. Reduction.

m = 1 2.76 0.50 0.96 47.92%
m = 2 7.78 0.64 0.88 27.27%
m = 3 21.11 0.73 0.77 5.19%

Sy
nt

he
tic

m = 4 0 0.4 0.71 44.66%

m = 1 10.35 0.94 0.97 3.09%
m = 2 22.47 0.94 0.96 2.10%

FI
C

O
Fi

g
8

&
9

m = 3 0 0.70 0.93 24.73%
m = 4 0 0.70 0.90 22.22%

0} = 0.7, and Pr{Y = 0|A = 1} = 0.6. Figure 2 illus-
trates the fairness level γ(ε) of algorithms Aε(·) and Bε(·)
as a function of ε. In this case, both conditions in Theorem
1 and Theorem 5 are satisfied when m ∈ {1, 2, 3} (See the
appendix for details). As a result, we can find privacy param-
eter εo at which the exponential mechanism is perfectly fair.
Note that conditions of Theorem 5 do not hold for m = 4
(see the appendix) and Bε(·) is not perfectly fair in this case.
This is confirmed in Figure 2. Figure 3 illustrates accuracy
of Aε(·) and Bε(·) as a function of privacy loss ε. As ex-
pected, accuracy θ(ε) is increasing in ε. By comparing Fig-
ure 2 and Figure 3, we observe that even though improving
privacy decreases accuracy, it can improve fairness. Lastly,
privacy and accuracy of the exponential mechanism under
perfect fairness have been provided in Table 1.

Case study 2: FICO score
We conduct two experiments using FICO credit score

dataset [26]. FICO scores are widely used in the United
States to predict how likely an applicant is to pay back a
loan. FICO scores are ranging from 350 to 850. However, we
normalize them to range from zero to one. The FICO credit
score dataset has been processed by Hardt et al. [13] to gen-
erate CDF and non-default rate (i.e., Pr(Y = 1|R = ρ)) for
different social groups (Asian, White, Hispanic, and Black).

First, we consider a setting where individuals from White
and Black groups are selected based on their FICO credit
scores using the exponential mechanism. Figure 4 illustrates
the PMF of FICO score for White and Black groups. It
shows PMF is (approximately) decreasing for Black group
while is (approximately) increasing for White group. More-
over, the overall PMF for two groups is (approximately) uni-
form and remains constant. As shown in Figure 5 and 6, both
accuracy θ(ε) and fairness γ(ε) are increasing in ε. There-
fore, both algorithm Aε(·) and Bε(·) cannot be perfectly
fair, and the conditions in Theorem 1 and 5 do not hold in
this example.

In the next experiment, we combine White and Hispanic
applicants into one group and regard Asian applicants as the
other social group. Figure 7 illustrates the PMF of FICO
score for these two groups. In this example, the conditions
of Theorem 1 and Theorem 5 are satisfied for m ∈ {1, 2}.
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Figure 1: PMF of score R conditional on
Y and A.
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Figure 2: Fairness level attained using
Aε(·) and Bε(·) as functions of privacy
level ε. In this example, the perfect fair-
ness is achievable if m ∈ {1, 2, 3}.
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Figure 3: Accuracy level of the algo-
rithms Aε(D) and Bε(D) as a function
of privacy level ε. It shows that the ac-
curacy is increasing in ε.

0 0.2 0.4 0.6 0.8 1

FICO score

0

0.01

0.02

0.03

0.04

0.05

White

Black

White + Balck

Figure 4: PMF of FICO score for
Black and White social groups.
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Figure 5: Fairness γ(ε) when m individ-
uals from White and Black groups are
selected using Aε(·) and Bε(·)
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Figure 6: Accuracy θ(ε) when m indi-
viduals from White and Black groups
are selected using Aε(·) and Bε(·).
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Figure 7: PMF of FICO score for
White-Hispanic and Asian so-
cial groups.
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Figure 8: Fairness level γ(ε) when m
individuals from White-Hispanic
and Asian social groups are selected
using Aε(·) and Bε(·).
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Figure 9: Accuracy level θ(ε) whenm
individuals from White-Hispanic
and Asian social groups are selected
using Aε(·) and Bε(·).

When m ∈ {1, 2}, perfect fairness is achievable for some
εo > 0 and leads to a slight decrease in accuracy compared
to non-private algorithms A (·) and B(·) (see Table 1).

6 Conclusion
In this paper, we consider a common scenario in job/loan ap-
plications where a decision-maker selects a limited number
of people from an applicant pool based on their qualification
scores. These scores are generated by a pre-trained super-

vised learning model, which may be biased against certain
social groups, and the use of such a model may violate an
applicant’s privacy. Within this context, we investigated the
possibility of using an exponential mechanism to address the
privacy and unfairness issue. We show that this mechanism
can be used as a post-processing step to improve fairness
and privacy of the pre-trained supervised model. Moreover,
we identified conditions under which the exponential mech-
anism is able to make the selection procedure perfectly fair.
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Appendix
Proofs
Proof of Lemma 1:

1. Suppose random variable Ri is a mapping from sample space Ω to R. Note that Zi =

{
0 if Ri 6= maxj Rj

1
Nmax

o.w. , and

Zi,ε =
exp{ε·Ri2 }∑
j∈N exp{ε·

Rj
2 }

. Moreover, we have,

lim
ε→∞

exp{εRi(ωi)2 }∑n
j=1 exp{εRj(ωj)2 }

=

{
0 if Ri(ωi) 6= maxj Rj(ωj)

1
| arg maxj Rj(ωj)| o.w. , ∀(ω1, . . . , ωn) ∈ Ωn,

where | arg maxj Rj(ωj)| is the cardinality of set arg maxj Rj(ωj). Therefore, random variable Zi,ε converges to Zi surely as
ε→ +∞.

2. Note that γ(ε) is a continuous function because it can be written as the summation of (n′)n continuous functions (contin-
uous in ε),

γ(ε) = E {Zi,ε|Ai = 0, Yi = 1} − E {Zi,ε|Ai = 1, Yi = 1}

=
∑

(r1,...,rn)∈Rn

exp{ε · ri2 }∑
k∈N exp{ε · rk2 }

∏
k 6=i

fR(rk)

 (fR|A=0,Y=1(ri)− fR|A=1,Y=1(ri)), (9)

where fR(·) is the PMF of R, and fR|A=a,Y=y(·) is the PMF of R conditional on A = a and Y = y.
It is easy to see that limε→+∞ γ(ε) exists and is given by,

lim
ε→+∞

γ(ε) = lim
ε→+∞

∑
(r1,...,rn)∈Rn

exp{ε · ri2 }∑
k∈N exp{ε · rk2 }

∏
k 6=i

fR(rk)

 (fR|A=0,Y=1(ri)− fR|A=1,Y=1(ri))

=
∑

(r1,...,rn)∈Rn
lim

ε→+∞

exp{ε · ri2 }∑
k∈N exp{ε · rk2 }

∏
k 6=i

fR(rk)

 (fR|A=0,Y=1(ri)− fR|A=1,Y=1(ri)) (10)

= E{ lim
ε→+∞

Zi,ε|Ai = 0, Yi = 1} − E{ lim
ε→+∞

Zi,ε|Ai = 1, Yi = 1}

= E{Zi|Ai = 0, Yi = 1} − E{Zi|Ai = 1, Yi = 1}. (11)

Equation (10) holds because γ(ε) is the summation of a finite number of continuous functions, and equation (11) holds since
Zi,ε converges surely towards Zi.

Proof of Theorem 1:
Suppose E{Ri|Ai = 0, Yi = 1} > E{Ri|Ai = 1, Yi = 1}, and E{Zi|Ai = 0, Yi = 1} < E{Zi|Ai = 1, Yi = 1}. As

mentioned before, γ(0) = 0. Since E{Zi|Ai = 0, Yi = 1} < E{Zi|Ai = 1, Yi = 1}, it is easy to see that γ∞ < 0.
Now, we calculate the derivative of function γ(ε) at ε = 0.

γ′(ε) =
d γ(ε)

d ε
= E

{
d

d ε

exp{εRi2 }∑n
j=1 exp{εRj2 }

∣∣∣∣∣Ai = 0, Yi = 1

}
− E

{
d

d ε

exp{εRi2 }∑n
j=1 exp{εRj2 }

∣∣∣∣∣Ai = 1, Yi = 1

}

= E


Ri
2 exp{εRi2 }

∑n
j=1 exp{εRj2 } − exp{εRi2 }

∑n
j=1

Rj
2 exp{εRj2 }(∑n

j=1 exp{εRj2 }
)2

∣∣∣∣∣∣∣Ai = 0, Yi = 1


− E


Ri
2 exp{εRi2 }

∑n
j=1 exp{εRj2 } − exp{εRi2 }

∑n
j=1

Rj
2 exp{εRj2 }(∑n

j=1 exp{εRj2 }
)2

∣∣∣∣∣∣∣Ai = 1, Yi = 1


γ′(0) =

1

n2
E

n · Ri2 −
n∑
j=1

Rj
2

∣∣∣∣∣∣Ai = 0, Yi = 1

− 1

n2
E

n · Ri2 −
n∑
j=1

Rj
2

∣∣∣∣∣∣Ai = 1, Yi = 1


=

n− 1

2n2
(E{Ri|Ai = 0, Yi = 1} − E{Ri|Ai = 1, Yi = 1}) > 0 (12)



Since γ(·) is continuous and γ(0) = 0 and γ′(0) > 0, there exists ε such that γ(ε) > 0. As γ(+∞) < 0 and γ(ε) > 0, by the
intermediate value theorem there exists εo > ε such that γ(εo) = 0, and Aεo(·) is perfectly fair.

Proof of Theorem 2:
We simplify the derivative of function γ(ε) calculated in equation (12).

γ′(ε) = E


Ri
2 exp{εRi2 }

∑n
j=1 exp{εRj2 } − exp{εRi2 }

∑n
j=1

Rj
2 exp{εRj2 }(∑n

j=1 exp{εRj2 }
)2

∣∣∣∣∣∣∣Ai = 0, Yi = 1


− E


Ri
2 exp{εRi2 }

∑n
j=1 exp{εRj2 } − exp{εRi2 }

∑n
j=1

Rj
2 exp{εRj2 }(∑n

j=1 exp{εRj2 }
)2

∣∣∣∣∣∣∣Ai = 1, Yi = 1


= E


∑n
j=1

Ri−Rj
2 exp{εRi+Rj2 }(∑n

j=1 exp{εRj2 }
)2

∣∣∣∣∣∣∣Ai = 0, Yi = 1

− E

∑n
j=1

Ri−Rj
2 exp{εRi+Rj2 }(∑n

j=1 exp{εRj2 }
)2

∣∣∣∣∣∣∣Ai = 1, Yi = 1


=

∑
(r1,··· ,rn)∈Rn

∑n
j=1(ri − rj) exp{ ε·(ri+rj)2 }(∑n

j=1 exp{ε · rj2 }
)2

∏
j 6=i

fR(rj)

(fR|A=0,Y=1(ri)− fR|A=1,Y=1(ri)
)

The derivative of γ(ε) consists of n · (n′)n terms. Consider one of these terms associated with rrr = (r1, · · · , rn), where ri = t
and rk = l:

Γ1 =
(t− l) exp{ ε·(t+l)2 }(∑n

j=1 exp{ε · rj2 }
)2

∏
j 6=i

fR(rj)

(fR|A=0,Y=1(t)− fR|A=1,Y=1(t)
)

Corresponding to this term, there exists another term associated with rrr = (r1, · · · , rn), where ri = l and rk = t and rj =
rj ,∀j 6= i, k:

Γ2 =
(l − t) exp{ ε·(t+l)2 }(∑n

j=1 exp{ε · rj2 }
)2

∏
j 6=i

fR(rj)

(fR|A=0,Y=1(l)− fR|A=1,Y=1(l)
)

Let t > l. If we show that (t− l)fR(l)(fR|A=0,Y=1(t)− fR|A=1,Y=1(t)) + (l− t)fR(t)(fR|A=0,Y=1(l)− fR|A=1,Y=1(l)) >
0,∀1 ≥ t > l ≥ 0, then Γ1 +Γ2 would be positive. Consequently, the derivative would be positive. It is easy to see that if fR(ρ)
is strictly decreasing and fR|A=0,Y=1(ρ) − fR|A=1,Y=1(ρ) is strictly increasing and fR|A=0,Y=1(ρ) − fR|A=1,Y=1(ρ) ≥ 0
for ρ = ρ2, . . . , ρn′ , then (t− l)fR(l)(fR|A=0,Y=1(t)− fR|A=1,Y=1(t)) + (l − t)fR(t)(fR|A=0,Y=1(l)− fR|A=1,Y=1(l)) >
0,∀1 ≥ t > l ≥ 0, and γ′(ε) is positive, and γ(ε) is strictly increasing. Therefore, 0 = γ(0) < γ(ε) < γ∞.

Proof of Theorem 3:
As we showed in the proof of Theorem 1, γ(ε) is continuous and limε→+∞ γ(ε) exists. Since γ(0) = 0 and |γ∞| > 0 and

γ(ε) is continuous, for any arbitrary positive value v < |γ∞|, there exists a privacy loss ε′ such that |γ(ε′)| = v. This proves
the theorem.

Proof of Theorem 4:
In order to show that θ(ε) is increasing, we should show that E{Zi,ε|Yi = 1} is increasing. We have,

l(ε) = E{Zi,ε|Yi = 1} =
∑

(r1,...,rn)∈Rn

exp{ε · ri2 }∑
k∈N exp{ε · rk2 }

∏
k 6=i

fR(rk)

 fR|Y=1(ri)

l′(ε) =
∑

(r1,...,rn)∈Rn

∑n
k=1

ri−rk
2 exp{ε · ri+rk2 }

(
∑
k∈N exp{ε · rk2 })2

∏
k 6=i

fR(rk)

 fR|Y=1(ri)

In order to show that l′(ε) ≥ 0, it is sufficient to show that ρ′−ρ
2 fR(ρ) · fR|Y=1(ρ′) + ρ−ρ′

2 fR(ρ′) · fR|Y=1(ρ) ≥ 0, or
equivalently, fR(ρ′) · fR|Y=1(ρ) ≥ fR(ρ) · fR|Y=1(ρ′) for ρ > ρ′.



We have,

fR(ρ′) · fR|Y=1(ρ) ≥ fR(ρ) · fR|Y=1(ρ′)

⇐⇒ fR|Y=1(ρ)(Pr(Y = 0)fR|Y=0(ρ′) + Pr(Y = 1)fR|Y=1(ρ′))

≥ fR|Y=1(ρ′)(Pr(Y = 0)fR|Y=0(ρ) + Pr(Y = 1)fR|Y=1(ρ))

⇐⇒ fR|Y=1(ρ)fR|Y=0(ρ′) ≥ fR|Y=1(ρ′)fR|Y=0(ρ) (13)

Equation (13) holds under Assumption 1. Therefore, θ(ε) is an increasing function.

Proof of Corollary 1:
By Theorem 4, θ(ε) is an increasing function. Therefore, if γ(εmax) ≤ γmax, then ε∗ = εmax. Otherwise, the decision maker

has to find the largest privacy loss with fairness level γmax. Note that {ε ≤ εmax|γ(ε) = γmax} is a non-empty set because γ(ε)
is a continuous function and γ(0) = 0 and γ(εmax) > γmax. Therefore, the largest value in set {ε ≤ εmax|γ(ε) = γmax} would
be the solution to optimization problem (5).

Proof of Theorem 5:
Similar to Lemma 1, we can show that Wi,ε converges surly towards Wi. Moreover, we can show that limε→∞ γ(ε) =

E{Wi|Ai = 0, Yi = 1} − E{Wi|Ai = 1, Yi = 1}.
Now suppose that E{Wi|Ai = 0, Yi = 1} < E{Wi|Ai = 1, Yi = 1} and E{Ri|Ai = 0, Yi = 1} > E{Ri|Ai = 1, Yi = 1}.

Note that,
γ∞ = E{Wi|Ai = 0, Yi = 1} − E{Wi|Ai = 1, Yi = 1} < 0

Next we calculate γ′(0). Let Si = {G|G ∈ S, i ∈ G}. Similar to equation (12), we have,

γ′(ε) = E


∑
G∈Si,G′∈S

v(G,D)−v(G′,D)
2 exp{εv(G,D)+v(G′,D)

2 }(∑
G′∈S exp{ε v(G′,D)

2 }
)2

∣∣∣∣∣∣∣Ai = 0, Yi = 1


− E


∑
G∈Si,G′∈S

v(G,D)−v(G′,D)
2 exp{εv(G,D)+v(G′,D)

2 }(∑
G∈S exp{εv(G′,D)

2 }
)2

∣∣∣∣∣∣∣Ai = 1, Yi = 1

 (14)

γ(0) = E

{∑
G∈Si,G′∈S

v(G,D)−v(G′,D)
2((

n
m

))2
∣∣∣∣∣Ai = 0, Yi = 1

}
− E

{∑
G∈Si,G′∈S

v(G,D)−v(G′,D)
2((

n
m

))2
∣∣∣∣∣Ai = 0, Yi = 1

}

=

(
n−1
m−1

)(
n−1
m

)
2m
(
n
m

)2 (E(Ri|Ai = 0, Yi = 1)− E(Ri|Ai = 1, Yi = 1)) > 0, (15)

Since γ(0) = 0 and γ′(0) > 0, there exists ε > 0 such that γ(ε) > 0. By the Intermediate Value Theorem, there exists εo > ε
such that γ(εo) = 0.

For any m ≥ 1, accuracy θ(ε) is increasing under Assumption 1
In Theorem 4, we showed that accuracy θ(ε) is increasing for m = 1. Here we show that θ(ε) is increasing for all m ≥ 1. In
order to do so, we need to prove that E {Wi,ε|Yi = 1} is increasing in ε.

l(ε) = E {Wi,ε|Yi = 1} =
∑
G∈Si

E

 exp{ε ·
∑
j∈G Rj

2 }∑
G′∈S exp{ε ·

∑
j∈G′Rj

2 }

∣∣∣∣∣∣Yi = 1


l′(ε) = E {Wi,ε|Yi = 1} =

∑
G∈Si,G′′∈S

E


∑
j∈G Rj−

∑
j∈G′′ Rj

2 exp{ε ·
∑
j∈G Rj+

∑
j∈G′′ Rj

2 }∑
G′∈S exp{ε ·

∑
j∈G′Rj

2 }

∣∣∣∣∣∣Yi = 1


(Rj

′s are i.i.d.) =
∑

G∈Si,G′′∈S\Si

E


∑
j∈G Rj−

∑
j∈G′′ Rj

2 exp{ε ·
∑
j∈G Rj+

∑
j∈G′′ Rj

2 }∑
G′∈S exp{ε ·

∑
j∈G′Rj

2 }

∣∣∣∣∣∣Yi = 1





Note that since Rj’s are i.i.d, E

{
Rk−Rk′

2 exp{ε·
∑
j∈G Rj+

∑
j∈G′′ Rj

2 }∑
G′∈S exp{ε·

∑
j∈G′Rj

2 }

∣∣∣∣∣Yi = 1

}
= 0, for k, k′ 6= i, k ∈ G ∈ S, k′ ∈ G′′ ∈

S\Si, k′ /∈ G, k /∈ G′′. We have,

l′(ε) =
∑

G∈Si,G′′∈S\Si

E

 Ri−Rk
2 exp{ε ·

∑
j∈G Rj+

∑
j∈G′′ Rj

2 }∑
G′∈S exp{ε ·

∑
j∈G′Rj

2 }

∣∣∣∣∣∣Yi = 1

 , k ∈ G′′, k /∈ G

l′(ε) =
∑

G∈Si,G′′∈S\Si

∑
(r1,...,rn)∈Rn

ri−rk
2 exp{ε ·

∑
j∈G rj+

∑
j∈G′′ rj

2 }∑
G′∈S exp{ε ·

∑
j∈G′rj

2 }

∏
j 6=i

fR(rj)

 fR|Y=1(ri)

In order to show that l′(ε) > 0, it is sufficient to show that ρ
′−ρ
2 fR(ρ)·fR|Y=1(ρ′)+ ρ−ρ′

2 fR(ρ′)·fR|Y=1(ρ) > 0, or equivalently
fR(ρ′) · fR|Y=1(ρ) > fR(ρ) · fR|Y=1(ρ) for ρ > ρ′. The rest of the proof is similar to the proof of Theorem 4 and is omitted
to avoid repetition.

Notes on the numerical example
Details about case study 1 (Figures 1, 2, 3)

In this part, we investigate whether the conditions in Theorems 1 and 5 hold or not. First, we find mean value E(Zi|Yi =
1, Ai = a) and E(Wi|Yi = 1, Ai = a) numerically. In order to do so, we generate 10000 samples of R1, · · · , Rn conditional
on Yi = 1 and Ai = a and calculate samples of Zi and Wi and their empirical mean. We have,

Table 2: Expected values Zi and Wi conditional on Yi = 1 and Ai = a

E(Zi|Yi = 1, Ai = 0) E(Zi|Yi = 1, Ai = 1) E(Zi|Yi = 1, Ai = 0)− E(Zi|Yi = 1, Ai = 1)

m = 1 0.3426 0.2392 0.1035

E(Wi|Yi = 1, Ai = 0) E(Wi|Yi = 1, Ai = 1) E(Wi|Yi = 1, Ai = 0)− E(Wi|Yi = 1, Ai = 1)

m = 2 0.5213 0.4337 0.0875
m = 3 0.5941 0.5705 0.0236
m = 4 0.5821 0.6196 -0.0375

Based on the proof of Theorem 1 and Theorem 5, the last column of Table 2 is equal to limε→+∞ γ(ε) (it can be seen in
figure 2). Next, we calculate E(Ri|Yi = 1, Ai = a) using the definition: E(Ri|Yi = 1, Ai = a) =

∑
ρ∈R fR|Y=1,A=a(ρ) · ρ.

We have,

Table 3: Expected values Ri conditional on Yi = 1 and Ai = a

E(Ri|Yi = 1, Ai = 0) E(Ri|Yi = 1, Ai = 1) E(Ri|Yi = 1, Ai = 0)− E(Ri|Yi = 1, Ai = 1)

0.68 0.72 -0.04

Note that E(Ri|Yi = 1, Ai = 0)− E(Zi|Yi = 1, Ai = 1) and γ′(0) have the same sign. Given Table 2 and Table 3, we can
see that the conditions in Theorems 1 and 5 hold only for m ∈ {1, 2, 3}, and γ(ε) crosses zero when m = 1, 2, 3 (See Figure
2).

Figure 3 illustrates accuracy θ(ε). This figure implies that accuracy is increasing in this case. We noticed that Assumption 1
does not hold when ρ = 0.2 and ρ′ = 0. In other words, we have,

Pr(Ri = 0.2|Yi = 1)

Pr(Ri = 0|Yi = 1)
=

0.01

0.01
<

Pr(Ri = 0.2|Yi = 0)

Pr(Ri = 0|Yi = 0)
=

0.3

0.11

Even though Assumption 1 does not hold, we can see θ(ε) is increasing. Therefore, Assumption 1 is a sufficient condition
for θ(ε) to be increasing.

Details about case study 2 (Figures 4, 5, 6)
In this part, we provide details about the experiment on the FICO scores of Black and White social groups. In this example.

Pr{A = White} = 1−Pr{A = Black} = 0.88. By checking Table 4 and 5, we can see that the conditions of Theorem 1 do



Table 4: Expected values Zi and Wi conditional on Yi = 1 and Ai = a

E(Zi|Yi = 1, Ai = 0) E(Zi|Yi = 1, Ai = 1) E(Zi|Yi = 1, Ai = 0)− E(Zi|Yi = 1, Ai = 1)

m = 1 0.1425 0.0486 0.0939

E(Wi|Yi = 1, Ai = 0) E(Wi|Yi = 1, Ai = 1) E(Wi|Yi = 1, Ai = 0)− E(Wi|Yi = 1, Ai = 1)

m = 2 0.2851 0.1099 0.1752
m = 3 0.3765 0.1743 0.2022
m = 4 0.4142 0.2216 0.1925

Table 5: Expected values Ri conditional on Yi = 1 and Ai = a

E(Ri|Yi = 1, Ai = 0) E(Ri|Yi = 1, Ai = 1) E(Ri|Yi = 1, Ai = 0)− E(Ri|Yi = 1, Ai = 1)

0.6445 0.4694 0.1751

not hold. Again, the forth column of Table 4 is equal to limε→+∞ γ(ε), and the sign of the last column in Table 5 is the same
as the sign of γ′(0) (Figure 5 confirms that).

Details about case study 2 (Figures 7, 8, 9)
In this part, we provide more details about the experiment on the FICO scores of White, Hispanic and Asian community. In

this example, Pr{A = White or Hispanic} = 1−Pr{A = Asian} = 0.9634. Since the dataset provided by [13] includes
PMF functions Pr{R = ρ|A = White} and Pr{R = ρ|A = Hispanic}, we calculated PMF function Pr{R = ρ|A =
White or Hispanic} under assumption that Pr{A = White|A = White or Hispanic} = 0.64.

Figure 8 shows γ(ε) crosses zero when m = 1, 2. The reason that γ(ε) crosses zero for m = 1, 2 is that the conditions in
Theorem 5 holds. Table 6 and Table 7 provides more details to check the condition in Theorem 1 and Theorem 5.

Table 6: Expected values Zi and Wi conditional on Yi = 1 and Ai = a

E(Zi|Yi = 1, Ai = 0) E(Zi|Yi = 1, Ai = 1) E(Zi|Yi = 1, Ai = 0)− E(Zi|Yi = 1, Ai = 1)

m = 1 0.1462 0.1389 0.0073

E(Wi|Yi = 1, Ai = 0) E(Wi|Yi = 1, Ai = 1) E(Wi|Yi = 1, Ai = 0)− E(Wi|Yi = 1, Ai = 1)

m = 2 0.2781 0.2778 0.0003
m = 3 0.3635 0.3745 -0.0110
m = 4 0.4072 0.4315 -0.0243

Table 7: Expected values Ri conditional on Yi = 1 and Ai = a

E(Ri|Yi = 1, Ai = 0) E(Ri|Yi = 1, Ai = 1) E(Ri|Yi = 1, Ai = 0)− E(Ri|Yi = 1, Ai = 1)

0.6088 0.6213 -0.0125

Extension of our result to other score functions
In section 4, we considered the following score function for the exponential mechanism,

v(G,D) =
1

m

∑
j∈G

Rj .

It is worth mentioning that other choices of score functions may be in the decision-maker’s interest. For instance, he may
choose one of the following score functions,

v(G,D) =

√
1

m

∑
j∈G

R2
j , or v(G,D) = min

j∈G
Rj or v(G,D) = max

j∈G
Rj (16)



Let algorithm B(D) be an algorithm which selects a set with the maximum score function. Moreover, let Smax = {G ∈
S|v(G,D) = maxG′ v(G′,D)}. We define random variable Wi and Wi,ε as follows,

Wi,ε =
∑
G∈Si

exp{ε · v(G,D)
2 }∑

G′∈S exp{ε · v(G′,D)
2 }

Wi =

{
0 if Si ∩ Smax = ∅

1
|Smax| o.w.

Again, we can show that under a set of sufficient conditions, perfect fairness is achievable even if we use score functions
defined in (16).

Theorem 6. There exists εo > 0 such that γ(εo) = 0 under Bε(.) if both of the following constraints are satisfied:
(1) E{Wi|Ai = a, Yi = 1} < E{Wi|Ai = ¬a, Yi = 1};
(2) E {v(G,D)|Ai = a, Yi = 1} > E {v(G,D)|Ai = ¬a, Yi = 1}, for G ∈ Si .

Since the proof is similar to the proof of Theorem 5, we do not repeat the proof here.

Privacy guarantee with respect to the training dataset

In this paper, we studied the privacy guarantee with respect to the data of applicants. Note that an attacker can infer some
information about data D = (X1...Xn) by observing the selection outcome if we do not use the exponential mechanism.

In addition to the privacy gaurantee for the applicants, our selection mechanism can provide a privacy guarantee for the
training dataset used to train function r(·). Define Dall = [Dtrain, D] a new dataset including both training dataset Dtrain and
dataset of applicants D. Consider an exponential mechanism with a score function defined w.r.t. Dall, i.e., v(i,Dall) = r(xi).
Note that v(i,Dall) depends on Dtrain via supervised learning model r(.). Because r(x) ∈ [0, 1] for all Dtrain and x, the
sensitivity of score function w.r.t. Dall is 1, implying that the privacy of training dataset is preserved through the exponential
mechanism. In other words, changing any single data point in Dtrain cannot change the selection outcome significantly.

Demographic parity fairness notion

Demographic parity fairness notion in classification implies that the positive rate should be independent of sensitive attribute
[10]. In other words, if Ŷ is the predicted label, under demographic parity fairness constraint, Ŷ should satisfy the following,

Pr(Ŷ = 1|A = 1) = Pr(Ŷ = 1|A = 0)

In our setting, we can adopt a fairness notion similar to demographic parity. We say algorithm M (·) is γ-fair under demographic
parity if,

Pr{Ki = 1|Ai = 0} − Pr{Ki = 1|Ai = 1} = γ,

whereKi is a Bernoulli random variable, andKi = 1 is an event indicating that individual i has been selected. Algorithm Aε(·)
is γ̂(ε)-fair under demographic parity fairness notion if we have,

γ̂(ε) = E{Zi,ε|Ai = 0} − E{Zi,ε|Ai = 1}.

The following theorem finds conditions under which there exists εo > 0 such that γ̂(εo) = 0.

Theorem 7. There exists εo > 0 such that γ̂(εo) = 0 under Aεo(.) if both of the following constraints are satisfied:
(1) E{Zi|Ai = a} < E{Zi|Ai = ¬a},
(2) E {Ri|Ai = a} > E {Ri|Ai = ¬a}.

Proof. The proof is very similar to the proof of Theorem 1. Suppose E{Ri|Ai = 0} > E{Ri|Ai = 1}, and E{Zi|Ai = 0} <
E{Zi|Ai = 1}. As mentioned before, γ(0) = 0. Since E{Zi|Ai = 0} < E{Zi|Ai = 1}, it is easy to see that γ̂(+∞) < 0.



Now, we calculate the derivative of function γ̂(ε) at ε = 0.

γ̂′(ε) =
d γ̂(ε)

d ε
= E

{
d

d ε

exp{εRi2 }∑n
j=1 exp{εRj2 }

∣∣∣∣∣Ai = 0

}
− E

{
d

d ε

exp{εRi2 }∑n
j=1 exp{εRj2 }

∣∣∣∣∣Ai = 1

}

= E


Ri
2 exp{εRi2 }

∑n
j=1 exp{εRj2 } − exp{εRi2 }

∑n
j=1

Rj
2 exp{εRj2 }}(∑n

j=1 exp{εRj2 }
)2

∣∣∣∣∣∣∣Ai = 0


− E


Ri
2 exp{εRi2 }

∑n
j=1 exp{εRj2 } − exp{εRi2 }

∑n
j=1

Rj
2 exp{εRj2 }}(∑n

j=1 exp{εRj2 }
)2

∣∣∣∣∣∣∣Ai = 1


γ′(0) =

1

n2
E

n · Ri2 −
n∑
j=1

Rj
2

∣∣∣∣∣∣Ai = 0

− 1

n2
E

n · Ri2 −
n∑
j=1

Rj
2

∣∣∣∣∣∣Ai = 1


=

n− 1

2n2
(E{Ri|Ai = 0} − E{Ri|Ai = 1}) > 0

Since γ̂(·) is continuous and γ̂(0) = 0 and γ̂′(0) > 0, there exists ε such that γ̂(ε) > 0. As γ̂(+∞) < 0 and γ̂(ε) > 0, by the
Intermediate Value Theorem there exists εo > ε such that γ̂(εo) = 0, and Aεo(·) is perfectly fair.


